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1. (Blume-Capel model) Consider a system of N spin-1 particles placed in a one-dimensional lattice
and subject to the Hamiltonian

H = −J
N∑

i=1

S i
zS

i+1
z − D

N∑
i=1

(S i
z)

2, (1)

where S z = diag(1, 0,−1) is the z component of the spin-1 operator for each particle. You may
assume, for concreteness, that J > 0 and D > 0. Discuss the equilibrium properties of this system.
Among other things, study the quadrupole moment
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2. Landau theory for discontinuous transitions: Consider a system described by a real order para-
meter m with Z2 symmetry (m → −m). In class we discussed how to expand the Landau free energy
close to the critical point. In order to respect the Z2 symmetry, the expansion could contain only even
terms. Hence, it would look like
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In class we stopped at the quartic term because we were assuming that b > 0. However, if b < 0 then
we need to go one order further in order to get a thermodynamically stable theory (we hence assume
that c > 0. If not, we have to keep going...). We also continue to assume that a ∼ T − Tc, so that it
changes sign at the critical point.

(a) Assume b < 0. Make plots of f (m) for 4 different cases: a < 0, 0 < a < a1, a1 < a < a0 and
a > a0. Here a0 and a1 are defined as
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b2
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Keep these plots in mind to get some intuition as to what is happening.

(b) Show that if a > a0 the only minimum is at m = 0.

(c) If a < a0, two new minima appear at m , 0. However, show that for a1 < a < a0 these will
be local, instead of global. They therefore correspond to metastable states: they are not global
minima, but there is nonetheless a barrier separating them from the true minimum, so that it
would require some energy to remove the system from them.

(d) Show that the minima with m , 0 become global ones when a < a1. This is the critical point for
a discontinuous transition: when a reaches a1 the system will jump abruptly from m = 0 to the
state with m , 0. This is fundamentally different from the situation we studied in class, where m
varied continuously.

(e) Show that if a < 0 then the local minimum at m = 0 disappears completely.

(f) Sketch how the magnetization should look like as a function of a.

3. Mean-field theory for anti-ferromagnetic systems
Consider a system of N spins on a d-dimensional hypercubic lattice and described by the anti-
ferromagnetic Ising model
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with J > 0. I also introduced a site-dependent magnetic field hi. This will just be used for bookke-
eping below and in the end we can set hi = h. The important difference with respect to the model
we studied in class is the plus sign in front of the first term. This means that the spins tend to align
anti-parallel to each other (up-down-up-down-. . .). The ground-state of the model is then divided
into two sub-lattices, A and B, one with all spins pointing up and the other with all spins pointing
down (see figure). Note also how spins in one sub-lattice only interact with the spins from the other
sub-lattice.

(a) Perform a mean-field approximation by writing σz
i = mi + δσz

i , where mi = 〈σz
i 〉. However,

differently from how we did in class, assume now that mi can take on two different values, ma

and mb, depending on which sub-lattice the spin resides.

(b) Compute the partition function and the free energy.

(c) You can compute the magnetization in each sub-lattice by notting that the individual magnetiza-
tion of each spin is given by mi = 〈σi

z〉 = − ∂F
∂hi

. Show that ma and mb must satisfy the Curie-Weiss
equations

ma = tanh(−2βJdmb + βh)
(6)

mb = tanh(−2βJdma + βh)

(d) Solve these equations for h = 0 in the vicinity of the critical point. Assume mb = −ma and
|ma| � 1. Show that there is indeed a phase transition and find the critical temperature. This is
called the Néel Temperature TN .

(e) Let M = ma + mb denote the total magnetization. Compute the susceptibility at zero field for
T > TN , χ = ∂M/∂h. Show that it can be written as

χ =
∂M
∂h

=
C

T + TN

where C is a constant. This result is used experimentally all the time. It offers a simple way of
knowing, if you are in a paramagnetic phase, if the material is anti-ferromagnetic or ferromagne-
tic. In the ferromagnetic case we saw in class that χ ∝ 1/(T − Tc). Hence, a curve of χ−1 vs. T
should be a straight line which, if we extrapolate to low temperatures, will intercept the horizon-
tal axis at a positive value. Conversely, in the anti-ferromagnetic case, χ ∝ 1/(T + TN). The plot
will therefore also be a straight line, but the extrapolation will intercept the horizontal axis at a
negative point.
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