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1 Introduction
Second quantization is the name given to a set of techniques which are incredibly

powerful for dealing with systems composed by a large number of particles. It is, in
a sense, a different posture towards quantum mechanics. It is still quantum mechanics,
but looked at in a different way. The usual formulation of quantum mechanics in terms
of the tensor product amounts to specifying in which state each particle is. If we
have 1023 particles this becomes too cumbersome. Moreover, if the particles are all
indistinguishable, this doesn’t even make sense anymore because we cannot say which
particle is in which state. All we can say is how many particles are in each state.
This is called occupation number representation and is the basic idea behind second
quantization.

Second quantization is extremely powerful. We will learn in these notes to think
about second quantization as a language. It is a different way of seeing nature. And
this will provide us with a very nice way of unifying different fields of knowledge.
Condensed matter, quantum optics, statistical mechanics and high energy physics, can
all be cast in a similar language using second quantization. By learning this language,
you will therefore be able to better navigate between these different fields.

Introducing second quantization for the first time can also be quite confusing. To
learn it, gaining intuition is essential. If I try to teach you rigorously from the start,
you will be very confused. Here I will therefore focus on an informal introduction to
the subject, which will allow us to jump right into applications and therefore gain in-
tuition. If you are curious on how to put this on more rigorous grounds, I recommend
Feynman’s Statistical Mechanics, chapter 7. The downside of doing an informal intro-
duction is that you may be left with the feeling that second quantization is somewhat
mystical. It is not. Second quantization is quantum mechanics. It is just written in a
different way. Please remember that.

2 Single-particle states
The basic idea behind the theory is the notion of single-particle states. That is, the

set of quantum states that can be occupied by a single particle. This is what will then
be used as the building block for states with multiple particles.

2.1 Free particles
Consider a free particle in one dimension, with Hamiltonian

H =
p2

2m
(2.1)

Here and henceforth we set ~ = 1. To diagonalize H it suffices to diagonalize p. We
label the eigenvalues and eigenvectors as

p|k〉 = k|k〉. (2.2)

Our goal is to find the eigenvalues k and corresponding eigenvectors |k〉. Working in
the coordinate representation, in terms of the basis |x〉, we define wavefunctions φk(x)
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Figure 1: Dispersion relation (2.10). The values of k are actually discrete [Eq. (2.9)] but the
discreteness is proportional to 1/L and thus becomes very fine when L is the large.
The levels therefore form a quasi-continuum

as1

φk(x) = 〈x|k〉, (2.4)

so that |k〉 is expanded as

|k〉 =

∫
dx |x〉〈x|k〉 =

∫
dx φk(x)|x〉. (2.5)

Since [x, p] = i, one may show (as done in any quantum mechanics book) that the
eigenstuff equation (2.2) in coordinate representation becomes the differential equation

− i∂xφk = kφk, (2.6)

whose solutions are plane waves φk = eikx.
It is extremely convenient to assume that the system is enclosed in a box of length

L and subject to Periodic Boundary Conditions (PBC). This means that φk(x + L) =

φk(x). The eigenstates are then written as

φk(x) =
eikx

√
L
, (2.7)

where the constant is introduced so that the functions are properly normalized

L∫
0

dx |φk(x)|2 = 1. (2.8)

The allowed values of k are determined by imposing the PBC condition φk(x + L) =

φk(x). in Eq. (2.7). This leads to eikL = 1. Hence, k is allowed to take on any value
k = 2π`

L , where ` = 0,±1,±2, . . ..

1 The position kets |x〉 are a bit different because they are continuous. Orthogonality and completeness
must therefore be replaced with

〈x|x′〉 = δ(x − x′),
∫

dx |x〉〈x| = 1. (2.3)

But other than that, they function pretty much like normal kets.
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To summarize, the eigenvectors of the momentum operator in a box of size L
with PBCs are plane waves of the form (2.7), whereas the eigenvalues are

k =
2π`
L
, ` = 0,±1,±2, . . . . (2.9)

If you want to put ~ back, you can write the eigenvalues as ~k instead. The
eigenvalues of the free particle Hamiltonian (2.1) are then simply

Ek =
k2

2m
. (2.10)

Eq. (2.10) is called a dispersion relation, or energy-momentum relation. It
says how energy scales with momentum. The eigenvalues k in Eq. (2.9) are
discrete; but their spacing is proportional to 1/L and thus becomes very fine
when L is large. As a consequence, the spectrum forms a quasi-continuum.
The dispersion relation (2.10) is shown in Fig. 1.

~ = 1 and other dispersion relations

Energy is related to frequency and momentum is related to wavenumber:

E = ~ω, p = ~k. (2.11)

Thus, when ~ = 1, energy = frequency and momentum = wavenumber, so feel free to
use these words interchangeably. This is all that ~ does. For instance, in electromag-
netic theory we find that frequency and wavenumber are related by ω = c|k|, where c is
the speed of light. Multiplying by ~ on both sides yields

E = c|p|. (2.12)

This is also a dispersion relation, although it is dramatically different from (2.10). We
say (2.10) is a non-relativistic dispersion relation whereas (2.12) is called a massless
dispersion.

In relativity we also find things which are somewhere in the middle:

E =

√
m2c4 + p2c2 (2.13)

When pc � mc2 this yields (2.10) (up to a constant) and when pc � mc2 this
yields (2.12). In solids we also find much more exotic dispersion relations, which
stem due to the confinement of electrons in the potentials created by the atoms. We
will see one example below in Sec. 2.2

Generalization to d dimensions

The eigenstates |k〉 (or the corresponding eigenfunctions φk) are what we call a
single-particle state. They are states which completely characterize a particle in 1D.
A particle in 3D can be labeled by single-particle states of the form

|k〉 = |kx, ky, kz〉 = |kx〉 ⊗ |ky〉 ⊗ |kz〉, (2.14)
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Figure 2: Allowed values for the momentum (kx, ky) in 2D [c.f. Eq. (2.9)]. The energy (2.15)
correspond to concentric circles in k space.

which are eigenstates of px, py and pz. Since momenta in different directions commute,
each operator can be diagonalized independently. Thus, each ki will be discrete exactly
like in Eq. (2.9). In 2D this is illustrated in Fig. 2, which shows a grid of (kx, ky) values.
The dispersion relation (2.10) in d dimensions simply becomes

Ek =
k2

2m
=

k2
1 + . . . + k2

d

2m
. (2.15)

In 2D, for instance, this corresponds to concentric circles in k space (Fig. 2).
The particle may also have internal degrees of freedom. For instance, the particle

itself may be an atom, which has internal electronic energy levels. Or, even more
simply, the particle may just be an electron which also carries spin. A set of single-
particle states for a spin 1/2 free particle is therefore

|k〉 = |kx〉 ⊗ |ky〉 ⊗ |kz〉 ⊗ |σ〉, (2.16)

where σ = ±1.
The important message that you should remember is that a single particle state

completely characterizes the state of a single particle. I know it sounds redundant. But
please remember it! The set of single particle states do not have to be eigenstates of
anything. For instance, if we introduce a potential V(x) in the Hamiltonian (2.1), the
φk will no longer be eigenstates. Notwithstanding, they continue to be single-particle
states. In fact, a much simpler set of single-particle states are the position eigenstates
|x〉. They also form a basis and they also completely characterize a particle in 1D.

2.2 Tight-binding model
Tight-binding is a simplified toy model which is absolutely lovely. Electrons in

semiconductors and metals tend to be trapped near the atomic cores. They can, how-
ever, move around by tunneling to neighboring atoms. The motion is therefore a se-
quential composition of tunnelings. This is what we call hopping (Fig. 3). The tight-
binding provides a simplified picture of this, where the particles can only like on a
discrete set of states |n〉, with n = 1, 2, . . . ,N, which are therefore the single-particle
states. If the lattice sites are spaced by a fixed amount a (the lattice spacing), then each
site n is associated with a position xn = an.
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Figure 3: Basic idea behind the tight-binding model, showing a particle hopping through a
lattice.

The effects of hopping can be introducing by considering a Hamiltonian

H = −g
N∑

i=1

{
|n〉〈n + 1| + |n + 1〉〈n|

}
, (2.17)

where g is a constant. This Hamiltonian also assumes PBC since the sum goes up to
n = N. This means that there is a term |N〉〈N +1| which should be interpreted as |N〉〈1|.
When a term like |n+1〉〈n| acts on a state |n〉 it produces |n+1〉. Thus, |n+1〉〈n| describes
a jump from n to n + 1 (you read it from right to left). Of course, since the dynamics is
unitary, one must also be able to jump from n + 1 to n with the same amplitude.

The Hilbert space in the case of the tight-binding model is finite and has size N.
We may thus write Eq. (2.17) as a big matrix with entries Hnm = 〈n|H|m〉. For instance,
in the case N = 5, it will look like

H = −g


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 . (2.18)

Notice the lonely terms in the upper-right and lower-left corners. These are actually
the PBS. In general I do not recommend writing H as a big matrix. We are not interest
in N = 5, but rather on arbitrary N, so that the matrices would get very big.

We are going to find the eigenvalues and eigenvectors of the tight-binding Hamil-
tonian. (2.17) for any size N. But before doing so, it is useful to notice how the same
idea can be readily extended to more general geometries. A more general tight-binding
Hamiltonian will always have the structure

H = −
∑
n,m

gnm|n〉〈m|, (2.19)

for some coefficients gnm satisfying gnm = g∗mn. We can use this, for instance, to set up
a complicated hopping problem through a complicated network of sites, each hopping
having a different magnitude and so on and so forth. In the special case where the
lattice has translation invariance, then gnm = g(|xn − xm|) is a function only on the
distance between two sites. This is the case of the simple 1D lattice we are using in
Eq. (2.17).

Let us now diagonalize the Hamiltonian (2.17). We are looking for the solution of

H|φ〉 = E|φ〉, (2.20)

where the eigenstates |φ〉 can be expressed in the basis |n〉 as |φ〉 =
∑

n φn|n〉. To have a
look on what happens when we plug this in Eq. (2.20), let us use the matrix represen-
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tation in Eq. (2.18). Then

H|φ〉 = −g



φ2 + φN

φ1 + φ3

φ2 + φ4

φ3 + φ5

φ4 + φ1


= E



φ1

φ2

φ3

φ4

φ5


= E|φ〉.

We clearly see a pattern here. Each line of the above formula gives us an algebraic
relation for the coefficients φi. Moreover, we can clearly guess what is the general
form of this equation:

−g(φn−1 + φn+1) = Eφn. (2.21)

Notice how this also works for the boundary terms, provided we use the PBC recipe
φN+1 = φ1. This therefore converted an eigenvalue/eigenvector problem into a recur-
rence relation problem. Notice that the variables here are both the vectors φn as well as
the energies E.

The recurrence Eq. (2.21) can be solved by introducing plane waves

φk
n =

eikxn

√
N
, (2.22)

where xn = an and k is just a label for the different plane waves. The allowed values of
k will be determined in a second. I often set the lattice spacing to be a = 1, in which
case k becomes dimensionless. But if we keep a, then k will have units of 1/length; i.e.,
wavenumber.

The normalization constant is introduced so that

N∑
n=1

|φk
n|

2 = 1, ∀k. (2.23)

Plugging Eq. (2.22) into Eq. (2.21) we find that

−g
eikn

√
N

(eik + e−ik) = E
eikn

√
N
.

Cancelling out the exponentials, we find that the ansatz (2.22) indeed works, but only
provided that the energy Ek associated to the plane wave |φk〉 are given by

Ek = −2g cos ka.

This will be the dispersion relation for this model. We will analyze it in more detail in
a second.

But before doing so, let us determine what are the allowed values of k. As in
Sec. 2.1, these are determined by imposing the PBC conditions φN+1 = φ1 in Eq. (2.22).
This leads to eikaN = 1 so that k = 2π`/(Na), where ` = 0,±1,±2, . . .. Unlike the free
particle case, however, k cannot take on an infinite number of values. The Hilbert space
in this case has dimension N, so we only need a set of N eigenvectors. What we need to
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Figure 4: Dispersion relation (2.26) for the tight-binding model. The values of k are actually
discretized as in Eq. (2.27) and restricted to the first Brillouin zone k ∈ [−π/a, π/a].

look for are the eigenvectors. The eigenvalues can be equal (that is just a degeneracy).
But the eigenvectors have to be distinct to form a orthonormal basis. In (2.22) the
quantities n are integers; thus, if we displace

k → k + 2π/a

we do not change φk
n. As a consequence, it suffices to pick out only those values of

k which are within an interval of length 2π/a. The customary choice is a symmetric
interval

k ∈
[
−
π

a
,
π

a
]
, (2.24)

known historically as the first Brillouin zone. The correct choice for the values of k
are therefore2

k =
2π`
Na

, −
N
2
< ` ≤

N
2
.

To summarize, the eigenvectors of the tight-binding Hamiltonian (2.17) are
plane waves of the form

φk
n =

eikxn

√
N
, (2.25)

whereas the dispersion relation is

Ek = −2g cos ka. (2.26)

In both formulas, the quantum numbers k are discretrized as

k =
2π`
Na

, −
N
2
< ` ≤

N
2
. (2.27)

where ` is an integer. This yields values of k in the first Brillouin zone k ∈
[−π/a, π/a]. The dispersion relation is shown in Fig. 4.

2 Notice how I wrote < and ≤ in this expression. This is simply to ensure that we really take N distinct
eigenvectors. If N is odd, like N = 5, then ` can take on 5 values −2,−1, 0, 1, 2. But if N is even, like N = 6,
then we cannot take −3,−2,−1, 0, 1, 2, 3. That gives 7 values. It turns out that in this case −3 and 3 give the
same eigenvector φk

n, so it suffices to choose one of them. I chose +N/2.
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Tight-binding is kind of a free particle

The dispersion relation in Fig. 4 is, similarly to Fig. 1, not really a continuous func-
tion. Rather, it is discrete in small steps of ∆k = 2π/Na. The big difference between
the tight-binding and free particle dispersion relations is that the latter is unbounded,
with k going all the way to ±∞. In the tight-binding, on the other hand, k is restricted
to the first Brillouin zone k ∈ [−π/a, π/a].

This introduces the notions of ultra-violet and infrared cutoffs, which are nick-
names we give for stuff with high and low energy respectively. The fact that the tight-
binding dispersion relation is restricted to [−π/a, π/a] is an ultra-violet cutoff. And the
fact that it is discrete, in steps of ∆k = 2π/Na, is an infrared cutoff. Ultraviolet is
related to the lattice spacing a, whereas infrared is related to the total size L = Na
of the chain. The free particle has the exact same infrared cutoff [Eq. (2.9)]. But no
ultraviolet since it has no underlying discrete lattice.

We are always interested in the limit of large chain sizes N (or large lengths L =

Na). Thus, the infrared cutoff is always vanishingly small. Sometimes we may also be
interested in the limit where the lattice spacing a is very small. In this case we may
expand Eq. (2.26) in a, leading to

Ek ' −2g + ga2k2. (2.28)

The first term is a constant and energy is only defined up to a constant. What matters
is the second term. If we define an effective mass

me =
1

2ga2 , (2.29)

we then find that

Ek '
k2

2me
(2.30)

For small ka we therefore see that the tight-binding model predicts the same kind of
non-relativistic dispersion relation as the free-particle, but with an effective mass me.
In fact, from Eq. (2.29) we see that me ∝ 1/g, so that high tunneling rates make the
particles very light. This effective mass can actually be measured in semiconductors
and can vary quite dramatically, from 0.01 to 20 times the electron mass. Thus, in
effect, an electron can move through a crystal as if it were a free particle, but with a
completely different mass. Pretty cool huh?

2.3 Aubry-Andre model
Let us consider once again the tight-binding model (2.17), but introduce a lattice

dependent potential so that the Hamiltonian changes to

H =

N∑
n=1

Vn|n〉〈n| − g
N∑

i=1

{
|n〉〈n + 1| + |n + 1〉〈n|

}
, (2.31)

where Vn are arbitrary numbers. In matrix form this looks like (e.g. for N = 5):

H =


V1 −g 0 0 −g
−g V2 −g 0 0
0 −g V3 −g 0
0 0 −g V4 −g
−g 0 0 −g V5

 . (2.32)
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Figure 5: The function cos(2πηn), where η = 1
2 (
√

5 + 1) is the Golden Ratio, is quasi-periodic
and never repeats itself.

This Hamiltonian can still be treated in pretty much the same way. For instance, if we
wish to find its eigenvalues and eigenvectors, we can generalize Eq. (2.21) to read

Vnφn − g(φn−1 + φn+1) = Eφn. (2.33)

For general Vn it is quite unlikely we will be able to solve this equation analytically.
But we can notwithstanding diagonalize it numerically. Just construct a big matrix
like (2.32) and find its eigenvalues and eigenvectors. The task is not too bad because
the matrix is tridiagonal (most entries are zero).

By playing with the potential Vn one can find an incredibly rich set of behaviors.
Really. You will be amazed. One particularly nice choice, first studied by Aubry and
Andre, is to choose the Vn to be of the form

Vn = λ cos(2πηn), (2.34)

where λ is a constant and η = 1
2 (
√

5 + 1) is the Golden Ratio. The reason for choosing
such a weird potential is because it is quasi-periodic: the irrationality of η makes it so
that the Vn never repeat. The Hamiltonian (2.31) with the potential (2.34), is called the
Aubry-Andre model.

This model presents a localization transition. A localization transition is not a
phase transition. It is a transition on the eigenvectors of the model. The transition
occurs at λ = 1. When λ = 0 the model is just the original tight-binding Hamil-
tonian (2.17), where the eigenvectors are plane waves [Eq. (2.22)]. Plane waves are
extended in space; they are delocalized. We see this by analyzing |φk

n|
2 as a function of

the position n. For plane waves this would be just |φk
n|

2 = 1/N so all eigenvectors of the
tight-binding model are completely flat in space; the probability of finding the particle
is independent of the site n.

If we now start to change λ, we get some kind of spatial dependence. Since for
λ , 0 the k are no longer good quantum numbers, I will use a generic index α to
label the eigenstates. Plots for the ground-state probabilities |φ1

n|
2 as a function of n

are shown in Fig. 6 for N = 100 sites and different values of λ. As can be seen, when
λ < 1 the eigenvectors are extended through all of space. Even when λ = 0.9 or 0.95,
the eigenvectors are extremely spread out. But when we reach λ = 1, sorcery happens:
the eigenvalues become extremely localized in a specific region of space. The amount
it localizes depends on the number of sites N. For large N the localization becomes
sharper and sharper. Moreover, the position where it localizes is not at all obvious, but
you can tune it if you add a phase to Eq. (2.34), as Vn = λ cos(2πηn + θ). For λ > 1 the
eigenvectors remain localized.
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Figure 6: The ground-state wavefunction |φn|
2 for the Aubry-Andre model (2.34) for different

values of λ, with g = 1 and N = 100.

Figure 7: |φαn |2 for all eigenvectors of the Aubry-Andre model for λ = 0.5 (left) and λ = 1.5
(right), with g = 1 and N = 100. Here α is just an index labeling the eigenvectors.

The localization transition for the Aubry-Andre model does not occur only for the
ground-state. It occurs for the entire spectrum. This is shown in Fig. 7 where I plot all
eigenvectors for a value of λ below and above the transition. The appearance of spots
in the graph when λ > 1 shows clearly that all eigenvectors are localized.

A more mathematical way of quantifying localization is through the Inverse Par-
ticipation Ratio (IPR). For an arbitrary state |ψ〉 =

∑
n ψn|n〉 the IPR is defined as

IPR(ψ) =
∑

n

|ψn|
4. (2.35)

When the state is completely localized the IPR will be 1 and when it is completely
delocalized [like the plane waves (2.22)] it becomes

IPR(ψ) =
1

N2

N∑
n=1

1 =
1
N
.

For large sizes, this tends to zero. Thus, the IPR is a number which varies essentially
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Figure 9: Mean IPR as a function of λ for different values of N and g = 1.

between 0 and 1. The larger is the IPR, the more localized is a state. In Fig. 8 I plot
the IPR for the different eigenvectors of the Aubry-Andre model, below and above the
transition. The plots are quite irregular. But notice the vertical scale. It is tiny below
the transition (extended phase) and of order 1 above it (localized phase). This becomes
even clearer if we plot the mean IPR (averaged over all eigenvectors), as shown in
Fig. 9. The plot clearly shows a transition occurring at λ = 1, which becomes sharper
and sharper as N → ∞.

The Aubry-Andre model may at first seem simple, but it is not. Doing anything an-
alytically with this model is notoriously difficult and there is much about it (and related
models) which is still unknown. The Brazilian mathematician, Prof. Artur Ávila, gave
seminal contributions to this field for instance, which was part of the reason he was
awarded the Fields Medal. You can read about it, for instance, in arXiv:math/0503363.

3 Creation and annihilation operators
We are now finally ready to introduce the idea of second quantization. In quantum

mechanics the number of particles is fixed. We may work with 1 particle. Or with 2
particles. Or with 3. When say something like “consider a system of N spins”, the
number of particles was fixed at N. The jump to second quantization is quite simple:
we lift this constraint and assume that the number of particles may fluctuate. To
describe this, we introduce creation and annihilation operators, similarly to what we
do in the case of the harmonic oscillator, but which create or annihilate actual parti-
cles. This is the reason why we need single-particle states: these operators create and
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annihilate particles in single-particle states.

Here is how it works. Let |α〉 denote an arbitrary set of orthonormal single-
particle states satisfying

〈α|β〉 = δα,β. (3.1)

We then define an operator a†α and a special state |0〉, called the vacuum, such
that

a†α|0〉 = |α〉 ≡ |1α〉. (3.2)

The operator a†α therefore creates a particle in the single-particle state |α〉. The
notation |1α〉 is merely to emphasize that this is a state with one particle in state
|α〉 . Similarly, the annihilation operator aα is designed to annihilate a particle
in the state |α〉:

aα|β〉 = δα,β|0〉. (3.3)

If β , α then aα cannot annihilate and we get zero. But if β = α then aα
destroys a particle and we are back to the vacuum.

3.1 Bosons and Fermions
Things become more interesting when we create multiple particles. Second quan-

tization is specifically designed to describe identical particles. In 1940 Wolfgang
Pauli published a paper entitled “The connection between spin and statistics” where
he shows that, as a consequence of the Lorentz group of special relativity, identical par-
ticles can behave in one of two ways. Bosons are symmetric with respect to creation
of two particles:

a†βa
†
α|0〉 = a†αa†β|0〉 := |1β, 1α〉, (3.4)

whereas Fermions are anti-symmetric:

a†βa
†
α|0〉 = −a†αa†β|0〉 := |1β, 1α〉. (3.5)

In the case of Bosons, due to (3.4), we can move the states around at will: |1β, 1α〉 =

|1α, 1β〉. For Fermions, however, every time we move the states around we get a minus
sign: |1β, 1α〉 = −|1α, 1β〉.

Pauli also showed that Bosons and Fermions have different spin values: Bosons’
spins are integer valued (0,1,2,. . .) whereas Fermions’ spins are half-integers (1/2, 3/2, . . .).
In the case of Fermions, in particular, if we set β = α in Eq. (3.5) we see that

(a†α)2|0〉 = −(a†α)2|0〉, (3.6)

which implies

(a†α)2 = 0 (for Fermions). (3.7)

This is the Pauli exclusion principle: it is forbidden to create two fermions on the
same single-particle state |α〉.

Eq. (3.4) implies that bosonic creation and annihilation operators should commute:

[aα, aβ] = [a†α, a
†

β] = 0, (3.8)
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whereas Eq. (3.5) implies that fermionic operators should anti-commute:

{aα, aβ} = {a†α, a
†

β} = 0, (3.9)

where {A, B} = AB + BA is the anti-commutator.

In addition, one can also show that similar properties hold for the mixed com-
mutation relations between aα and a†β. In the case of Bosons, we get the typical
harmonic-oscillator like commutation relations

[aα, a
†

β] = δα,β. (3.10)

whereas in the case of Fermions we get the same thing, but with anti-commutators:

{aα, a
†

β} = δα,β. (3.11)

These algebraic relations are the building blocks of second quantization.

Fock space for Bosons

Fock space is the generalization of Hilbert space to the case where the number
of particles is not fixed. In the case of Bosons the operators aα behave exactly like
harmonic oscillator operators (see Appendix A.2). So first there is a state |0〉 with no
particles. Then there is a set of states |α〉 ≡ |1α〉 with exactly one particle. Next there
is a set of states with two particles, which include |1β, 1α〉 as well as states of the form
|2α〉. More generally, the Fock states of a Bosonic system have the form

|n1, n2, n3, . . .〉, nα = 0, 1, 2, . . . = number of particles in state |α〉.

Here I am labeling the single-particle states as α = 1, 2, 3, . . .. But, of course, you can
label them anyway you want. For instance, if the Fock states are the position states
|i〉, i = 1, 2, . . . ,N for a tight-binding lattice, then the Fock states will have the form
|n1, n2, . . . , nN〉 where n42 is the number of particles in site 42. Bosons don’t satisfy the
Pauli exclusion principle, so we can have 20 particles on site 42, or whatever. Notice
also how in this tight-binding example, the number of single-particle states is finite
(there are N of them), but the number of Fock states is infinite, since each site can have
any number of particles.

We can characterize the number of particles by defining the number operator

N̂ =
∑
α

a†αaα. (3.12)

I usually don’t put hats on operators; but in this case it is useful since the letter N
appears far too often in physics! The number operator acting on the states above then
yield

N̂ |0〉 = 0,

N̂ |1α〉 = |1α〉,

N̂ |1β, 1α〉 = 2|1β, 1α〉,
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or, more generally,

N̂ |n1, n2, n3, . . .〉 =

(∑
α

nα
)
|n1, n2, n3, . . .〉, (3.13)

where the sum here is over all allowed single-particle states.
Using the eigenvalues of N̂ we can factor the Fock space into sectors with different

numbers of particles. We can also move from one sector to the other. This is where aα
and a†α come in. Because of the commutation relations (3.10), the rules for applying aα
and a†α are exactly like those of the harmonic oscillator:

a†α|n1, . . . , nα, . . .〉 =
√

nα + 1 |n1, . . . , nα + 1, . . .〉, (3.14)

aα|n1, . . . , nα, . . .〉 =
√

nα |n1, . . . , nα − 1, . . .〉. (3.15)

Fock space for Fermions

The situation for Fermions is almost identical. The ony difference is that Fermions
satisfy the Pauli exclusion principle (3.7). This means that we can never put more than
two particles in the same single-particle state (see Appendix A.3). The Fock space for
Fermions will therefore have the form

|n1, n2, n3, . . .〉, nα = 0, 1 = number of particles in state |α〉.

Looks exactly like the bosonic case, but nα = 0, 1. Fermionic Fock states also have
the ambiguity we saw before, about which particle we create first: |1β, 1α〉 = −|1α, 1β〉.
This ambiguity has no physical consequences, as long as you are consistent with your
definitions.

3.2 Transformations between creation and annihilation operators
Creation operators transform like kets

Consider now two sets of single-particle states {|α〉} and {|i〉}. To each set we can
attribute corresponding creation and annihilation operators aα and bi. How are these
two sets of operators connected? That is, how to transform from aα to bi? The bases
{|α〉} and {|i〉} can be connected by a unitary transformation

|α〉 =
∑

i

|i〉〈i|α〉 =
∑

i

Uαi|i〉, (3.16)

where Uαi = 〈i|α〉. Now remember Eq. (3.2): the creation operators are defined by the
relations

|α〉 = a†α|0〉, (3.17)

|i〉 = b†i |0〉 (3.18)

Using Eq. (3.16) we then get

a†α|0〉 = |α〉 =
∑

i

Uαi|i〉 =
∑

i

Uαib
†

i |0〉.
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Whence,

a†α =
∑

i

〈i|α〉b†i . (3.19)

This is exactly like the transformation rule (3.16). Creation operators transform like
kets! :)

Eq. (3.16) connects the two sets aα and bi by means of a unitary transformation
Uα,i = 〈i|α〉. A very important property of second quantization is that unitary transfor-
mations preserve the algebra. Let us check this. We start with Bosons and Eq. (3.10):
assume that [bi, b

†

j ] = δi j. Then

[aα, a
†

β] =
∑
i, j

U∗αiUβ j [bi, b
†

j ] =
∑
i, j

U∗αiUβ jδi j =
∑

i

U∗αiUβi.

The resulting sum is nothing but∑
i

U∗αiUβi =
∑

i

Uβi(U†)iα = (UU†)β,α = δα,β,

since U is assumed to be unitary. Thus we conclude that

[bi, b
†

j ] = δi j → [aα, a
†

β] = δαβ. (3.20)

Unitary transformations preserve the algebra. I will leave it for you as an exercise
to show that this is also true for Fermions. Please do it. It’s almost identical as the
calculation above, but it is a good exercise.

Number operator

If we choose a basis set {|α〉} as our single-particle states, then the number operator
is N̂ =

∑
α a†αaα. But if we use a basis set {|i〉} the number operator would be N̂ =∑

i b†i bi. Given that the number operator counts the number of particles in the system,
it would be somewhat weird if N̂ depended on our choice of basis. Indeed, it does not.
We can check this using again the unitarity of the transformation (3.19):

N̂ =
∑
α

a†αaα =
∑
α,i, j

UαiU∗α jb
†

i b j.

We now carry first the sum over α, which yields a δi j. Thus

N̂ =
∑
α

a†αaα =
∑

i

b†i bi. (3.21)

The number operator is independent of the choice of basis.

Commutation relations

We can also use these results to establish the commutation relations between aα
and bi. Again I will focus on Bosons, with the case of Fermions being identical. Using
Eq. (3.19) we find

[aα, bi] =
∑

j

〈 j|α〉∗[b j, b
†

i ].
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But since [b j, b
†

i ] = δi j this reduces to

[aα, b
†

i ] = 〈α|i〉. (3.22)

The relation for Fermions is identical, but with the anti-commutator. This result is quite
nice, as it shows how to generalize the idea of creation and annihilation operators to
arbitrary single-particle states (which do not necessarily form a basis).

In fact, from now on we can generalize our notations a bit and write, instead of
Eqs. (3.10) and (3.11),

[aα, a
†

β] = 〈α|β〉, (Bosons) (3.23)

{aα, a
†

β} = 〈α|β〉, (Fermions) (3.24)

where |α〉 and |β〉 can now be arbitrary single-particle kets (not necessarily or-
thogonal). If they happen to be orthogonal, we of course recover what we had
before. The important message conveyed by these formulas is that the amount
by which aα and a†β fail to commute is related to the overlap of their single-
particle wavefunctions.

3.3 Non-interacting Hamiltonians in the language of second quan-
tization

So far we have only dealt with the algebraic structure of second quantization. In or-
der to make this useful, we have to start expressing Hamiltonians in this new language.
This turns out to be quite intuitive. Let’s work through some examples and you will
see.

Free particle

Consider the free particle in Sec. 2.1. There, we saw that a set of single-particle
states were the momentum states |k〉, where k = 2π`/L and ` = 0,±1,±2, . . .. We
may thus work with operators ak and a†k which annihilate and create particles with
momentum k. Now consider again the single-particle Hamiltonian for the free particle:

H1 =
p2

2m
, (3.25)

where I am calling this H1 here just to emphasize that this is a single particle Hamil-
tonian. Suppose now that we have N non-interacting free particles. The N particle
Hamiltonian would be

HN =

N∑
i=1

p2
i

2m
.

But if we don’t want to specify what is the number of particles, then this expression
doesn’t really work.
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Second quantization approaches the problem differently (and much more ele-
gantly). In second quantization the Hamiltonian of non-interacting free parti-
cles is expressed as

H =
∑

k

k2

2m
a†kak. (3.26)

The logic behind this formula is super simple: a†kak counts how many particles
have momentum k. So we sum over all k with the energy levels k2/2m weighted
by the number of particles with that k value. The Hamiltonian (3.26) does not
live in Hilbert space. It lives in Fock space; in the space where the number of
particles is not fixed. Of course, the same logic also applies for other operators.
For instance, we can define the momentum operator in second quantization as

P =
∑

k

k a†kak. (3.27)

This operators quantifies the total momentum contained in the system, irre-
spective of how many particles are there. Compare this also with the number
operator:

N̂ =
∑

k

a†kak.

The idea is similar, except that in P each a†kak is weighted by k.

Non-interacting systems

Eq. (3.26) is an example of a non-interacting Hamiltonian. We can have any num-
ber of particles (identical, of course), but they do not directly interact. We will learn
how to deal with interactions in a second. But before doing so, let us try to formalize a
bit better how to write down second-quantized versions of non-interacting Hamiltoni-
ans. It turns out there is a super easy way to do this.

Consider a single-particle Hamiltonian H1 and suppose it can be diagonalized
as

H1 =
∑
α

εα|α〉〈α|. (3.28)

The eigenvectors |α〉 of H1 of course form a basis of single-particle states. Thus,
we can define operators aα. The second-quantized version of (3.28) is then
simply

H =
∑
α

εα a†αaα. (3.29)

Notice the similarity in structure between (3.28) and (3.29). We essentially
replace |α〉〈α| with a†αaα. The logic is also the same as before: a†αaα counts
how many particles are in eigenstate |α〉. The Hamiltonian is then the sum of
all possible energies εα weighted by this number of particles.

What about the situation where H1 is not diagonal? Suppose we are given a generic
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single-particle Hamiltonian of the form

H1 =
∑
i, j

Hi, j|i〉〈 j|, (3.30)

where Hi, j = 〈i|H1| j〉. What to do? We first diagonalize (3.30) by introducing a unitary
transformation:

|i〉 =
∑
α

|α〉〈α|i〉. (3.31)

This turns (3.30) into (3.28). The corresponding second-quantized Hamiltonian is then
given by Eq. (3.29). Now we use the transformation rule (3.19) for creation operators:

H =
∑
α

εαa†αaα =
∑
α,i, j

εα〈i|iα〉〈α| j〉a
†

i a j. (3.32)

We can rearrange this as:

H =
∑
i, j

(∑
α

〈i|α〉εα〈α| j〉
)
a†i a j.

The thing inside parenthesis is∑
α

〈i|α〉εα〈α| j〉 = 〈i|H1| j〉 = Hi j,

which are coefficients in Eq. (3.30). Thus, we can write (3.32) as

H =
∑
i, j

Hi ja
†

i a j.

To summarize, we thus have that the single-particle Hamiltonian

H1 =
∑

i j

Hi j|i〉〈 j|, (3.33)

is written in the language of second-quantization as

H =
∑

i j

Hi ja
†

i a j. (3.34)

Again, notice the similarity: we simply have to replace kets |i〉 with a†i and
〈 j| with a j. This important conclusion is also readily generalized to other op-
erators. Let A1 denote any single-particle operator and {|i〉} any set of single-
particle states. Then, the corresponding second-quantized version of A1 will
be

A =
∑
i, j

Ai ja
†

i a j, Ai j = 〈i|A1| j〉, (3.35)

irrespective of whether or not A1 is diagonal in this basis.
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Figure 10: Ground-state of N free particles in 1D for the case of (a) Bosons and (b) Fermions.

Ground state of a free particle system

Let us return to the free particle Hamiltonian (3.26). What is the ground-state?
Well, this is a tricky question, because it depends on whether we assume the number
of particles is fixed or not. Each term in Eq. (3.26) is strictly positive, so the more
particles we add, the higher will the energy be. If the number of particles can vary
then, of course, the ground-state will be that state with zero particles.

But suppose that the number of particles is fixed at some value N. Then how to
construct the state with the smallest possible energy? Well, here we have to distinguish
between Bosons and Fermions. Bosons do not satisfy the exclusion principle, so we
can put as many of them as we want in the same state. In Eq. (3.26) the single-particle
ket with the lowest energy is that with k = 0. Thus, for the case of Bosons the ground-
state will be a state where k = 0 is populated with N particles; viz.,

|Ψgs〉 =
(a†0)N

√
N!
|0〉, (3.36)

where a†0 = a†k=0 is the creation operator at momentum k = 0 (see Fig. 10(a)). The fac-
tor of

√
N! is put here simply for normalization [see Appendix (A.2) and Eq. (A.12) for

more details]. The state (3.36) is roughly what happens in a Bose-Einstein condensate
(which we will study later on). Bose-Einstein condensation (BEC) is not a condensa-
tion in position space; it is a condensation in momentum space. What happens in the
BEC is that a macroscopically large number of particles tend to settled down in the
same lowest energy state, which is precisely the state (3.36).

Next let us analyze the ground-state of the free particle system in the case of
Fermions. Now there is the Pauli exclusion principle to care about. Let us assume,
first, that there is no spin. Then the state k = 0 can hold only one Fermion. Once it
is filled, we have no choice but to put the second particle in the next lowest energy
state. In this case, remembering how the k are quantized as in Eq. (2.9), this state will
be k = ±2π/L. We then keep on going, filling out successive k states of increasing Ek

until we fill the N particles. The situation will then be like in Fig. 10(b).
The largest filled value of k is called the Fermi momentum kF . It depends on the

value of N. We will learn more sophisticated methods of finding kF later on. For the
1D case considered here, if we forget about the state with k = 0, then essentially each
value of |k| will take on two particles. So given that ∆k = 2π/L, we get In fact, in the
1D case we simply have

kF =
πN
L
. (3.37)
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The ground-state of a Fermionic system can then be written as

|Ψgs〉 =

( ∏
|k|≤kF

a†k

)
|0〉. (3.38)

Spelled out in words: to construct the ground-state we create particles (by applying a†k)
on all k states having |k| < kF , leaving the higher order momenta entirely empty. The
number of particles N is contained in kF .

The highest occupied energy is called the Fermi energy εF (everything with the
name Fermi in this context refers to “highest occupied...”). Since εk = k2/2m, the
Fermi energy will be

εF =
k2

F

2m
(3.39)

The Fermi energy is not the ground-state energy. Instead, the ground-state energy
is

Egs =
∑
|k|≤kF

k2

2m
. (3.40)

Computing this sum if we have 42 particles can be annoying. But if N, as well as the
length of the box L, are both large, the sum can be converted to an integral. We will
come back to this below. For now I will leave Egs like this.

Free particles with spin

If we have spin, then the single-particle kets should be replaced with |k, σ〉, so the
annihilation operators become akσ. Let us focus on the case of Fermions. And let us
first assume that there are no magnetic fields present (nor any kinds of interactions).
The Hamiltonian of the system then becomes

H =
∑
k,σ

k2

2m
a†kσakσ. (3.41)

The sum is now over all values of k and both spin components σ = ±1. The energies,
however, do not depend on the spin value, but only on k (because we did not put a
magnetic field yet). To construct the fermionic ground-state, we proceed exactly as
before. The only difference is that now each k value can take on two fermions so the
Fermi momentum kF will be half of what we had before The ground-state can then be
built as

|Ψgs〉 =

( ∏
|k|≤kF ,σ

a†kσ

)
|0〉. (3.42)

Next let us introduce a magnetic field. As we know, this shifts the energy levels by
−hσ so that the Hamiltonian becomes

H =
∑
k,σ

(
k2

2m
− hσ

)
a†kσakσ. (3.43)

The energies of the system now split into two energy bands, corresponding to σ = 1
and σ = −1. To construct the ground-state we always need to remember the obvious:
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Figure 11: (a) Pictorial construction of the ground-state of the Hamiltonian (3.43) for the case
of Fermions. (b) The energy bands in these kinds of problems are often represented
in this form, with the band with σ = +1 plotted only for k > 0 and that with σ = −1
for k < 0. This does not mean that it is not possible to have σ = +1 and k < 0. It is
simply for presentation purposes.

the ground-state is the state with smallest possible energy. The situation will then be
somewhat like that in Fig. 11. There will be two bands, each with a discrete set of
states. The states are then populated starting from the bottom, so we fill some states in
one band and some states in the other band.

This kind of system is often represented pictorially as in Fig. 11(b), where the band
with σ = +1 is plotted only for k > 0 and that with σ = −1 only for k < 0. This kind
of plot is meant to emphasize the population mismatch between the spin up and spin
down bands: because of the magnetic field there are now more spins in one band than
the other. We can define the magnetization operator as

M =
∑
k,σ

σ a†kσakσ = N+ − N−, (3.44)

where
Nσ =

∑
k

a†kσakσ, (3.45)

are the populations of the two bands. The magnetization operator is thus the imbalance
between the populations of the two bands.

The tight-binding model in the language of second quantization

An example of the above results is the tight-binding model (2.17). Using the recipe
in Eq. (3.35), the corresponding Hamiltonian in the language of second quantization is

H = −g
N∑

i=1

(
a†i ai+1 + a†i+1ai

)
. (3.46)

I personally think that written in this way the tight-binding Hamiltonian makes even
more sense than Eq. (2.17). In fact, it gives a quite nice interpretation for what quantum
tunneling is: tunneling means you annihilate a particle at site i and then create a particle
at site i + 1.

Notice also how, even thoughH is creating particles in one place and annihilating
in others, the process is such that particles cannot appear out of nowhere or go missing.
In other words, the Hamiltonian (3.46) preserves the number of particles. This
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is the nice thing about second quantization: we have a theory where the number of
particles can fluctuate; the physical constraint that the number of particles is conserved
is only implemented at the Hamiltonian. Since the Hamiltonian is the generator of the
dynamics, if we start with 42 particles, as time moves on we will continue to have 42
particles. This can be stated mathematically as

[H , N̂] = 0, (3.47)

where, in the case of the tight-binding Hamiltonian (3.35),

N̂ =

N∑
i=1

a†i ai. (3.48)

I will leave for you to check that (3.47) is indeed satisfied. In fact, it suffices to check
only that

[N̂ , a†i a j] = 0, ∀i, j. (3.49)

I will leave this for you as an exercise.

3.4 Interacting Hamiltonians
Bose-Hubbard model

We have seen that single-particle Hamiltonians H1 lead to second-quantized Hamil-
tonians which are quadratic in creation and annihilation operators. Quadratic Hamilto-
nians are thus a synonym with non-interacting systems. Interactions, on the other hand,
are represented by Hamiltonians which are cubic or quartic. To illustrate the idea, let us
consider a specific model called the Bose-Hubbard model. It is a tight-binding model
for bosons, with interactions. The Hamiltonian is written as

H = −g
∑
〈i, j〉

(a†i a j + a†jai) +
U
2

∑
i

a†i a†i aiai. (3.50)

The first term is just tight-binding, which I slightly generalized to an arbitrary lattice
by including a sum over nearest neighbors 〈i, j〉. The new thing is the last term. It
describes a type of contact interaction. It is an “interaction” because it is quartic and
it is “contact” because it acts on the same site.

To understand the logic behind this term, we use the bosonic algebra a†i ai = aia
†

i −1
to write

a†i a†i aiai = a†i (aia
†

i − 1)ai = a†i aia
†

i ai − a†i ai.

We see here the appearance of the number operator n̂i = a†i ai:

a†i a†i aiai = ni(ni − 1). (3.51)

The interaction term therefore depends on the number of particles in each site. In
table 1 I present a little table with the values of the energy U

2 n(n − 1) for different
values of n. We see that if there are 0 or 1 particles, the interaction term is zero. This
is good. It means that there is no self-interaction. The last term in (3.50) only begins
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Table 1: Interaction energies appearing in the Bose-Hubbard model (3.50).

n 0 1 2 3 4 5

U
2 n(n − 1) 0 0 U 3U 6U 10U

to contribute when there are 2 or more particles. In fact, n(n − 1)/2 is precisely the
number of ways for n particles to interact in pairs:(

n
2

)
=

n!
2!(n − 2)!

=
n(n − 1)

2
.

The Bose-Hubbard model is an important model in physics. It cannot be solved
analytically, but there are tons of approximations which work quite well. Decades
ago this model was just a theoretical exercise. But today it can be implemented in
ultra-cold atoms in optical lattices,3 thus making them one of the most interesting
many-body models nowadays in physics.

Fermi-Hubbard model

More important than the Bose-Hubbard model is it’s fermionic cousin, the Fermi-
Hubbard model. It is again defined as a tight-binding lattice, but with an interaction of
the form:

H = −g
∑
〈i, j〉,σ

(a†iσa jσ + a†jσaiσ) + U
∑

i

n̂i,↑n̂i,↓. (3.52)

Here I am using the notation σ =↑, ↓ instead of σ = ±1, simply because this is how
people usually write it. The logic behind this Hamiltonian is the following. Since
Fermions satisfy the exclusion principle, we cannot have an interaction term like that
of Eq. (3.50) because we cannot put two Fermions in the same state. What we can
do, however, is put two Fermions in the same site, provided they have opposite spins.
The interaction term is therefore dependent on n̂i,↑n̂i,↓ which will only give a non-zero
contribution if both states (i, ↑) and (i, ↓) are filled.

It is widely believed that the Fermi-Hubbard model is capable of explaining the
high temperature Cuprate superconductors that were discovered in the 80s. Solving this
model would therefore explain what is, today, one of the most important unexplained
phenomena in physics: while standard superconductivity can be explained by the so-
called BCS theory, high-temperature superconductivity simply cannot. Explaining it
could provide a guideline for devising superconductors at ambient temperature, which
could revolutionize tons of applications. Needless to say, this model has no analytical
solution. If you ever find it, book a plane ticket to Stockholm.

Electron-photon interactions

The Bose-Hubbard and Fermi-Hubbard Hamiltonians in Eqs. (3.50) and (3.52) con-
tain an equal number of creation and annihilation operators. Consequently, they pre-

3 See, for instance, M. Greiner, O. Mandel, T. Esslinger, T. W. Hänsch and I. Bloch, “Quantum phase
transition from a superfluid to a Mott insulator in a gas of ultracold atoms”. Nature, 415 39–44 (2002).
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serve particle number. This is good because the particles here are electrons or atoms, so
they cannot be destroyed or created out of nothing. Other particles, however, can. One
example are the photons. Photonic Hamiltonians don’t need to have the same number
of creation and annihilation operators. If you shine light on a metal, for instance, the
electrons may absorb the photon and gain some energy. Or they may emit a photon and
slow down a bit.

Let ck denote the fermionic annihilation operators for electrons and ak the bosonic
operators for the photons. The processes we just described can then be described by
the following Hamiltonian

H =
∑
k,q

Mkq

(
c†k+qckaq + c†kck+qa†q

)
. (3.53)

The logic is the following: a term like c†k+qckaq means that we annihilate a photon with
momentum q to change the momentum of the electron from k to k + q. Of course,
in second quantization we do that by first annihilating the electron with ak and then
recreating it with a†k+q. The other term in Eq. (3.53) is, of course, just the adjoint of the
first to make the Hamiltonian Hermitian.

The thing you should notice in the Hamiltonian (3.53) is that the number of elec-
trons is conserved (as it should) but the number of photons is not. The physics of which
particle should be conserved and which should not should thus always be encoded in
the Hamiltonian.

4 Quadratic Hamiltonians

4.1 Recipe for diagonalizing quadratic Hamiltonians
Any Hamiltonian of the form (3.34), which is at most quadratic in creation and

annihilation operators, represents non-interacting systems. As we will see below,
interactions involve terms with 3 or more operators. Quadratic Hamiltonians can be
readily diagonalized. In fact, we just saw how to do this by accident in the previous
section. The goal of this section is to make these ideas clearer. In fact, we will develop a
general recipe for diagonalizing these kinds of Hamiltonians which is extremely useful.
The procedure is identical for Fermions and Bosons.

Suppose we start with a generic Hamiltonian of the form (3.34). Our goal is to put
it in the form of Eq. (3.29). The first thing we need to do is to diagonalize the matrix
of coefficients Hi j, which means going from Eq. (3.33) to Eq. (3.30). We do that by
introducing the basis transformation (3.31), from a set of states |i〉 to a set of states |α〉
which diagonalize H (from now on I will write H instead of H1 to denote the single-
particle Hamiltonian). This is equivalent to introducing a diagonal representation of
the form

H = UEU†, or Hi j =
∑
α

UiαεαU∗jα

where Uiα = 〈i|α〉 is the basis transformation matrix and E = diag(εα) is a diagonal
matrix with the eigenenergies εα. Since Uiα = 〈i|α〉, the matrix U is a matrix whose
columns contain the eigenvectors |α〉.

Inserting this transformation in Eq. (3.34) we get

H =
∑
i, j,α

UiαεαU∗jαa†i a j.

25



We now regroup this sum as follows:

H =
∑
α

εα

(∑
i

Uiαa†i

)(∑
− jU∗jαa j

)
.

This motivates us to introduce a new set of operators

b†α =
∑

i

Uiαa†i .

Remember: creation operators transform like kets. Since Uiα are unitary, the inverse
transformation is simply:

a†i =
∑
α

U∗iαb†α.

With this the Hamiltonian becomes

H =
∑
α

εαb†αbα.

which is what we set out to do.

Let me summarize this procedure: suppose we start with a 2nd-quantized Hamil-
tonian of the form

H =
∑

i j

Hi ja
†

i a j, (4.1)

To diagonalize it, we first diagonalize the single-particle Hamiltonian H:

H = UEU†, or Hi j =
∑
α

UiαεαU∗jα (4.2)

From this, introduce a new set of operators according to

b†α =
∑

i

Uiαa†i , a†i =
∑
α

U∗iαb†α. (4.3)

Since Uiα is unitary, this preserves the algebra. Inserting these transformations,
the Hamiltonian (4.1) becomes

H =
∑
α

εαb†αbα. (4.4)

You may also wonder: why writing (4.1) in the form (4.4) means we diagonalized
the Hamiltonian? We diagonalized it because now the Hamiltonian (4.4) is written as
a sum of independent number operators b†αbα. We therefore know how to construct the
corresponding Fock space. The eigenvalues ofH , for instance, will be of the form

E(n) =
∑
α

εαnα (4.5)

where nα = 0, 1 for Fermions or nα = 0, 1, 2, . . . for Bosons.
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4.2 The tight-binding model revisited
Let us now apply this to the tight-binding model (3.46):

H = −g
N∑

i=1

(
a†i ai+1 + a†i+1ai

)
.

The matrix H in this case is this case is the same as we studied in Sec. 2.2; e.g.,
Eq. (2.18):

H = −g


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 .
To diagonalize H we therefore first need to import all we learned from Sec. 2.2 about
the single-particle tight-binding model. As we have seen, H is diagonalized by intro-
ducing a Fourier transform:

Uik =
eikxi

√
N
, (4.6)

where xi = i with i = 1, 2, 3, . . . (I set the lattice spacing to 1 and write xi just so that
we don’t confuse with the imaginary unit). Moreover the values of k are quantized as
in Eq. (2.27):

k =
2π`
N
, −

N
2
< ` ≤

N
2
. (4.7)

The numbers k are going to play the role here of the eigenvalue index α. In fact, the
energy eigenvalues, as we have seen, are

εk = −2g cos k. (4.8)

I will also be careful not to mix i, j with k, q. The former refer to positions, with
i, j = 1, 2, . . . ,N; the latter refer to momenta, with k, q quantized as in (4.7).

Before proceeding, let us verify that the matrix U in Eq. (4.6) is indeed unitary:

(U†U)k,q =
∑

j

U∗jkU jq =
1
N

N∑
j=1

ei(k−q)x j .

The resulting sum is nothing but a finite geometric series:

N∑
j=1

ei(k−q)x j =

N∑
j=1

eiθ j = eiθ
(

eiθN − 1
eiθ − 1

)
, (4.9)

where θ = k − q. But because of Eq. (4.7), the term in the numerator involves eiθN =

ei2π(`−`′) = 1. The sum therefore vanishes identically. The only exception is when
k = q, in which case we get ei(k−q)x j = 1 so that the sum reduces to adding N times the
number 1. We thus conclude that, indeed

(U†U)k,q = δkq, → U†U = 1,

so that U is indeed unitary. I will leave it for you to show that UU† = 1 as well. This
also follows from a finite geometric series like (4.9); it is only a bit more annoying
because the values of k don’t range from 1, . . . ,N. But you can translate them to do so.
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Returning now to our recipe, now that we have the diagonal structure (4.2) of H, the
next step is to introduce a new set of creation and annihilation operators as in Eq. (4.3):

bk =
1
√

N

∑
i

eikxi ai, ai =
1
√

N

∑
k

e−ikxk bk. (4.10)

The tight-binding Hamiltonian then becomes

H =
∑

k

εkb†kbk, (4.11)

which is in diagonal form.

Dealing with k sums:

Once we have a Hamiltonian in the form (4.11), we can proceed to compute
physical observables, such as the ground-state, the average energy and so on.
To do so we must deal with sums over the discretized k-values (4.7). If the
number of sites is small, these sums are difficult to handle. But if N becomes
large, we can approximate the sums to an integral. There is a neat trick to do
this. Consider a generic sum of the form∑

k

f (k) (4.12)

where f (k) is an arbitrary function. Due to the discretization (4.7), the values
of k are spaced by

∆k =
2π
N
, (4.13)

which become infinitesimally small when N becomes large. We then multiply
Eq. (4.12) by the convenient 1: namely 1 = N

2π∆k. This leads to∑
k

f (k) =
N
2π

∑
k

∆k f (k).

When N → ∞, or ∆k → 0, this approaches exactly the definition of a Riemann
sum that we learn in Introductory Calculus. Whence, we find

∑
k

f (k) =
N
2π

∫
dk f (k) (4.14)

This is the recipe for converting sums to integrals: always multiply by the
“convenient 1”. The limits of integration will be [−π, π] in the case of the
tight-binding model, or −∞ to∞ in the case of free particles.

If we wish to consider spin 1/2 fermions, the result is identical. All we need to do
is change the original Hamiltonian to

H = −g
∑
i,σ

(
a†i,σai+1,σ + a†i+1,σai,σ

)
,
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which now contains also a sum over σ = ±1. But since the hopping part does not
depend on σ at all, we just need to carry the index σ around everywhere. This then
leads to the diagonal Hamiltonian

H =
∑
k,σ

εkb†k,σbk,σ. (4.15)

Ground-state in the Fermionic case

As an application of this formula, let us find the Fermi momentum (the momentum
of the highest filled state). To this end we need to distinguish between N, which is the
number of sites, and Np, which is the number of particles in the system. We can have,
for instance, N = 10 sites filled with Np = 3 particles. Let us assume for concreteness
that the Fermions have spin 1/2, so that the Hamiltonian is given by Eq. (4.15). In this
case each site can take on at most 2 Fermions, so that Np ≤ 2N. The Fermi momentum
is defined implicitly by ∑

|k|<kF ,σ

= 2
∑

k

θ(kF − |k|) = Np, (4.16)

where θ(x) is the Heaviside function: θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0. In words,
this formula means means that kF is the value of k which is such that, if you sum up to
kF you get Np particles. Converting this to an integral we find

2
N
2π

π∫
−π

dkθ(kF − |k|) = Np.

We can also write this as

N
2π

4

kF∫
0

dk =
N
π

kF = Np,

which leads to
kF = πNp/N :=

π

2
np. (4.17)

The Fermi momentum depends on the particle density np ∈ [0, 2].
The dispersion relation (4.8) filled with different values of np is illustrated in Fig. 12.

It is customary to use as reference the case of half-filling, where Np = N so np = 1.
When the system is at half-filling, we fill exactly half of the band. The Fermi energy is

εF = −2g cos kF = −2g cos
(
πnp/2

)
, (4.18)

which therefore depends non-linearly on np.
Let us also compute the ground-state energy. It is defined as

Egs =
∑
|k|<kF ,σ

εk (4.19)

Transforming the sum to an integral and using the fact that εk = −2g cos k is an even
function of k, we get

Egs = −g
4N
π

kF∫
0

dk cos k.
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Figure 12: Examples of the energy level fillings for the tight-binding model with different par-
ticle densities. The curves represent the dispersion relation (4.8) for (a) below, (b) at
and (c) above half-filling np = 1.

There are a bunch of “2”s in this formula: there is a 2 from the spin degeneracy and a
2 from changing the integral to go from 0 to kF . There is also a 2 from −2g cos k and a
2 in the denominator of Eq. (4.14). Carrying out the integration we find

Egs = −
4Ng
π

sin kF . (4.20)

Since kF ∈ [0, π/2] [Eq. (4.17)], this ranges from 0 all the way to −4Ng/π at half-filling
np = 1 and then back to zero when np = 2.

4.3 Electrons and holes
Now I want to show you something pretty neat. We continue to consider the same

Fermionic tight-binding chain as before, with particle density np. We then introduce
the following changes in nomenclature. For all operators bkσ with |k| ≤ kF we define

ckσ = b†kσ, |k| ≤ kF . (4.21)

Weird. I know. But let’s see what happens. The idea is that we now focus on two sets
of operators: bkσ, which are defined only for |k| > kF and ckσ, which are defined for
|k| ≤ kF . If the bkσ represent electrons in a lattice, then b†kσ is interpreted as the operator
which creates an electron with momentum k. For |k| ≤ kF , however, we don’t say that
b†kσ creates an electron. Instead, we say that ckσ annihilates a hole.

The hole is the electron’s “anti-particle”. Creating a hole is the same as annihilating
an electron and annihilating a hole is the same as creating an electron. Everything
below kF is filled with electrons. We call this the Fermi sea. When we apply c†kσ we
are removing an electron from the Fermi sea. But instead we interpret this as saying
that we are actually creating a hole. Isn’t this awesome? :)

Let’s look at the algebra. I want to convince that the algebra remains fine. Between
the b operators nothing changes:

{bkσ, bk′σ′ } = 0, {bkσ, b
†

k′σ′ } = δkk′δσσ′ .

For the ckσ operators, because Eq. (4.21) just changes the meaning of creation and
annihilation, the algebra also remains intact:

{ckσ, ck′σ′ } = 0, {c†kσ, ck′σ′ } = δkk′δσσ′ .

Finally, if we now consider the cross algebra between c’s and b’s, they will always anti-
commute because one set is defined only for |k| ≤ kF and the other only for |k| > kF :

{ckσ, bkσ} = 0, {ckσ, b
†

kσ} = 0.
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Next let us look at the number operator:

N̂ =
∑
kσ

b†kσbkσ =
∑
|k|≤kF ,σ

b†kσbkσ +
∑
|k|>kF ,σ

b†kσbkσ.

In the first term we use Eq. (4.21) to write∑
|k|≤kF ,σ

b†kσbkσ =
∑
|k|≤kF ,σ

ckσc†kσ =
∑
|k|≤kF ,σ

(1 − c†kσckσ),

where I used the fermionic algebra to write ckσc†kσ = 1 − c†kσckσ. The first term in the
sum is exactly the definition of the Fermi momentum in Eq. (4.16). Hence, the number
operator may be written as

N̂ = Np +
∑
|k|>kF ,σ

b†kσbkσ −
∑
|k|≤kF ,σ

c†kσckσ = Np + N̂e − N̂h. (4.22)

The number operator is centered around Np (the actual number of particles). Electrons
count positively to N̂ , whereas holes count negatively. Holes are indeed anti-particles!
We also do the same for the Hamiltonian (4.15). I will leave for you as an exercise to
show that it can be written as

H = Egs +
∑
|k|>kF ,σ

εkb†kσbkσ −
∑
|k|≤kF ,σ

εkc†kσckσ. (4.23)

Using this Fermi sea idea, we can really picture the lattice as being populated by
two species, electrons and holes. In the tight-binding model these two species do not
interact with each other. This is visible in Eq. (4.23), where the Hamiltonian is just the
sum of the Hamiltonians of the two species. But if we add additional ingredients to the
model, the two species will begin to interact.

5 Field quantization

5.1 The Schrödinger field
The operator a†α creates a particle at the single-particle state |α〉. Well, position is

also a single-particle state |x〉. Then why not define an operator a†x which creates a
particle at position |x〉? Yeah, we can definitely do that. Except that we don’t call it ax;
we use a cooler symbol:

ax := ψ(x) = annihilation operator for a particle at position x. (5.1)

There is a neat reason as to why we use the sacred symbol ψ of wavefunctions. As we
will see, ψ(x) does behave a lot like wavefunctions. Except that it is now an operator.
This is why we call this second quantization: it is a little bit like we are “quantizing”
the wavefunction itself. In first quantization we quantize position and momentum. In
second quantization, we also quantize the wavefunction. This is not very precise and
the name stuck mostly for historical reasons. But that is kind of the logic.
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If the system has spin, we upgrade ψ with an additional internal index ψσ(x). This
can be σ = ±1 in the case of spin 1/2 or it can be an arbitrary spin value. The commu-
tation relations of the ψσ are obtained using the general result (3.22). Since position
kets satisfy 〈x|x′〉 = δ(x − x′) we get[

ψσ(x), ψ†σ′ (x′)
]

= δσ,σ′δ(x − x′), (Bosons) (5.2){
ψσ(x), ψ†σ′ (x′)

}
= δσ,σ′δ(x − x′). (Fermions) (5.3)

What about Hamiltonians? Consider first the case of non-interacting systems. The
typical single-particle Hamiltonian has the form

H1 =
p2

2m
+ V(x), (5.4)

where V(x) is some external potential. As we learn in undergraduate quantum mechan-
ics, if we move to the position representation we get

〈x|H1|φ〉 =

[
−

1
2m

∂2
x + V(x)

]
〈x|φ〉,

for any wavefunction |φ〉. Choosing |φ〉 = |x′〉 we then get

〈x|H1|x′〉 = −
1

2m
∂2

∂x2 δ(x − x′) + V(x)δ(x − x′)

= −
1

2m
∂2

∂x′2
δ(x − x′) + V(x)δ(x − x′), (5.5)

where, in the second line, the only thing I did was change the derivative from x to x′.
This is allowed because ∂

∂xδ(x − x′) = − ∂
∂x′ δ(x − x′). But when we differentiate twice,

the minus sign goes away.
The general second-quantized version of the single-particle Hamiltonian (5.4) can

then be readily found from the recipe in Eq. (3.30):

H =

∫
dx dx′〈x|H1|x′〉ψ†(x)ψ(x′)

=

∫
dx dx′

[
−

1
2m

∂2

∂x′2
δ(x − x′) + V(x)δ(x − x′)

]
ψ†(x)ψ(x′).

The term involving ∂2
xδ(x − x′) is somewhat awkward. But we can get rid of it by inte-

grating by parts. In this case integrating by parts means moving a derivative from one
side to another. There are no cross terms because these are evaluated at the boundaries
of the box and we use periodic boundary conditions, so any boundary terms vanish.
Integrating by parts once:∫

dx dx′
[
∂2

∂x′2
δ(x − x′)

]
ψ†(x)ψ(x′) = −

∫
dx dx′

[
∂

∂x′
δ(x − x′)

][
ψ†(x)

∂

∂x′
ψ(x′)

]
This is the logic of integration by parts. I know this is not very rigorous, But one can
arrive at the same result in a more formal way. I promise! Integrating by parts again
we get∫

dx dx′
[
∂2

∂x′2
δ(x − x′)

]
ψ†(x)ψ(x′) =

∫
dx dx′δ(x − x′)

[
ψ†(x)

∂2

∂x′2
ψ(x′)

]
.

Now that the delta function is free, we can use its property to eliminate the integral in
x or x′.
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As a result, we then finally obtain

H =

∫
dx ψ†(x)

[
−

1
2m

∂2

∂x2 + V(x)
]
ψ(x). (5.6)

This is the second quantized version of a non-interacting Hamiltonian. It is
exactly the same as the general recipe (3.30), but specialized to the case of
position eigenkets. This introduces the peculiarity that it contains only one
integral (which plays the role of the sum), whereas (3.30) contains two.

We can also include interactions in the same spirit. As we saw before,
interactions involve more than two operators. For instance, the analog of the
Bose-Hubbard Hamiltonian (3.50) is

H =

∫
dx ψ†(x)

[
−

1
2m

∂2

∂x2 +V(x)
]
ψ(x)+

U
2

∫
dx ψ†(x)ψ†(x)ψ(x)ψ(x). (5.7)

This is the Hamiltonian modeling a superfluid. The term V(x) refers to an
external potential where the particles are trapped, whereas the last term is their
Coulomb repulsion.

The free particle revisited

Consider the free particle in a box, obtained by setting V(x) = 0 in Eq. (5.6). The
second quantized Hamiltonian is then

H =

∫
dx ψ†(x)

[
−

1
2m

∂2

∂x2

]
ψ(x). (5.8)

We now introduce a Fourier transform

ψ(x)† =
1
√

L

∑
k

eikxa†k , k =
2π`
L
, ` = 0,±1,±2, . . . . (5.9)

Unlike in tight-binding, here the momentum can take on an infinite number of values
ranging from −∞ to∞.

Introducing (5.9) in (5.8) we get the following:

∂2

∂x2ψ(x) =
1
√

L

∑
k

(−ik)2e−ikxak

Thus,

H =
1
L

∫
dx

∑
k,k′

ei(k′−k)x(−ik)2a†k′ak.

Integrating over x and using

1
L

∫
dx ei(k′−k)x = δk,k′ , (5.10)

we finally get

H =
∑

k

k2

2m
a†kak, (5.11)

which is the free particle result we analyzed before.
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5.2 The Schrödinger Lagrangian
It is possible to cast Schrödinger’s equation as a consequence of the principle of

least action, similar to what we do in classical mechanics. This is fun because it
formulates quantum mechanics as a classical theory, as weird as that may sound. This
allows us to connect second quantization with field theory.

The principle of least action

Let us start with a brief review of classical mechanics. Consider a system described
by a set of generalized coordinates qi and characterized by a Lagrangian L(qi, ∂tqi). The
action is defined as

S =

t2∫
t1

L(qi, ∂tqi) dt. (5.12)

The motion of the system is then generated by the principle of least action; ie, by re-
quiring that the actual path should be an extremum of S . We can find the equations of
motion (the Euler-Lagrange equations) by performing a tiny variation in S and requir-
ing that δS = 0 (which is the condition on any extremum point; maximum or mini-
mum). To do that we write qi → qi + ηi, where ηi(t) is supposed to be an infinitesimal
distortion of the original trajectory. We then compute

δS = S [qi(t) + ηi(t)] − S [qi(t)]

=

t2∫
t1

dt
∑

i

{
∂L
∂qi

ηi +
∂L

∂(∂tqi)
∂tηi

}

=

t2∫
t1

dt
∑

i

{
∂L
∂qi
− ∂t

(
∂L

∂(∂tqi)

)}
ηi.

where, in the last line, I integrated by parts the second term. Setting each term propor-
tional to ηi to zero then gives us the Euler-Lagrange equations

∂L
∂qi
− ∂t

(
∂L

∂(∂tqi)

)
= 0. (5.13)

The example you are probably mostly familiar with is the case when

L =
1
2

m(∂tq)2 − V(q), (5.14)

with V(q) being some potential. In this case Eq. (5.13) gives Newton’s law

m∂2
t q = −

∂V
∂q
. (5.15)

Another example, which you may not have seen before, but which will be interesting
for us, is the case when we write L with both the position q and the momenta p as
generalized coordinates; , ie L(q, ∂tq, p, ∂t p). For instance,

L = p∂tq − H(q, p), (5.16)
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where H is the Hamiltonian function. In this case there will be two Euler-Lagrange
equations for the coordinates q and p:

∂L
∂q
− ∂t

(
∂L

∂(∂tq)

)
= −

∂H
∂q
− ∂t p = 0

∂L
∂p
− ∂t

(
∂L

∂(∂t p)

)
= ∂tq −

∂H
∂p

= 0.

Rearranging, this gives us Hamilton’s equations

∂t p = −
∂H
∂q

, ∂tq =
∂H
∂p

. (5.17)

Another thing we will need is the conjugated momentum πi associated to a gen-
eralized coordinate qi. It is always defined as

πi =
∂L

∂(∂tqi)
. (5.18)

For the Lagrangian (5.14) we get π = m∂tq. For the Lagrangian (5.16) we have two
variables, q1 = q and q2 = p. The corresponding conjugated momenta are π(q) = p and
π(p) = 0 (there is no momentum associated with the momentum!). Once we have the
momentum we may construct the Hamiltonian from the Lagrangian using the Legendre
transform:

H =
∑

i

πi∂tqi − L (5.19)

For the Lagrangian (5.14) we get

H =
p2

2m
+ V(q),

whereas for the Lagrangian (5.16) we get

H = π(q)∂tq + π(p)∂t p − L = p∂tq + 0 − p∂tq + H = H,

as of course expected.
When we go from Lagrangian to Hamiltonian, in Eq. (5.19), we can also quantize

our theory. In terms of Lagrangians, qi are classical variables and the Lagrangian may
depend on qi and ∂tqi. When we go to a Hamiltonian formulation, we must express the
Hamiltonian in terms of the coordinates qk and the associated conjugated momenta πi.
We then promote qi and πi to operators satisfying the canonical algebra

[qi, π j] = iδi j (5.20)

This is the idea of canonical quantization.

A principle of least action for Schrödinger’s equation

Now consider Schrödinger’s equation in first quantization

i∂tψ = Hψ, (5.21)
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where ψ is just the usual c-number wavefunction. We can write this in terms of an
arbitrary basis |n〉 by defining ψn = 〈n|ψ〉. Schrödinger’s equation then becomes

i∂tψn =
∑

m

Hn,mψm, (5.22)

where Hn,m = 〈n|H|m〉. We now ask the following question: can we cook up a La-
grangian and an action such that the corresponding Euler-Lagrange equations give
Eq. (5.22)? The answer, of course, is yes.4 The “variables” in this case are all com-
ponents ψn. But since they are complex variables, we actually have ψn and ψ∗n as an
independent set. For reasons which will become clear in a second, I will write ψ†n
instead of ψ∗n. At this level this is the same thing since ψn is just a c-number. The
Lagrangian is then L = L(ψn, ∂tψn, ψ

†
n, ∂tψ

†
n). and the action is

S [ψ†n, ψn] =

t2∫
t1

L(ψn, ∂tψn, ψ
†
n, ∂tψ

†
n) dt. (5.23)

The correct Lagrangian we should use is

L =
∑

n

iψ†n∂tψn −
∑
n,m

Hn,mψ
†
nψm. (5.24)

where ψn and ψ†n are to be interpreted as independent variables. Please take notice of
the similarity with Eq. (5.16): ψn plays the role of q and ψ†n plays the role of p. To
check that this works we use the Euler-Lagrange equations for the variable ψ†n:

∂L

∂ψ†n
− ∂t

(
∂L

∂(∂tψ
†
n)

)
= 0.

The second term is zero since ∂tψ
†
n does not appear in Eq. (5.24). The first term then

gives
∂L

∂ψ†n
= i∂tψn −

∑
m

Hn,mψm = 0.

which is precisely Eq. (5.22). Thus, we have just cast Schrödinger’s equation as a
principle of least action for a weird action that depends on the quantum state |ψ〉. I will
leave to you as an exercise to compute the Euler-Lagrange equation for ψn; you will
simply find the complex conjugate of Eq. (5.22).

Eq. (5.24) is written in terms of the components ψn of a certain basis. We can also
write it in a basis independent way, as

L = 〈ψ|(i∂t − H)|ψ〉 (5.25)

This is what I call the Schrödinger Lagrangian. Isn’t it beautiful?
We can also ask what is the conjugated momentum associated with the variable ψn

for the Lagrangian (5.24). Using Eq. (5.18) we get,

π(ψn) =
∂L

∂(∂tψn)
= iψ†n, π(ψ†n) = 0 (5.26)

4If the answer was no, I would be a completely crazy person, because I just spent more than two pages
describing Lagrangian mechanics, which would have all been for nothing.
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This means that ψn and iψ†n are conjugated variables. As a sanity check, we can now
find the Hamiltonian using the definition (5.19):

H =
∑

n

iψ†n∂tψn − L =
∑
n,m

Hn,mψ
†
nψn. (5.27)

which is just the actual Hamiltonian.
Finally, we can write it in terms of the coordinate representation. In this case the

action can be expressed in terms of a Lagrangian density as

S [ψ∗, ψ] =

∫
dt dx L(ψ, ∂tψ, ψ

∗, ∂tψ
∗), (5.28)

where

L = iψ†(x)∂tψ(x) − ψ†(x)
[
−

1
2m

∂2

∂x2 + V(x)
]
ψ(x). (5.29)

Written in this way, Schrödinger equation is thus seen to be a classical field theory for
the field ψ(x).

We can now quantize the Schrödinger field using the canonical quantization pro-
cedure. I know this is a bit weird, but let’s see what comes out of it. The procedure
is to (i) move to the Hamiltonian representation, (ii) express it in terms of coordinates
and conjugated momenta and (iii) promote them to operators satisfying the canonical
algebra (5.20). But the momentum π conjugated to ψ(x) and ψ†(x) are, according to
Eq. (5.26), given by π(ψ(x)) = iψ†(x) and π(ψ†(x)) = 0. The former, when combined
with the canonical quantization condition (5.20), implies that

[ψ(x), iψ†(x)] = iδ(x − x′), (5.30)

where I replaced the Kronecker with a Dirac delta. Notice how the factors of i cancel
out, leaving us with

[ψ(x), ψ†(x)] = δ(x − x′), (5.31)

which is exactly the commutation relations for Bosons in Eq. (5.2). This is a neat
way of showing why second quantization is indeed a second quantization: we interpret
Schrödinger’s equation as a classical equation and then requantize it. This promotes
the wavefunction to an operator satisfying the canonical algebra (5.31). We could
do something analogous to Fermions, by assuming that canonical quantization should
involve anti-commutators. Of course, at this level, this has to be done pretty much by
hand. The true origin of anti-commutation relations for Fermions can only be justified
in quantum field theory.

A More on the Bosonic and Fermionic algebras

A.1 Commutators and anti-commutators
The following formulas are useful to know:

[A, BC] = B[A,C] + [A, B]C (A.1)

[AB,C] = A[B,C] + [A,C]B (A.2)
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There is an easy way to remember them. For instance, in [A, BC] you first take B out
to the left and then C out to the right.

For Fermionic operators we sometimes like to convert commutators into anti-commutators:

[A, BC] = {A, B}C − B{A,C} (A.3)

[AB,C] = A{B,C} − {A,C}B (A.4)

You can remember this as follows: the logic is the same as in Eqs. (A.1) and (A.2), but
for anti-commutators, whenever an operator need to jump over someone to escape, it
gains a minus sign. For 4 operators we have

[AB,CD] = −AC{D, B} + A{C, B}D −C{D, A}B + {C, A}DB (A.5)

A.2 Eigenstuff of bosonic operators
In this appendix I summarize a calculation found in any quantum mechanics book:

Given a non-Hermitian operator a satisfying

[a, a†] = 1, (A.6)

what are the eigenvalues and eigenvectors of a†a. This is a really important problem
that appears often in all areas of quantum physics: given an algebra, find the eigenstuff.
I think this is one of those things that everyone should go through once. So here we go.

Since a†a is Hermitian, its eigenvalues must be real and its eigenvectors can be
chosen to form an orthonormal basis. Let us write them as

a†a|n〉 = n|n〉. (A.7)

Our goal is to find the allowed n and the corresponding |n〉. We of course already know
that n is an integer. But let’s pretend we did not know and let’s figure out how this
follows from the algebra.

The first thing we notice is that a†a must be positive semi-definite operator, so n
cannot be negative:

n = 〈n|a†a|n〉 ≥ 0.

Next we use Eq. (A.6) to show that

[a†a, a] = −a, [a†a, a†] = a†. (A.8)

This type of structure is a signature of a ladder-like spectrum (that is, when the eigen-
values are equally spaced). To see that, we use these commutation relations to compute:

(a†a)a|n〉 = [a(a†a) − a]|n〉 = a(a†a − 1)|n〉 = (n − 1)a|n〉. (A.9)

Hence, we conclude that if |n〉 is an eigenvector with eigenvalue n, then a|n〉 is also
an eigenvector, but with eigenvalue (n − 1) [This is the key argument. Make sure you
understand what this sentence means.]. However, I wouldn’t call this |n − 1〉 just yet
because a|n〉 is not normalized. Thus we need to write

|n − 1〉 = γa|n〉,

where γ is a normalization constant. To find it we simply write

1 = 〈n − 1|n − 1〉 = |γ|2〈n|a†a|n〉 = |γ|2n.
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Thus |γ|2| = 1/n. The phase of γ is arbitrary so we choose it for simplicity as being real
and positive. We then get

|n − 1〉 =
a
√

n
|n〉.

From this analysis we conclude that a reduces the eigenvalues by unity:

a|n〉 =
√

n|n − 1〉.

We can do a similar analysis with a†. We again use Eq. (A.8) to compute

(a†a)a†|n〉 = (n + 1)a†|n〉.

Thus a† raises the eigenvalue by unity. The normalization factor is found by a similar
procedure: we write |n + 1〉 = βa†|n〉, for some constant β, and then compute

1 = 〈n + 1|n + 1〉 = |β|2〈n|aa†|n〉 = |β|2〈n|(1 + a†a)|n〉 = |β|2(n + 1).

Thus
a†|n〉 =

√
n + 1|n + 1〉.

Now comes the trickiest (and most beautiful) argument. We have seen that if n is
an eigenvalue, then n± 1, n± 2, etc., will all be eigenvalues. But this doesn’t mean that
n itself should be an integer. Maybe we find one eigenvalue which is 42.3; then 41.3,
43.3 and so on will also be eigenvalues. But suppose we start with some eigenstate
|n〉 and keep on applying a a bunch of times. At each application we will lower the
eigenvalue by one tick:

a` |n〉 =
√

n(n − 1) . . . (n − ` + 1)|n − `〉.

But this party cannot continue forever because, as we have just discussed, the eigen-
values of a†a cannot be negative. They can, at most, be zero. The only way for this to
happen is if there exists a certain integer ` for which a` |n〉 , 0 but a`+1|n〉 = 0. And
this can only happen if ` = n because, then

a`+1|n〉 =
√

n(n − 1) . . . (n − ` + 1)(n − `)|n − ` − 1〉 = 0,

and the term n − ` will vanish. Since ` is an integer, we therefore conclude that n must
also be an integer. Thus, we finally conclude that

eigs(a†a) = n ∈ {0, 1, 2, 3, . . .}. (A.10)

It is for this reason that a†a is called the number operator: we usually say a†a counts the
number of quanta in a given state: given a state |n〉, you first apply a to annihilate one
quant and then a† to create it back again. The proportionality factor is the eigenvalue
n. Curiously, this analysis seem to imply that if you want to count how many people
there are in a room, you first need to annihilate one person and then create a fresh new
human. Quantum mechanics is indeed strange.

This analysis also serves to define the vacuum state, with n = 0; it satisfies

a|0〉 = 0. (A.11)
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We can build all states starting from the vacuum and applying a† successively:

|n〉 =
(a†)n

√
n!
|0〉. (A.12)

Using this and the algebra of a and a† it then follows that the states |n〉 form an or-
thonormal basis, as expected:

〈n|m〉 = δn,m.

A.3 Eigenstuff of fermionic operators
Next let us do the same for fermionic operators, which satisfy

{a, a†} = 1, (a†)2 = 0. (A.13)

Using Eq. (A.4) you may verify that Eqs. (A.8) continue to hold:

[a†a, a] = −a, [a†a, a†] = a†. (A.14)

Now I want you to stop and think for a second. If you go back to Sec. A.2 you will
notice that the entire derivation was not based on [a, a†] = 1; it was based on Eq. (A.14).
Thus, if this relation also holds for Fermions, everything else must hold identically as
well. In particular, there is also a vacuum which is annihilated by a [Eq. (A.11)] and
from which all other states can be constructed Eq. (A.12). The only difference is that
for Fermions (a†)2 = 0. Whence, we cannot build an infinite number of states from |0〉,
but only one:

a†|1〉 = (a†)2|0〉 = 0. (A.15)

As a consequence, the eigenvectors of a†a in the case of Bosons is composed solely of
two vectors, |0〉 and |1〉.
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