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Abstract

When a quantum system is coupled to several heat baths at different temperatures, it eventually
reaches a non-equilibrium steady state (NESS) featuring stationary internal heat currents. From
one side, these currents are responsible to cause decorehence and produce entropy in the system.
However, their existence also induce correlations between different parts of the system. In this
work, we explore this two-folded aspect of NESSs. Using phase-space techniques we calculate
the Wigner entropy production on general linear networks of harmonic nodes. Working in
the ubiquitous limit of weak internal coupling and weak dissipation, we obtain simple closed-
form expressions for the entropic contribution of each individual quasi-probability current. Our
analysis also shows that, it is exclusively the (reversible) internal dynamics which maintain the
stationary (irreversible) entropy production. From the informational point of view, we address
how to quantify the amount of information that disconnected parts of a quantum chain share in
a non-equilibrium steady-state. As we show, this is more precisely captured by the conditional
mutual information (CMI), a more general quantifier of tripartite correlations than the usual
mutual information.

As an application, we apply our framework to the paradigmatic problem of energy transfer
through a chain of oscillators subject to self-consistent internal baths that can be used to tune
the transport from ballistic to diffusive. We find that the entropy production scales with different
power law behaviors in the ballistic and diffusive regimes, hence allowing us to quantify what is
the “entropic cost of diffusivity”. We also compute the CMI for arbitrary sizes and thus find the
scaling rules connecting information sharing and diffusivity. Finally, we discuss how this new
perspective in the characterization of non-equilibrium systems may be applied to understand
the issue of local equilibration in non-equilibrium states.

Keywords: Wigner entropy NESS; Entropy production NESS; Entropic cost of diffusivity;
Information sharing NESS; Conditional Mutual Information NESS.



Resumo

Quando um sistema quântico é acoplado à diversos banhos térmicos de diferentes temperaturas,
eventualmente um estado estacionário fora do equilı́brio (NESS), caracterizado por correntes in-
ternas de calor é atingido. Por um lado, essas correntes são responsáveis por causar decoerência
e produzir entropia no sistema. Entretanto, sua existência também induz correlações entre di-
ferentes partes do sistema. Neste trabalho, nós exploramos este duplo aspecto dos NESSs.
Usando técnicas do espaço de fase nós calculamos a produção de entropia de Wigner em redes
lineares harmônicas. Trabalhando no célebre limite de fraco acoplamento interno e dissipativo,
nós obtivemos expressões simples e frechadas para a contribuição de cada corrente de quasi-
probabilidade na entropia. Nossa análise também mostra que, a dinâmica interna (reversı́vel) é
exclusivamente responsável em manter a produção de entropia (irreversı́vel) estacionária. Con-
siderando um ponto de vista informacional, nós trabalhamos no problema de como quantificar
a informação compartilhada entre partes desconexas de uma cadeia quântica em um estado es-
tacionário fora do equilı́brio. Nós mostramos então que esta é mais precisamente caracterizada
utilizando a informação mútua condicional (CMI), um quantificador mais geral de correlações
tripartites do que a usual informação mútua.

Como aplicação, nós utilizamos o paradigmático problema da transferência de energia em
uma cadeia de osciladores sujeita a banhos internos auto-consistentes, que podem ser usados
para mudar de um transporte balı́stico para difusivo. Nós encontramos que a produção de
entropia escala com diferentes leis de potência nos regimes balı́stico e difusivo, permitindo
então quantificar o “custo entrópico da difusividade”. Nós também computamos a CMI para
cadeias de diversos tamanhos e assim encontramos leis de escala relacionando a informação
compartilhada com a difusividade. Finalmente nós discutimos como esta nova perspectiva na
caracterização de sistemas fora do equilı́brio pode ser aplicada para entender o problema de
equilibração local em estados fora do equilı́brio.

Palavras-chave: Entropia de Wigner NESS; Produção de entropia NESS; Custo entrópico da
difusividade; Informação compartilhada NESS; Informação Mútua Condicional NESS.
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Chapter 1

Introduction

Thermodynamics is one of the most reliable theories in physics. It resisted all of the major trans-

formations from the beginning of the XX century - Quantum Mechanics and General Relativity

Theory - remaining in its validity. We quote here Einstein’s beliefs on thermodynamics, “It is

the only physical theory of universal content, which I am convinced, that within the framework

of applicability of its basic concepts will never be overthrown.” . One of the reasons for its

success and robustness is because it does not rely on any assumption of the microscopic world,

but just in recognizing some order and regularity in the macroscopic properties it is able to state

general rules and laws [1].

However, its range of applicability is mostly restricted to systems in equilibrium, which

seldom is the case of most problems in nature. In order to overcome this problem, Onsager in

1931 and afterwards Prigogini in 1961, have assumed that a non-equilibrium system could be

locally approximated by equilibrium ones. Such hypothesis, although somewhat restrictive, al-

lowed them to use the well established notions from equilibrium thermodynamics - heat, energy,

entropy, etc. - to describe non-equilibrium systems [2].

This new approach shed light particularly in transport problems from a thermodynamic point

of view. We can mention, for instance, the Fourier, Ohm and Fick’s law where a gradient of

temperature, electrical potential and concentration generates a current of heat, electrons and

particles, respectively1.

In such problems, after a given time the system eventually reach a steady state, which is

characterized by a non-vanishing gradient and a constant current. These states are known as

Non-equilibrium steady-states (NESSs). They are easier to be theoretically dealt and yet can

bring valuable information of the system in question. For example, looking to the scaling of the

1There are also cross effects, as in the case of a thermoelectric material where a gradient of temperature gener-
ates a current of particles.
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current with the system size, one can determine the kind of transport (ballistic2 or diffusive3)

the system presents.

With the development of Quantum Mechanics and the recent experimental improvements in

controlling quantum systems [3–9], some concepts originally developed in the thermodynamic

scenario, are being now extended to the microscopic world.

However, one must now be careful with others phenomena stemming from the quantum

nature of the processes involved. For instance, the collapse of the wave function after a meas-

urement or properties like entanglement and discord [10, 11]. The role of measurement, for

example, influences the way we characterize the work done in a process [12], or the heat ex-

changed between two systems [13]. Entanglement, on the other hand, can be interpreted as an

available resource on the operation of a thermal machine [10, 11, 14–17]. This field of research

is now being called Quantum Thermodynamics.

Interestingly, as well in the classical scenario, most of these experimental setups presents

non-equilibrium processes, and again, many ideas developed in the past decades can be applied

here. For example, the problem of heat transport naturally appears in a chain of trapped ions.

In this case, the phonons are responsible to the propagation of heat and by measuring its mean

occupation number in the steady state, one can determine the kind of transport of the system

[18]. Another interesting example of transport in quantum systems is the thermoeletric effect,

that can be built using fermionic cold atoms coupled with two thermal reservoirs [19]. In fact,

NESSs can be obtained using cold atoms in very different ways [20, 21].

Furthermore, NESSs have been used as tools to model systems in several fields of the know-

ledge. For instance, we can mention systems involving biochemical reactions (as ATP hydro-

lysis), biomolecular motors and biological cells (as mRNA translation) [22–24].

Quantum thermodynamics is on the frontier between statistical mechanics and quantum in-

formation. Particularly, understanding quantum processes from thermodynamics can bring new

ideas for tasks in quantum computation and other information processing tasks. The reason is

in the similarity between logical operations and thermal machines: in both cases, an input state

is transformed, through a certain resource quantity, in an output state [16,17,25–27]. Therefore,

characterizing the irreversibility or efficiency of such process, will help in the development of

new quantum algorithms.

In this dissertation, we consider a quantum system coupled with several reservoirs. The

2Heat current is independent of the system size.
3Heat current is proportional to the inverse of the system size.
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temperature gradient will produce heat currents, which has basically two roles. From one side,

they are responsible to cause decoherence in the system and thus producing a finite amount

of non-equilibrium entropy. However, their existence will also induce correlations between

different parts of the system. This competition will eventually reach a NESS, where entropy is

constantly being produced and the parts of the systems are correlated in some way.

In chapter 2 we describe the ensuing dissipative dynamics adopting a local master equation4

[29, 30] and exploiting its simple structure considering a particular quadratic Hamiltonian.

In chapter 4, employing phase-space techniques, we obtain closed-form analytical expres-

sions quantifying the irreversibility of the steady-state, broken down into the elementary con-

tributions corresponding to individual dissipation channels. Thus, one can identify the irre-

versibility generated by a single bath in a multi-reservoir chain. In addition, we also obtain

an expression which neatly illustrates the essential role played by the unitary dynamics in sus-

taining the irreversibility, by enabling energy transport through the lattice. This is somewhat

counter-intuitive, as the unitary part of the dynamics is usually attributed to a reversible con-

tribution. However, within the context of NESSs, that is not true since it is the intra-system

interactions which allow for current to flow from one bath to other, hence sustaining the NESS.

Already in chapter 6, we then turn to explore NESSs from the informational point of view.

Since information does not satisfies a continuity equation it cannot be quantified in terms of a

current. Thus, the question is more appropriately phrased in terms of the amount of information

shared between different parts of a quantum chain. For a connected bipartition of the lattice,

the natural quantifier is the mutual information (MI). Conversely, motivated by some recent

developments in the field of Quantum Markov chains [31–35], we show that for disconnected

parts, the appropriate quantifier is actually the conditional mutual information (CMI) [36, 37]

I (A : C|B), a more general measure of tripartite correlations.

Finally, we apply these two results to the exactly soluble chain presented in chapter 3. Al-

though simplified, in order to get rid unnecessary complications, this model captures the essence

of typical quantum transport problems, encompassing ballistic and diffusive regimes. Specific-

ally, the model consists of a one-dimensional bosonic chain subject to two local Lindblad dis-

sipators at the end-points [38–43], plus additional self-consistent reservoirs [44] used to tuned

between ballistic and diffusive transport. The main advantages of this model is that the trans-

port regime can be easily changed, the state is Gaussian in both regimes and it can be solved

4Which is accurate to lowest order in the inter-node interaction strength [28].
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analytically for arbitrary system sizes in the steady state.

Thus, in chapter 5, we could calculate separately the contributions for the irreversibility

stemming from the physical and the self-consistent reservoirs. We observe that each contribu-

tion scales polynomially with a distinct exponent. This then allow us to unambiguously quantify

the irreversible cost of maintaining a diffusivity profile.

In the second part of chapter 6, making use of techniques stemming from Gaussian quantum

information theory [45–47], we are able to study the shared information in chains of arbitrary

size, including the thermodynamic limit. This allows us to find general scaling laws that reveal

how the CMI scales with the system size in both regimes. Conclusively, we show how such

a study can be used to shed light on the question of local thermalization of non-equilibrium

systems [33, 48].

Lastly, we mention that the results of this dissertation was content for two scientific papers5

[49, 50].

5The paper of Ref. [49] is still in revision process.
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Chapter 2

Open quantum system

2.1 Postulates of Quantum Mechanics

Quantum Mechanics is a cinematic theory for microscopic systems. Modernly, we can formu-

late it in terms of four postulates1.

1. The state of the system is completely characterized by a density operator ρ acting in a

Hilbert space H. Furthermore, the density matrix must be Hermitian (ρ = ρ†), positive

semi-definite (ρ ≥ 0) and normalized tr(ρ) = 1.

2. Observables are represented by Hermitian operator of H.

3. A measurement2 can be described by a set of operators {Mm} with eigenvalues m, acting

on H, such that
∑

m M†
mMm = 1. Performing a measurement in a state ρ, the probability of

obtaining an outcome m is Pm = tr
(
M†

mMmρ
)

and the state becomes ρ→ ρm =
MmρM†

m

Pm
.

If a given measure M can be decomposed in terms of projectives measurements Πm, such

that

M =
∑

m

mΠm, (2.1)

where m is the eigenvalue associated with Πm, Π2
m = Πm, Πm = Π

†
m and

∑
m Πm = 1, then

the mean value of M can be written as,

〈M〉 =
∑

m

mPm =
∑

m

m tr
(
Π†mΠmρ

)
=

∑
m

m tr (Πmρ) = tr

∑
m

mΠm

 ρ
= tr(Mρ). (2.2)

1We are going to use natural units, ~ = c = 1.
2One can show that the uncertainty principle is a corollary of the third postulate.
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4. An isolated system evolves accordingly with the von Neumann equation,

∂ρ

∂t
= −i[H , ρ], (2.3)

where H is the Hamiltonian.

As in the classical mechanics, a perfect isolated system does not exist. A system is always

interacting with its surrounds. It can be demonstrated that such complicated interactions can be

described by a set of measurements being performed on the system. Thus, due the third pos-

tulate we should conclude that the simple existence of an environment will change the system.

The area of Quantum Mechanics that studies the evolution of subsystems in contact with an

environment (that is a set of another quantum subsystems) is common called Open Quantum

Systems [51].

2.2 Quantum master equation

We consider a linear network of L harmonic oscillators with Hamiltonian H given by,

H B
∑L

k=1
Hkk a†kak +

∑
k,`

Hk,` a†ka`, (2.4)

where ai denotes the bosonic annihilation operator of the i-th mode. Otherwise, we impose

no restrictions on the structure of the network, shaped by the non-zero off-diagonal matrix

elements H`,k = H∗k,` (Hkk = ωk is the modes’ frequency). We also couple each mode with a

thermal reservoir3.

In this section we will pinpoint the main ideas behind a microscopic derivation of a Quantum

Master Equation, i.e., an equation for the time evolution of the density matrix of this linear

network. A detailed derivation can be found in Refs. [51, 52].

We start defining the total Hamiltonian HT ,

HT = H + HE + V, (2.5)

where HE is the Hamiltonian of the environment and V encompasses the interactions between

the system and environment. Since most widely used baths in experimental setups are the

3Since our system has L modes, then we will have L baths.
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eletromagnetic field and the phonons in a crystal, we will assume that the HE is composed by a

set of harmonic oscillators,

HE =

L∑
α=1

∞∑
k=1

{
Ωα,kb

†

α,kbα,k + να,k(bα,kbα,k + b†α,kb
†

α,k)
}
, (2.6)

where the operators bα,k corresponds to the annihilation operator of the “k-th” mode of the

“α-th” bath. If να,k , 0 we say that the bath has squeezing terms.

For the interacting term, we will assume that the system-environment coupling is linear4 in

bα,k,

V =

L∑
α=1

∞∑
k=1

γa

(
Mαb†α,k + M†

αbα,k
)
, (2.7)

where γα > 0 captures the dissipation strength and Mα are operators of the system. The dynamic

of the composite density matrix (system + environment) will be governed by the von-Neumann

Eq. (2.3). We will consider that the initial state of the system is uncorrelated with the bath, i.e.,

ρT (0) = ρ(0) ⊗ ρE(0), (2.8)

where ρ(0) is the state of the linear network and the state of the environment, ρE(0), is in the

Gibbs thermal state. We will also assume that the dissipation strength is weak, in such a way

that the evolved state remains uncorrelated

ρT (t) ≈ ρ(t) ⊗ ρE(t). (2.9)

In order to obtain an equation for the time evolution of ρ(t) = trE(ρ(t)), it is necessary to make

more two approximations. The first one is the Markov approximation and it consists in assume

bath correlations decay quickly. The physical motivation behind this approximation consists

in the idea that the environment is big and chaotic, such that the excitations induced by the

system in the bath will not affect the system again in some time in the future5. The second is the

Rotating-wave (secular) approximation, which consists in trow way therms that oscillate very

fast. The reason for this approximation lies on remembering that all bath-stuff are fast, whereas

system stuff are slow.

4There is two reasons for this choice. First, because many systems used in literature have this kind of couplings
and second, it really simplifies the calculus.

5A memoryless environment.
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Thus, under these assumptions, one can obtain the following quantum master equation

dρ
dt

= −i[H , ρ] +
∑L

k=1
Lk(ρ) + O(γ2), (2.10)

where Lk are the Lindblad super-operators in the standard form [53,54] and γ B max{γ1, · · · , γL}.

Individually, each super operator Lk is O(γk) and, in general, can act globally on all modes.

However, we will make the additional assumption of weak internal coupling between the nodes,

which leads to the Local Master Equation (LME)

dρ
dt

= −i[H , ρ] +
∑L

k=1
Dk(ρ) + O(λ γ), (2.11)

where the local dissipators are given by6,

Dk(ρ) = γi(Ni + 1)D[a](ρ) + γiNiD[a†](ρ) − γiMiB[a†](ρ) − γiM∗
i B[a](ρ), (2.12)

with

D[a](ρ) = aiρa†i −
1
2
{a†i ai, ρ} and B[a](ρ) = aiρai −

1
2
{aiai, ρ}. (2.13)

Here Ni and Mi are constants that can be associated to the thermal fluctuations and the degree

of squeezing according to,

Ni + 1/2 = (n̄i + 1/2) cosh(2ri), Mi = (n̄i + 1/2)eiθi sinh(2ri), (2.14)

where n̄i is the local Bose-Einstein occupation and zi = rieiθi is the local squeezing value.

Moreover, λ B max{Hk,`} with k , ` is the highest internal coupling among all nodes.

Care must be taken when using Eq. (2.11) to describe a multipartite open quantum system,

since it is well known that going beyond its range of validity might lead to thermodynamic

inconsistencies [28, 30, 55]. The parameter range in which the many approximations underly-

ing both global and local master equations are satisfied have been critically (and extensively)

discussed in the literature [29, 52, 56–64]. However, local master equations also arise natur-

ally when considering certain repeated-interaction models [57, 64, 65]. This picture enables

a thermodynamically consistent bookkeeping of all energy exchanges occurring in dissipative

processes exactly described by Eq. (2.11) [66, 67]. Thus, only within certain parameters range

6{·, ·}+ stands for anti-commutator.
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it is correct to say that n̄1 − n̄L (r1 − rL) represents a gradient of temperature (squeezing).

2.3 A simple example: One mode coupled with a bath

Before going though a simple example, let us write the Quantum Master Equation in terms of

the expectation value of an operator. In the Schrödinger picture, from Eq. (2.2) we have that

d〈O〉
dt

= tr
{

O
dρ
dt

}
. (2.15)

Substituting Eq. (2.11) and using the cyclic property of the trace, one can obtain,

d〈O〉
dt

= i〈[H ,O]〉 +
∑

k

〈D̄[Lk](O)〉, (2.16)

where

D̄[Lk](O) = γi(Ni + 1)D̄[a](O) + γiNiD̄[a†](O) − γiMiB̄[a†](O) − γiM∗
i B̄[a](O), (2.17)

with D̄[Lk](O) and B̄[Lk](O) are defined as

D̄[Lk](O) = L†kOL −
1
2
{L†k Lk,O} and B̄[Lk](O) = LkOL −

1
2
{LkLk,O}, (2.18)

and are common called the adjoint dissipator.

We consider now, as a simple application, a single bosonic node weakly coupled to a bath at

inverse-temperature β1 = T−1
1 with zero squeezing. The LME can then be written as,

dρ
dt

= −i[H , ρ] + γ(n̄ + 1)D[a](ρ) + γn̄D[a†](ρ), (2.19)

with the Hamiltonian,

H = ω a†a. (2.20)

A situation of particular interest is the steady state. The solution in this case is the Gibbs thermal

state, ρTH =
e−βH

tr{e−βH }
, which can be verified by simple inspection on Eq. (2.19). Moreover, this

state is also a fixed point of the dissipator,

D[a](ρTH ) = 0. (2.21)

16



Now, using Eq. (2.16), we can calculate the time evolution of the mean value of the number

operator O = a†a
d〈a†a〉t

dt
= γ

(
n̄ − 〈a†a〉t

)
, (2.22)

which has by solution an exponential decay,

〈a†a〉t = n̄ + 〈a†a〉0e−γt, (2.23)

where 〈a†a〉0 is the initial condition of the occupation number. Furthermore we can define a

current of quanta J1 as,

J1(t) B
d〈a†a〉t

dt
, (2.24)

thus Eq. (2.22) can be viewed as a continuity equation. In this way, as we expected, if n̄ > 〈a†a〉t

the current is positive, meaning that quanta are being injected in the system and if n̄ < 〈a†a〉t

the opposite happens.

2.4 The Covariance Matrix

We now turn to the general case of L independent bosonic modes. The algebra is then given by,

[ai, a
†

j] = δi j, [ai, a j] = 0 where i, j = 0, . . . L. (2.25)

It is worth to order these creations and annihilations operators in vector of 2L dimension7,

R = (a1, a
†

1, . . . , aL, a
†

L)>. (2.26)

Thus, we can rewrite the algebra in a very compact way

[Ri,R
†

j] = Σi j, with Σ =

L⊕
i=1

σz, (2.27)

where σz is the Pauli matrix and the symbol
⊕

stands for the tensorial sum. In this dissertation

we are going to work exclusively with Gaussian states [46], which has the useful property of

being completely characterized by the first and second moments [68]. Therefore, we define the

7Notation: we are going to write all matrices in bold
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2L × 2L Covariance Matrix (CM) Θ and the vector of the means µ such that,

Θi j =
1
2
〈{δRi, δR

†

j}〉, µi = 〈Ri〉, with i, j = 1, . . . , 2L, (2.28)

where δRi = Ri − 〈Ri〉. To illustrate the form of the CM, we write the case of two modes (L = 2)

and vanishing first moments (µ = 0):

Θ =



〈a†1a1〉 + 1/2 〈a1a1〉 〈a1a†2〉 〈a1a2〉

〈a†1a†1〉 〈a†1a1〉 + 1/2 〈a†1a†2〉 〈a†1a2〉

〈a†1a2〉 〈a1a2〉 〈a†2a2〉 + 1/2 〈a2a2〉

〈a†1a†2〉 〈a1a†2〉 〈a†2a†2〉 〈a†2a2〉 + 1/2


. (2.29)

This structure for the CM is not the most standard in the literature, which is usually defined in

terms of quadrature operators [46,47]. However, it turns out to be more useful for the problems

we will explore, due to a convenient separation of the dynamics of the two reduced covariance

matrices,

Ci j = 〈a†jai〉 − 〈a
†

j〉〈ai〉, (2.30)

S i j = 〈aia j〉 − 〈ai〉〈a j〉, (2.31)

which are L × L. The relation between Θ and C, S can then be written rather elegantly as

Θ =
I2L

2
+C ⊗ (σ+σ−) +CT ⊗ (σ−σ+) + S ⊗ σ+ + S∗ ⊗ σ−, (2.32)

where σi are the usual Pauli matrices and I2L is the 2L × 2L identity matrix.

The Bona Fide relation: Given any matrix, there is a constraint that it should obey in order

to represent a physical state. Let us now briefly derive it. Consider a linear combination of the

operators δRi weighted by some complex numbers βi,

Y =

L∑
i=1

δRi βi. (2.33)
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Since YY† is a positive semi-definite operator, it follows that,

〈YY†〉 =
∑

i, j

βiβ
∗
j〈δRiδR

†

j〉 ≥ 0. (2.34)

Now, using the algebra defined in Eq. (2.27), one may get,

δRiδR
†

j =
1
2
{δRi, δR

†

j} +
1
2

Σi j

= Θi j +
1
2

Σi j. (2.35)

Finally, substituting Eq. (2.35) into Eq. (2.34) we obtain,

〈YY†〉 =
∑

i, j

βiβ
∗
j

[
Θi j +

1
2

Σi j

]
≥ 0. (2.36)

Since this equation is a quadratic form in relation to the matrix
[
Θi j +

1
2

Σi j

]
, the following

constraint should be guaranteed by the CM,

Θi j +
1
2

Σi j ≥ 0. (2.37)

This is the so-called Bona Fide relation. Furthermore, it is also possible to prove that Eq. (2.37)

encompasses a generalization of Heisenberg’s uncertainty principle8 [69] .

2.5 Time evolution of the Covariance Matrix for short range

Hamiltonians

We intend here to develop an expression for the time evolution of the CM. We will assume that

the system dynamics is governed by Eqs. (2.11-2.12) with the following Hamiltonian (in the

interaction picture)9,

HI = iλ
L−1∑
i=1

(a†i ai+1 − a†i+1ai), (2.38)

where λ is the interaction strength between the modes (taken real for simplicity).

8Also known as the Robertson-Schrödinger relation
9We have chosen the frequencies of the modes equals.
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Using Eq. (2.16) to calculate the time derivative of CM’s elements, one may obtain a Lya-

punov equation,
dΘ

dt
= VΘ + ΘV † +G, (2.39)

where

V = W ⊗ I2, Wi, j = −
γi

2
δi, j + λ(δi+1, j − δi, j+1) (2.40)

and

G = diag(P1, . . . , PL), Pi = γi


Ni + 1/2 Mi

Mi Ni + 1/2

 . (2.41)

Now we can use the fact that the Hamiltonian does not spontaneously generate squeezing to

factorize the evolution into two parts, related to the reduced covariance matrices C and S in

Eqs. (2.30-2.31),

dC
dt

= WC +CW † + FN , (2.42)

dS
dt

= WS + SW † + FM, (2.43)

where

FN = diag(γ1N1, . . . , γLNL), (2.44)

FM = diag(γ1M1, . . . , γLNL). (2.45)

Note how the two equations (2.42) and (2.43) are now structurally identical, which is a con-

sequence of the form of the Hamiltonian chosen in Eq. (2.38).

For completeness, we mention that the 2L block matrix G in Eq (2.41) can be written in

terms of the reduced matrices FN and FM as

G = (FN + IL/2) ⊗ I2 + FM ⊗ σ+ + F ∗M ⊗ σ−. (2.46)
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Chapter 3

Exact solution of a Non-Equilibrium

Steady State

3.1 A transport problem

In this chapter we will obtain an analytical solution for the CM in the steady state of L in-

teracting bosonic modes, each one coupled with a different reservoir, modeled by the Master

Equation1 (2.11) and Hamiltonian given by Eq. (2.38).

Now, in order to provide a better understanding of the physics behind this model, we briefly

review here some basic notions of typical transport problems stemming from non-equilibrium

processes. Consider a NESS established when a system (of “length” L) is placed between two

reservoirs at different temperatures. This exhibits a stationary heat current which, for small

temperature gradients ∆T , can be expressed as

JE =
κ

Lα
∆T, (3.1)

where α is an exponent that characterizes the heat flow regime. Whenever α = 1 one speaks of

diffusive behavior (i.e., Fourier’s heat conduction law). However, low-dimensional (and usually

integrable) quantum and classical systems usually present a ballistic heat flow [70–72], charac-

terized by α = 0 (that is, by a current that is independent of the size of the system). A diffusive

flow usually appears in non-integrable and chaotic systems and may therefore be associated

with the informational scrambling of the energy transmitted from one reservoir to the other.

1With some particulars parameters choice.
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3.2 Solution of the Lyapunov equation in the Non-Equilibrium

Steady State

The particular case of a NESS is obtained by setting the left-hand side of Eqs. (2.42) and (2.43)

to zero,

WC +CW † + FN = 0, (3.2)

WS + SW † + FM = 0. (3.3)

We now focus on Eq. (3.2). Analogous results can be stated for Eq. (3.3) by simply replacing

Ni with Mi, i = 1, . . . , L. But, if there is no squeezing in all environments (zi = 0) then FM = 0

and we therefore obtain S = 0.

A ballistic transport can be obtained setting γ1 = γL = γ and γi = 0, for i = 2, . . . , L−1 [42].

The matricesW and FN then become,

W =



−γ/2 λ 0 0 0 . . . 0 0

−λ 0 λ 0 0 . . . 0 0

0 −λ 0 λ 0 . . . 0 0

...
...

...
. . .

. . .
. . .

...
...

0 0 . . . 0 −λ 0 λ 0

0 0 . . . 0 0 −λ 0 λ

0 0 . . . 0 0 0 −λ −γ/2



and FN = γ diag(N1, 0, . . . , 0,NL).

To make it diffusive, we add additional reservoirs acting on all sites of the chain [44,73–77].

However, the temperature of these reservoirs is chosen self-consistently, in such a way that in

the NESS the currents flow only to the physical reservoirs. Hence, the self-consistent baths

can be viewed as auxiliary baths, which introduce noise in the system with the goal of causing

decoherence, but without affecting the energy. In practice, this means we should add to Eq. (3.2)

the additional terms,

WC +CW † + FN − ΓC + F̃N = 0 (3.4)
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where Γ is the coupling constant to the self-consistent reservoirs and

F̃N = Γdiag(Ñ1, Ñ2, . . . , ÑL−1, ÑL).

Here Ñi, i = 1, . . . , L, are the thermal occupations of the self-consistent reservoirs, which are

chosen as

Ñi = 〈a†i ai〉 = Ci,i. (3.5)

A schematic picture of this model can be seen in Fig. (3.1). Thus, Eq. (3.4) can be written as

WC +CW † + FN − Γ∆(C) = 0, (3.6)

where ∆(C) is the operation of removing all diagonals from C:

∆(C) = C − diag(C1,1,C2,2, . . . ,CL,L).

Eq. (3.6) is now formally identical to the model studied in Refs. [40–42], which instead of

using self-consistent baths, used dephasing baths of the form

K (ρ) =
Γ

2

L∑
i=1

[
a†i aiρa†i ai −

1
2
{(a†i ai)2, ρ}

]
. (3.7)

Even though both models lead to the same equation for the covariances, it turns out that the

steady-states themselves are different. The reason is that the dephasing model - Eq. (3.7) - does

not preserve Gaussianity since the Lindblad generators are quadratic, instead of linear, in the

creation and annihilation operators. The NESS of the self-consistent reservoirs is Gaussian, but

that of the dephasing model is not.

We also mention that the self-consistent model can be readily extended for the case of

squeezing, whereas the dephasing model cannot, since a dissipator such as in Eq. (3.7) pre-

serves the number of particles, but does not preserve the level of squeezing.

The solution of Eq. (3.6) is then identical to that studied in Ref. [40–42]. The matrix C is
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Figure 3.1: Schematic picture of the model studied. A one-dimensional chain containing L
bosonic modes is put in contact with two reservoirs at each end, each kept at occupations n̄1 and
n̄L. The NESS of this system would have a ballistic current. To induce diffusivity the system is
augmented with L self-consistent reservoirs, one for each site of the chain. The temperature of
these reservoirs is chosen so that in the NESS no current flows to them, but only to the physical
reservoirs.

tridiagonal, of the form

C =



A1 x 0 0 0 . . . 0

x A2 x 0 0 . . . 0

0 x A3 x 0 . . . 0

...
...

. . .
. . .

. . .
...

...

0 . . . 0 x AL−2 x 0

0 . . . 0 0 x AL−1 x

0 . . . 0 0 0 x AL



, (3.8)

where

Ai = 〈a†i ai〉 =
N1 + NL

2
+

1
2

γ(N1 − NL)
4λ2 + γ2 + γΓ(L − 1)

Γ(L − 2i + 1)

+
1
2

γ2(N1 − NL)
4λ2 + γ2 + γΓ(L − 1)

(δi,1 − δi,L), (3.9)

x = 〈a†i ai+1〉 =
γλ

4λ2 + γ2 + γΓ(L − 1)
(NL − N1). (3.10)
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3.3 The current

In this section, we will motivate an expression for the current, using a continuity equation for

the quanta (quasi-particles)2. Let us start calculating the following time derivative,

d
dt

〈 L∑
k=1

a†kak

〉
=

L∑
k=1

tr
{

a†kak
dρ
dt

}
= −i

L∑
k=1

tr
{
a†kak[HI , ρ]

}
+

L∑
k,i=1

tr
{
a†kakDi(ρ)

}
, (3.11)

where we have used the Master Eq. (2.11) with HI being given by Eq. (2.38). Working in the

unitary term of the above equation, one may obtain

−i
L∑
k

tr
{
a†kak[HI , ρ]

}
=

L−1∑
k=2

λ〈a†k−1ak+a†kak−1〉−λ〈a
†

kak+1+a†k+1ak〉 =

L−1∑
k=2

Jk−1,k−Jk,k+1, (3.12)

where we have defined the particle current between the sites k and k + 1 as [41, 42, 78],

Jk,k+1 = λ〈a†kak+1 + a†k+1ak〉, k = 2, . . . , L − 1. (3.13)

Now, looking to the dissipative term of Eq. (3.11), we get

L∑
k,i=1

tr
{
a†kakDi(ρ)

}
= γ

(
N1 − 〈a

†

1a1〉
)

+ γ
(
NL − 〈a

†

LaL〉
)

+ γ

L∑
k=1

(
N̄k − 〈a

†

kak〉
)

(3.14)

= γ
(
N1 − 〈a

†

1a1〉
)

+ γ
(
NL − 〈a

†

LaL〉
)

= JB,1 + JL,B, (3.15)

from Eq. (3.14) to Eq. (3.15) we have used the self-consistent condition (see Eq. (3.5)). We also

have defined the currents from the physical bath to the first oscillator (JB,1) and from the last

oscillator to the other physical bath (JL,B) as

JB,1 = γ
(
N1 − 〈a

†

1a1〉
)

and JL,B = γ
(
NL − 〈a

†

LaL〉
)
. (3.16)

Note that, due to the self-consistent condition, there is no particle current from the system to

the auxiliary baths, corroborating to the idea that they can be seen just as a smart3 way to

induce noise in a harmonic chain coupled with two reservoirs in the ends. Finally, substituting

2For notation simplicity, we will refer to the “quasi-particles” by simple “particles”.
3Because preserves gaussianity.
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Eqs. (3.12) and (3.15) into Eq. (3.11), we obtain

d
dt

〈 L∑
k=1

a†kak

〉
= JB,1 + JL,B +

L−1∑
k=2

Jk−1,k −Jk,k+1. (3.17)

In the particular case of a NESS, d
dt

〈∑L
k=1 a†kak

〉
= 0 and due to the particles are a conservative

quantity, the current that enters the system is the same that leaves, JB,1 = −JL,B
4. Nay, the

current from the k-th mode to the k + 1-th is equal to the current from the k − 1-th to the k-th,

Jk,k+1 = Jk−1,k ≡J . (3.18)

Thus, as we expected for a NESS, Eq. (3.17) vanishes.

Similar schemes could be developed to describe a current of energy. However, recently

it has been shown that there is also an alternative interpretation in terms of the method of

repeated interactions [79]. This method can be used to generate local master equations from

a physically consistent model [65, 80] where the environment is described by the sequential

interactions with a series of “environmental units”, which are then discarded after each stroke.

Within this framework, it is possible to reconcile local master equations with thermodynamics

by identifying a work cost associated with turning the interactions with the units on and off.

Once this work term is identified, it turns out (for the specific case of a bosonic chain) that the

current of Eq. (3.18) will also correspond to the heat current to the baths, up to a constant ω.

Thus, to summarize, if one interprets the master Eq. (2.11) as stemming from the method of

repeated interactions, the current J represents both the particle and heat currents. If not, then

J is to be interpreted solely as the current of particles.

Finally, substituting Eq. (3.10) into Eq. (3.13), we obtain an expression for the current of

the model we are studying,

J = 2λx =
2γλ2

4λ2 + γ2 + γΓ(L − 1)
(NL − N1), (3.19)

that is, up to a constant, the quantity x. It is worth noting that the current depends on the gradient

of the occupation number, as in Eq. 3.1 it depends on the temperature gradient. The behavior

with L we will explore in the next section, when we will consider the two kind of transports -

ballistic and diffusive - separately.

4The signal is due to the currents direction.
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3.4 Ballistic vs. diffusive transport

Considering the CM given by Eqs. (3.9-3.10), if we set Γ → 0 we obtain a ballistic model,

where

Ai = 〈a†i ai〉 =
N1 + NL

2
+

1
2
γ2(N1 − NL)

4λ2 + γ2 (δi,1 − δi,L), (3.20)

J = 2λ〈a†i ai+1〉 =
2γλ2

4λ2 + γ2 (NL − N1). (3.21)

In this case the occupation profile is flat inside the chain, except at the end-points. This is

illustrated in Fig. (3.2 a). Moreover, in this case the current is independent of L.

Conversely, if Γ , 0, then for a sufficiently large L we obtain

Ai = 〈a†i ai〉 =
(L − i)N1 + (i − 1)NL

L − 1
+
γ

2Γ

(N1 − NL)
L − 1

(δi,1 − δi,L), (3.22)

J = 2λ〈a†i ai+1〉 =
2λ2

Γ

(NL − N1)
L

. (3.23)

Except for small end-point corrections, we see that in this case 〈a†i ai〉 interpolates linearly

between N1 and NL (see Fig. (3.2 b-d)). Moreover, the current becomes inversely proportional

to L, which is the hallmark of a diffusive behavior obeying Fourier’s law. Hence Γ can also

be interpreted as an additional noise source responsible for changing the flow from ballistic to

diffusive.

We also mention that a proposal to simulate this model in trapped ions was given in [18].

3.5 General NESS covariance matrix with squeezing

Finally, if we introduce squeezing in the reservoirs, then Eq. (3.3) will give a non-vanishing

solution for S. This solution is identical to that for C, with Ni replaced by Mi. Thus, in the
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Figure 3.2: Occupation profile 〈a†i ai〉 as a function of the location k of the site on the chain
for various parameters. (a) Ballistic profile for Γ = 0 and varying λ. (b) Diffusive profile for
Γ = 10−6. (c) Same as (b) but for different values of Γ, with fixed λ = 10−5. (d) Profile for
different chain sizes L, with fixed λ = 10−5 and Γ = 10−6. In all panels γ = 10−5. In (a)–(c)
L = 10.
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NESS with squeezing, S would also be tridiagonal, with

Bi := 〈aiai〉 = =
M1 + ML

2
+

1
2

γ(M1 − ML)
4λ2 + γ2 + γΓ(L − 1)

Γ(L − 2i + 1)

+
1
2

γ2(M1 − ML)
4λ2 + γ2 + γΓ(L − 1)

(δi,1 − δi,L), (3.24)

y := 〈aiai+1〉 =
γλ

4λ2 + γ2 + γΓ(L − 1)
(ML − M1). (3.25)

From C and S we can then reconstruct the full CM Θ using Eq. (2.32). We then find that Θ

will be block tridiagonal, of the form

Θ =



Q1 Z 0 0 0 . . . 0 0

Z Q2 Z 0 0 . . . 0 0

0 Z Q3 Z 0 . . . 0 0

...
...

...
...

...
. . . 0 0

0 0 0 0 0 . . . 0 Z

0 0 0 0 0 . . . Z QL



, (3.26)

where,

Qi =


Ai + 1/2 Bi

B∗i Ai + 1/2

 and Z =


x y

y∗ x

 . (3.27)
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Chapter 4

Wigner entropy production in linear

quantum lattices

4.1 Entropy production/flux rate

Entropy is known to play a fundamental role in both thermodynamics and information theory.

One peculiarity of this quantity is that, unlike energy, it does not satisfy a continuity equation:

in addition to the exchange of entropy with the environment, as time passes, entropy can also

be produced within the system. This additional contribution is known as the entropy production

and serves to quantify the degree of irreversibility of a physical process [81, 82]. In symbols,

we can write the following balance equation for the entropy S (t)1 of the system

dS (t)
dt

= Π(t) − Φ(t), (4.1)

where Π(t) is the entropy production rate and Φ(t) the entropy flux rate from the system to the

environment. The entropy production rate is always non-negative and is zero if and only if the

system is in equilibrium, which is a consequence of the second law of thermodynamics. When

the system is allowed to relax in contact with a single reservoir, it will in general reach thermal

equilibrium where dS/ dt = Π = Φ = 0. However, when the system is connected to multiple

reservoirs kept at different temperatures, it will instead reach a Non-Equilibrium Steady-State

(NESS) where dS/ dt = 0 but Π = Φ ≥ 0. The NESS is therefore characterized by a finite

entropy production rate Π, which is constantly being converted into an entropy flux Φ that is

1Do not confuse with the matrix S defined in Eq. (2.31). Bear in mind that all matrices are in bold.
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dumped into the environment.

The theory of entropy production is formulated differently depending on the type of stochastic

process at hand. For classical systems, widely used approaches are based on Onsager’s the-

ory of chemical kinetics [83–85], classical master equations [86, 87], or Fokker-Planck equa-

tions [88–92]. Conversely, for quantum systems the problem is usually formulated in terms of

Lindblad master equations [93, 94], repeated interactions, quantum trajectories [95] and fluctu-

ation theorems [96, 97], among others.

More recently, an alternative formulation based on quantum phase space methods and quantum

Fokker-Planck equations [8, 98–100] has appeared. This approach has been put forward for

more general reservoirs, such as squeezed, dephasing or even zero temperature environments.

More importantly, this framework allows one to identify irreversible quasi-probability currents

in phase space, which have an interesting physical interpretation as the ultimate microscopic

responsibles for the emergence of irreversibility at the quantum level.

The developments in Refs. [8, 98–100] have so far focused exclusively on single systems

connected to single reservoirs, and have not addressed explicitly the phenomenology of NESS.

In this chapter, we fill this gap and address the case of a multipartite bosonic system coupled

to multiple reservoirs, described by means of local quantum master equations. Employing

phase-space techniques, we then obtain two main results: first, we show that it is possible

to access the local contribution of each dissipation channel to the entropy production, which are

found to be related to the local quasi-probability currents generated from the contact with the

environments.

Second, we obtain an expression which pinpoints the essential role played by the unitary

dynamics in the entropy production, particularly in NESS. This is somewhat counterintuitive,

as the unitary part of the dynamics is usually attributed to a reversible contribution. However,

within the context of NESSs, that is not true since it is the intra-system interactions which

allow for current to flow form one bath to the other, hence sustaining the NESS. Within our

phase-space formulation, we are able to obtain expressions which clearly illustrate this interplay

between irreversible quasi-probability currents, stemming from the contact with the reservoirs,

and unitary currents, stemming from the internal system interactions.

As an application, we dedicate the next chapter to study the transport of heat in a one-

dimensional bosonic chain coupled to two reservoirs at each end [38,41,42,101], more precisely

the model described in chapter 3. In this case, we employ our framework to address the problem
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of quantifying the entropic cost of diffusivity, i.e. how irreversible is a diffusive dynamics,

when compared to a ballistic one. We are then able to quantify the individual contributions to

irreversibility stemming from the physical reservoirs, and that stemming solely from the self-

consistent baths.

4.2 Phase space: the Wigner function

We consider here a gaussian quantum system described by the Local Master Equation (2.11) and

the quadratic Hamiltonian of Eq. (2.4)2. For simplicity, we are going to assume all reservoirs

without squeezing, that is, Mi = 0 for all i in the dissipators (Eq. (2.12)).

We now move to quantum phase space by defining the Wigner function [102],

W(ξ) =
1
π2L

∫
dλ e−

∑2L
i=1(λiα

∗
i −λ

∗
i αi) tr

{
ρe

∑2L
i=1(λia

†

i −λiai)
}
, (4.2)

where ξ is a 2L-dimensional complex vector composed by the phase-space variables,

ξ = (α1, α
∗
1, . . . , αL, α

∗
L)>. (4.3)

If the state of the system is Gaussian, then the Wigner function (4.2) is completely determined

by the CM and the vector of the means µ,

W(ξ) =
1

πL
√
|Θ|

exp
{
−

1
2

(ξ − µ)†Θ−1(ξ − µ)
}
, (4.4)

where |Θ| denotes the determinant of the CM.

En passant, it may be convenient to note that in light of the factorization (2.32), the matrix

Θ−1 may also be written as

Θ−1 = B ⊗ σ+σ− +B> ⊗ σ−σ+ + P ⊗ σ+ + P ∗ ⊗ σ−, (4.5)

where

B = (C − S(C−1)>S∗)−1, (4.6)

P = −C−1SB>. (4.7)
2Here we are considering a more general Hamiltonian than Eq. (2.38).
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In particular, if S = 0 then we simply getB = C−1.

4.3 Quantum Fokker Planck equation

Now, we are going to study the time evolution of the Wigner function. Using standard corres-

pondence tables [102], one can turn the Lindblad Master Equation (2.11) in a quantum Fokker-

Planck equation

∂tW = U (W) +

L∑
k=1

Dk(W), (4.8)

where U (W) represents the unitary part and Dk(W) the dissipative. The latter, in particular,

may be written as a divergence in the complex plane:

Dk(W) = ∂kJk(W) + ∂∗kJ ∗k (W), (4.9)

where ∂k = ∂/∂αk (∂∗k = ∂/∂α∗k) and

Jk(W) =
γk

2

(
αkW + (n̄k + 1/2)∂∗kW

)
. (4.10)

Hence, the quantum Fokker-Planck Equation (4.8) may be interpreted as a continuity equa-

tion for W , with the quantities Jk(W) representing quasi-probability (microscopic) currents in

phase space. This interpretation is corroborated by the fact that the currents are zero if and only

if each mode is in local equilibrium. That is Jk(Weq) = 0 if and only if W is in the state

Weq(ξ) =
∏

k

W (k)
eq (αk, α

∗
k), where W (k)

eq (αk, α
∗
k) =

e−|αk |
2/(n̄k+1/2)

π(n̄k + 1/2)
. (4.11)

Equilibrium can thus be defined as the state for which the microscopic currents vanish identic-

ally [98].

In a similar spirit, the unitary part U (W) in Eq. (4.8) may also be cast in the form of a

continuity equation,

U (W) =

L∑
k=1

[
∂kAk(W) + ∂∗kA∗k(W)

]
, (4.12)

where Ak(W) represent the reversible quasi-probability current generated by the unitary inter-
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action,

Ak(W) = i
L∑
`=1

Hk`α`W , (4.13)

which afford an intuitive interpretation: the currents generated locally in mode k stem from the

interaction between k and other modes `.

4.4 Wigner entropy production of each dissipation channel

We now formulate the problem of how to construct the entropy production for the quantum

Fokker-Planck Eq. (4.8). The standard approach involves the von Neumann entropy. However,

as shown in Refs. [8, 98–100], for Gaussian systems an entirely equivalent formulation may be

constructed in terms of the Wigner entropy

S (W) = −

∫
dξ W(ξ) lnW(ξ), (4.14)

which, as we shall review below, offers several advantages over the standard formulation. Dif-

ferentiating with respect to time and using the Fokker-Planck equation (4.8) one finds

dS (W)
dt

= −
∑

k

∫ [
∂kJk(W) + ∂∗kJ ∗k (W)

]
lnW dξ, (4.15)

where the part related to the unitary dynamics vanishes identically.

Integrating by parts in each variable and noticing that the boundary terms vanish due to the

Gaussianity of the state, one may obtain that

dS
dt

=
∑

k

∫ [Jk(W)∂k lnW + J ∗k (W)∂∗k lnW]
dξ. (4.16)

Next, we write the currents of Eq. (4.10) in terms of the equilibrium state (Eq. (4.11)),

Jk(W) =
γk

2
(n̄k + 1/2)W

[
∂∗k ln(W) − ∂∗k ln(Weq)

]
. (4.17)

Through simple mathematical manipulation, we can rewrite this equation as,

∂∗k ln(W) =
2

γk(n̄k + 1/2)
Jk(W)
W + ∂∗k ln(Weq). (4.18)
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Finally, substituting Eq. (4.18) into Eq. (4.16), we can make the desirable separation between

the entropy production rate and flux of each mode,

dS
dt

= Π − Φ =
∑

k

(Πk − Φk), (4.19)

where

Πk =
4

γk(n̄k + 1/2)

∫
|Jk(W)|2

W dξ, (4.20)

Φk =

∫ {
Jk∂k lnWeq + J ∗k ∂k∗ lnWeq

}
dξ. (4.21)

The identification of these two basic term as an entropy production rate and an entropy flux rate

is based on several corroborating arguments and has been extensively debated in the past, both

in the quantum [98] and classical [88, 92] contexts. First, and foremost, the entropy production

rate is clearly seen to be always non-negative and zero if and only if the currents themselves

are always zero, which only occurs in equilibrium. Second, entropy production rate is seen to

be an even function of the irreversible currents, whereas the entropy flux rate is found to be an

odd function, as found in other studies of Fokker-Planck equations [88]. And, perhaps most

importantly, it can be shown that within a stochastic trajectories framework these expressions

for the entropy production satisfy integral fluctuation theorems [89, 98].

The most important feature of Eqs. (4.20) and (4.21), however, is that we can now also

identify the individual contribution of each dissipation channel to the total entropy production

rate and entropy flux. The entropy production rate (4.20), in particular, acquires an interesting

and rich physical interpretation due to its connection to the microscopic irreversible currents

Jk(W). In fact, following the classical approach [92] one sees that Eq. (4.20) may be inter-

preted as an average of phase space velocities Jk(W)/W . Hence, we see that the Jk(W)

behaves as the microscopic entities ultimately responsible for the emergence of irreversibility,

with the entropy production functioning as a sort of average over phase space of these micro-

scopic currents.

As for the entropy flux rate, making use of the identity

∫
α∗kα`W dξ = 〈a†ka`〉 + δk,`/2, (4.22)
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one may rewrite the entropy flux rate in Eq. (4.21) as

Φk =
γk

n̄k + 1/2

(
〈a†kak〉 − n̄k

)
, (4.23)

which is therefore seen to be related to the difference between the occupation of the k-th mode

at any given time and the bath-imposed occupation n̄k. If the mode has a higher occupation than

the environment we get Φk > 0, meaning entropy flows from the system to the environment.

Conversely, if 〈a†kak〉 < n̄k then Φk < 0 and entropy will flow from the environment to the

system.

The entropy production rate (4.20) may also be expressed in terms of the covariance matrix

of the system, similarly to the flux (4.23), although the expression is not as simple. We begin

by substituting explicitly the current in Eq. (4.17) into Eq. (4.20), for which one finds,

Πk = Φk − γk + γk(n̄k + 1/2)
∫

W |∂k ln(W)|2 dξ. (4.24)

Next we substitute in the logarithm the explicit formula for the Gaussian Wigner function of

Eq.(4.4). Carrying out the remaining integrals we then finally obtain

Πk = Φk − γk + γk(n̄k + 1/2)(Θ−1)2k,2k, (4.25)

which is the desired expressions, yielding the entropy production rate directly in terms of the

CM.

4.5 Role of the unitary dynamics in maintaining a non-equilibrium

steady-state

The expression for the entropy production rate in Eq. (4.20) may also be written, after some

rearrangements, as

Π = −

L∑
k=1

∫
Dk(W) ln

(
W/Weq

)
dξ. (4.26)

Let us consider now the Wigner relative entropy (or Kullback-Leibler divergence),

S (W ||Weq) :=
∫

W ln
(
W/Weq

)
dξ. (4.27)
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Differentiating it with respect to time and using the Fokker-Planck Eq. (4.8), one may obtain

that,

dS (W ||Weq)
dt

=

∫
U (W) ln

(
W/Weq

)
dξ +

L∑
k=1

∫
Dk(W) ln

(
W/Weq

)
dξ, (4.28)

where the second term can be identified with Eq. (4.26). Furthermore, the integral
∫
U (W) ln(W)

vanishes. Hence, we conclude that the entropy production rate may be written as

Π = −
dS (W ||Weq)

dt
−

∫
U (W) lnWeq dξ (4.29)

= Πtrans + ΠNESS. (4.30)

This is one of our main results. Since the unitary dynamics is reversible, it is a common place to

associate irreversibility with the dissipative contribution. The first term, Πtrans, due a transient,

can be found in many studies on entropy production [51,93,98,100,103,104] and usually entails

to Π an interpretation in terms of the rate at which the system approaches equilibrium (with the

relative entropy playing the role of a distance between the present state and the equilibrium

state). However, this is only true if the system is connected to a single reservoir or if the

different sub-systems do not interact. When they do, the system will instead reach a NESS

where the first term is zero, but the second term notwithstanding remains. Hence, Eq. (4.29)

puts in evidence the essential role that the untiary interactions have in allowing currents to flow

from one bath to another, maintaining the NESS and a finite entropy production rate.

4.6 Recovering Onsager’s theory of irreversible thermody-

namics

Using the unitary currents of the Wigner space (see Eq. (4.12)) and the moments of the Wigner

function (see Eq.(4.22)), we can rewrite the last term in Eq. (4.29) as,

ΠNESS = −i
∑
k,`

1
n̄k + 1/2

(
Hk,`〈a

†

ka`〉 − H`,k〈a
†

`ak〉

)
(4.31)

=
∑
k,`

2
n̄k + 1/2

Im
{
Hk,`〈a

†

ka`〉
}
. (4.32)
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We point to the fact that this result has no contribution from the diagonal elements Hk,k, em-

phasizing the role of the interactions.

Following the same way we have done in section (3.3), we can define here a more general

heat current3,
d〈a†kak〉

dt
= i〈[H , a†kak]〉 =

∑
`,k

jk,`, (4.33)

where

jk,` = −iHk,`

[
〈a†ka`〉 − 〈a

†

`ak〉

]
= − j`,k. (4.34)

which allows to cast Eq. (4.31) in a more symmetric form

ΠNESS =
1
2

∑
k,`

jk,`

( 1
n̄k + 1/2

−
1

n̄` + 1/2

)
. (4.35)

This result can be interpreted from the point of view of Onsager’s theory of irreversible thermo-

dynamics [81, 83]. Within this framework, the entropy production is defined as the product of

fluxes times affinities (also called generalized forces). For instance, the current of energy is re-

lated to the affinity 1/T , so that in a classical scenario the Onsager entropy production between

two bodies kept at temperatures TA and TB would be given by

Π = jAB

( 1
TA
−

1
TB

)
, (4.36)

where jAB would be the current of energy from B to A. We see that Eq. (4.35) has the exact

same mathematical structure as Onsager’s formula, providing a strong physical justification for

the use of the Wigner entropy production rate. Moreover, we also see that precisely due to the

fact that we are using the Wigner entropy production rate, the thermodynamic affinity related

to the current is not the temperature, but rather the Bose-Einstein occupation n̄ + 1/2. For high

temperatures n̄+1/2 ∝ T so that both frameworks coincide. However, our result holds even in the

limit of vanishingly small temperature, where n̄→ 0 but the factor of 1/2 nonetheless remains.

We also call attention to the fact that Onsager’s formula (4.36) is valid only for systems close

to equilibrium (linear response theory), whereas Eq. (4.35) is true for states arbitrarily far from

equilibrium. This is a consequence of the Gaussianity of the problem in question.

The non-negativity of the entropy production rate is reinforced by the fact that the current

always flows from hot to cold, so that the sign of jAB will always be the same as T−1
A − T−1

B .

3It is more general because we are considering the Hamiltonian of Eq. (2.4), which allows no local correlations.
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Chapter 5

Quantifying the entropic cost of diffusivity

5.1 Total entropy production rate of a chain in NESS

We now illustrate the usefulness of our framework for the Wigner entropy production within the

model solved in chapter 3. For simplicity, we will consider zero squeezing in the reservoirs. As

we have mentioned, this model captures the essence of typical transport problems, presenting

a ballistic or diffusive flow depending on parameters choice. Given that the diffusive regime

emerges when noise is added to the system (for instance, by mean of self-consistent reservoirs),

we address in this chapter the question of quantifying the irreversible cost of diffusivity.

Let us begin by calculating the total entropy production rate, which may be readily computed

from Eq. (4.35). As the currents in Eq. (3.19) are translation invariant, all inner terms in the

sum entering Eq. (4.35) vanish and we are left with

ΠNESS =
2λ2γ(n̄L − n̄1)

4λ2 + γ2 + γΓ(L − 1)

(
1

n̄1 + 1/2
−

1
n̄L + 1/2

)
. (5.1)

The entropy production rate is thus manifestly always non-negative and zero if and only if

n̄1 = n̄L, in which case there is no current flowing through the chain. We also remark the fact that

ΠNESS does not depend on ñk, which is an important consistency check, as it is precisely the goal

of the self-consistent reservoirs to make sure that no current flows through them. Concerning the

ballistic vs. diffusive, we see that the entropy production rate behaves exactly like the current,

being independent of L if Γ = 0 and of order 1/L for Γ , 0. It is also noteworthy that, fixing the

temperature gradient, the ballistic irreversible entropy-production rate ΠNESS(γ,Γ = 0) is larger

than the diffusive one ΠNESS(γ,Γ > 0). The reason for this behavior will be elucidate in section
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(6.5), where we show that the diffusive regime tends to a local equilibrium state and the ballistic

doesn’t.

5.2 Entropy production rate from the physical and the self-

consistent reservoirs

We now turn to what is one of the main advantages of our framework, namely that we are able

to separate the contributions of the entropy production rate from each dissipation channel. More

specifically, we separate the total entropy production rate into two contributions, one stemming

from the real reservoirs at the boundaries Πr and another from the auxiliary self-consistent

reservoirs Πsc; viz.,

Π = Πr + Πsc. (5.2)

From Eq. (4.20) we find that the contribution from the physical reservoirs, 1 and L reads

Πr =
4

γ(n̄1 + 1/2)

∫
|J1(W)|2

W dξ +
4

γ(n̄L + 1/2)

∫
|JL(W)|2

W dξ, (5.3)

where,

J1,L(W) =
γ

2

[
α1,L + (n̄1,L + 1/2)∂∗1,LW

]
. (5.4)

Similarly, the entropy production from the self-consistent reservoirs reads

Πsc =
∑

k

4

Γ(〈a†kak〉 + 1/2)

∫
|J̃k(W)|2

W dξ, (5.5)

with,

J̃k(W) =
Γ

2

[
αk + (〈a†kak〉 + 1/2)∂∗kW

]
, (5.6)

where we already used the fact that the occupations of the self-consistent reservoirs are ñk =

〈a†kak〉 [Eq. (3.9)].

Lastly, to facilitate the computation of Eqs. (5.3) and (5.5) we write the entropy production

rate for the real and the self-consistent reservoirs in the terms of the covariance matrix. This is

readily accomplished using Eq. (4.25). All we need to do is to adapt the notation to comply with

the separation of the physical from the auxiliary baths. For the contribution to the real reservoir,
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Eq. (5.3), we write it as Πr = Π1 + ΠL where

Πk = Φk − γ + γ(n̄k + 1/2)(Θ−1)2k,2k, k = 1, L, (5.7)

where the entropy flux Φk is given by Eq. (4.23). Similarly, for the entropy production rate due

to the self-consistent reservoirs, Eq. (5.5), we write Πsc =
∑

k Π̃k where

Π̃k = −Γ + Γ(〈a†kak〉 + 1/2)(Θ−1)2k,2k, k = 1, . . . , L. (5.8)

Here we already used the fact that the occupations number of the self-consistent reservoirs are

cast to be ñk = 〈a†kak〉, so the entropy flux of the self-consistent reservoirs Φ̃k, vanishes.

In Fig. (5.1) we plot Πr and Πsc as a function of L in a logarithmic scale. Interestingly,

we see that the irreversibility associated with the physical reservoirs is dominant only for small

system size. As the chain is scaled up Πsc quickly surpasses Πr and adopts a distinct power-law-

like decay Πsc ∼ 1/L for large L. On the other hand—and also in the thermodynamic limit—we

observe that the contribution from the real baths to the total steady-state irreversibility decays

as Πr ∼ 1/L2. The dependence on both γ and Γ, although not explicit in Eqs. (5.3) and (5.5),

arises from WNESS.

We have thus seen that combining the ease of calculation of the Wigner entropy produc-

tion for Gaussian states with our simple harmonic model to mimic diffusive heat conduction,

provides valuable insights into the relative weight of the individual irreversible processes in the

thermodynamic limit.
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Figure 5.1: The separate contributions of the entropy production rate from the real reservoirs
(Πr) and the self-consistent reservoirs (Πsc), as a function of the system size L, for fixed γ =

10−6, Γ = 10−7, λ = 3.10−7, n̄1 = 1 and n̄L = 2.
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Chapter 6

Quantifying shared information in

Non-Equilibrium Steady States

6.1 Motivation

One aspect which still remains largely unexplored of Non-Equilibrium Steady States is the

connection between transport of excitation and the correlations. After all, the existence of a

heat current implies that the excitations moving through the system correlates one part to the

other.

Since information does not satisfies a continuity equation we cannot define an information

current. Instead, the question is more appropriately phrased in terms of the amount of inform-

ation shared between different parts of a quantum chain. This shared information is mediated

by the heat currents. However, the same reservoirs producing these currents will also in general

cause decoherence, which tends to reduce correlations. This competition between heat currents

and decoherence will eventually produce a NESS where different parts of the chain share a cer-

tain amount of information with each other (for an example, see Ref. [105]). The main goal

of this chapter is to address how to quantify this amount of shared information. For a connec-

ted bipartition of the chain, the natural quantifier is the mutual information (MI). Conversely,

motivated by some recent developments in the field of Quantum Markov chains [31–35], we

show that for disconnected parts, the appropriate quantifier is actually the conditional mutual

information (CMI) [36, 37] I (A : C|B), a more general measure of tripartite correlations.

It is worth pointing out that although there is an existing body of work on quantum state

transfer in many-body systems [106–110], the NESS scenario that we focus here is fundament-
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ally different. In quantum state transfer, the natural figure of merit is the fidelity between the

initial sender state and the receiver state at some given time. In contrast, in a NESS scenario cor-

relations appears due to a competition of two effects. On the one hand, the environments tend to

cause decoherence [51]. On the other hand, a gradient of temperature (or any other excitation)

will tend to induce currents, which is the cause of such correlations. This competition will lead

to a NESS in which the different parts share some information (for an example, see Ref. [105]).

Thus, we see that unlike in quantum state transfer, in the NESS context information transport

cannot be characterized by any type of continuity equation. Instead, it must be characterized by

the ability of one part to communicate information to another through the currents.

Finally, we apply these ideas to understand how the shared information within the chain is

affected by different heat conduction regimes, using for it the soluble quantum lattice described

in chapter 3.

6.2 Quantifying the information sharing:

We consider the NESS generated in a boundary-driven one-dimensional quantum chain, such

as that depicted in Fig. (6.1 a).

1 L

(a)

2 L-1T1 TL

Figure 6.1: (a) A boundary-driven one-dimensional quantum chain subject to two thermal
reservoirs at each end. (b) The information shared between A and C, through a middle partition
B, can be quantified using the conditional mutual information I(A : C|B) defined in Eq. (6.3).

The basic assumptions are that the reservoirs act only locally on the end-points and the

interaction Hamiltonian is short-ranged. We define S = {1, . . . , L} as the set of sites of the

chain and ρS as the global density matrix in the NESS. Moreover, given any subset A ⊂ S

we define the reduced density matrix of that subset as ρA = trS /A ρS , where S /A stands for the

partial trace over all sites that are not in the set A. The simplest approach to information sharing

is to consider a bipartition of the chain in two halves A = {1, . . . , k} and B = {k + 1, . . . , L}.
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In this case the total amount of information shared between them is quantified by the mutual

information (MI) [111]

I (A : B) = S (ρA) + S (ρB) − S (ρAB) ≥ 0, (6.1)

where S (ρ) = − tr(ρ ln ρ) is the von Neumann entropy. This quantity measures the amount

of information (quantum and classical) contained in the global state ρAB ≡ ρS , but which is

missing in the marginalized state ρA ⊗ ρB. If ρAB is a pure state (which is seldom the case for

NESSs), this reduces to twice the entanglement entropy. Similarly, if one is interested in multi-

partite systems, one may quantify the shared information using the so-called total correlations

(TC) [112], defined as

T =

L∑
i=1

S (ρi) − S (ρS ) ≥ 0, (6.2)

where ρi is the reduced density matrix of site i. This quantity is useful in understanding shared

information from a global perspective, irrespective of how this information is locally distributed

within the chain.

In this chapter, however, our main focus will be on how to quantify the information shared

between two disconnected parts of the chain. That is, considering a tripartition ABC, our goal is

to address how to quantify the ability of the currents to mediate information between parts A and

C, passing through B (see Fig. (6.1 b)). It turns out that, for this task, the mutual information

I (A : C) is not appropriate. Instead, one should consider the conditional mutual information

(CMI), [36, 37]

I (A :C|B) = S (ρAB) + S (ρBC) − S (ρABC) − S (ρB) ≥ 0. (6.3)

To elucidate why, let us first draw a connection with classical Markov chains [31, 35].

Consider a discrete time chain characterized by three random variables, X → Y → Z. This

process is called Markovian when there is no information flow from the past (X) to the future

(Z)

P(Z|XY) = P(Z|Y). (6.4)

If we now calculate the joint probability distribution of Z and X given Y , using the products
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rule, we obtain

P(X,Z|Y) = P(X|Y)P(Z|XY)

= P(X|Y)P(Z|Y). (6.5)

Thus, Eq. (6.5) motivates us to another definition of markovianity, as a process where the past

X and the future Z are uncorrelated if we have knowledge of the present Y. In this way, if we do

not have information about Y, then X and Z are correlated,

P(X,Z) =
∑

Y

P(X|Y)P(Z|Y)P(Y), (6.6)

so that, in general, I (X :Z) , 0. The reason for this correlation lies solely on their common lack

of information about Y and does not reflect, at all, the ability of X and Z to share information.

Hence, I (X : Z) is not a proper quantifier of shared information. Instead, Markovianity is

correctly quantified by the conditional mutual information of Eq. (6.3). First, for a Markovian

system I (X :Z|Y) ≡ 0 [33]. And second, for multi-step chains X1, X2, . . ., the dependence of the

CMI on the size of the middle partition directly quantifies the degree of non-Markovianity [113]

as it measures the extent of the chain’s memory.

The situation is entirely analogous to our problem. But instead of a probability distribution

P(X,Y,Z), we now have a multi-site density matrix ρ of the NESS. Hence, the concept of time in

our case is replaced by the site index i = 1, . . . , L [31–35] (our chain does not have a well defined

causal order). Notwithstanding this difference, the logic remains the same: the ability of the

currents in sharing information between A and C is correctly captured by the CMI I (A : C|B)

and not the MI. If I (A : C|B) = 0 then no information is shared, while the dependence of

I (A :C|B) on the size of B quantifies the robustness of the chain in sharing information, despite

the noise in the channel. Another perspective to further clarify the meaning of the CMI is by

means of the so-called chain rule [37]:

I (A :C|B) = I (AB :C) −I (B :C). (6.7)

Thus, I (A :C|B) can be viewed as the difference between the total information shared between

AB and C and the information that is shared only between B and C (or vice-versa).
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6.3 Calculation of the entropy

We expose here a simple method to compute the von Neumann entropy for Gaussian states, in

terms only of the symplectic eigenvalues [114].

The symplectic eigenvalues of a CM Θ are defined as

{νk} = eigs+(2ΣΘ), (6.8)

where Σ = IL ⊗ σz is the symplectic form related to our choice of structure for Θ. Here, eigs+

means selecting only the positive eigenvalues. The von Neumann entropy is then [45, 47]

S (ρ) =

L∑
k=1

{
νk + 1

2
ln

(
νk + 1

2

)
−

(νk − 1)
2

ln
(
νk − 1

2

)}
. (6.9)

The same approach is used for considering any reduced density matrices. Recall that the reduced

density matrix of a Gaussian state is also Gaussian and therefore has a CM which is simply

obtained by dropping from Θ the elements one wishes to trace over.

Alternatively, since we are working with gaussian states, one could use the Reńyi-2 entropy

[115]1, S 2(ρ) = − ln tr{ρ2} to calculate informational-theoretical quantities. In the appendix A,

we show that it can be written in terms of the CM as,

S 2(ρ) = L ln(2) +
1
2

ln |Θ|. (6.10)

In appendix B, we consider the particular form of the CM we are going to use as an application

in next section and we obtain an analyticaly closed expression for its determinant for arbitrary

L. However, such solution is given in terms of non-trivial functions and we could not simplify

them to the point of we can understand its behavior. Thus, we have opted to use the standard

and well known von-Neumann entropy.

1In this reference, Adesso et al. show that the Rényi-2 entropy satisfies the strong subadditivity inequality.
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6.4 Analysis of the shared information in a Non-Equilibrium

Steady State

We now move on to apply these concepts to the model solved in chapter 3. Let us begin our

analysis by computing the mutual information I (A : B) [Eq. (6.1)] for a symmetric bipartition

at L/2. The results as a function of L, for different values of Γ, are shown in Fig. (6.2 a). As

can be seen, I (A : B) is independent of L in the ballistic case (Γ = 0), but scales as I (A :

B) ∼ 1/L2 in the diffusive case. In Fig. (6.2 b) we present for comparison the total correlations

[Eq. (6.2)]. For ballistic transport the TC is an extensive quantity, scaling as T ∼ L. Conversely,

for diffusive transport we find T ∼ 1/L. This decay of the amount of correlations as one

approaches the thermodynamic limit was also found in Ref. [105] for 2-particle entanglement.
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Figure 6.2: (a) Log-log plot of the Mutual Information (MI) I (A : B) [Eq. (6.1)] between
two halves of the chain as a function of L, for different values of the self-consistent noise Γ. (b)
Same but for the total correlations T [Eq. (6.2)]. The curve for Γ = 1 was multiplied by 10−3

to improve visibility. In all curves we set N1 = 2, NL = 1 and γ = λ = 1.

Next we turn to the CMI, which is summarized in Fig. (6.3). We focus on symmetric tripar-

titions ABC with b = |B| sites in the middle. As illustrated in Fig. (6.3 a), we find that in both

regimes the CMI decays exponentially with b, as I (A : C|B) = 1/Rb, where R is a constant

that depends non-trivially on all parameters of the model. The dependence of the CMI on L

is shown in Fig. (6.3 b) for b = 1 and in Fig. 6.3(c) for multiple values of b. We find that

for ballistic transport the CMI is independent of L, whereas for diffusive transport it scales as

I (A : C|B) ∼ 1/L2b+2.
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Figure 6.3: Conditional mutual information (CMI) I (A : C|B) [Eq. (6.3)] for a symmetric
tripartition with the middle block having size b = |B|. (a) Log of the CMI as a function of
b, for both the ballistic case (Γ = 0, solid lines) and diffusive case (Γ = 0.1, dashed lines),
with different values of N1 and fixed L = 40 and NL = 1. In both cases the CMI behaves as
I (A : C|B) ∼ 1/Rb, where R > 1 is a constant that depends on the temperature gradient. (b)
Log-log plot of the CMI as a function of L for b = 1. If Γ = 0 then I (A : C|B) is independent
of L, whereas for Γ , 0 we get I (A : C|B) ∼ 1/L4. (c) Log-log plot of the CMI vs. L for
different values of b with N1 = 15, NL = 1 and Γ = 0.1. For large L the CMI scales as
I (A : C|B) ∼ 1/L2b+2. (d) Finite size scaling, Eq. (6.11), for two different values of N1, with
NL = 1 and multiple values of Γ, L and b. In all curves we set γ = λ = 1.

From these numerical simulations we therefore propose the following scaling law for the

CMI:

I (A : C|B) =
u

(v + ΓL)2b+2 , (6.11)

where u and v are constants. The behavior also holds for b = 0, in which case one recovers

the MI in Eq. (6.1). To confirm this scaling law behavior we present in Fig. (6.3 d) plots of
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I −1/(2b+2) vs. ΓL for different values of Γ, L and b. According to Eq. (6.11), this should lead to

a fully collapsed straight line, which is precisely what is observed.

Eq. (6.11) provides a full characterization of the information transport for the bosonic model

described in chapter 3. It shows that the transport of information is exponentially suppressed

by the size b of the middle partition, for both ballistic and diffusive cases. However, in the

diffusive case, this suppression is greatly enhanced by a factor depending on the size L of the

chain. Unfortunately, it is not possible to state whether such a scaling behavior is universal. It

will quite likely be true for fermionic chains, in view of their similarity with the present model

(c.f. Ref. [105]). There are rare situations, however, which could serve as counterexamples.

One, for instance, is the spin helix model studied in Ref. [116], where in certain cases the NESS

may be in a product state, despite having a non-zero current.

6.5 Local equilibration

As first put forth in Ref. [48], the behavior of the CMI can also shed light on questions con-

cerning the Hilbert space tensor structure of the NESS and local equilibration. Motivated by

this, we now show that the scaling rule (6.11) for the ballistic and diffusive scenarios can give

precise information about how close the NESS is from local equilibrium. To accomplish this,

we make use of a recently proved theorem by Kato and Brandão [33]. Let Ik denote the CMI

with a tripartition at position k and only 1 site in the middle. The authors have shown that if

Ik < ε for all k, then there exists a local Hamiltonian H =
∑

i hi,i+1, acting only on sites i, i + 1,

such that

S
(
ρS

∣∣∣∣∣∣∣∣∣∣ e−H

tr e−H

)
< εL, (6.12)

where S (ρ||σ) = tr(ρ ln ρ − ρ lnσ) is the quantum relative entropy. This means that states

with vanishingly small Ik tend to be locally thermal (which includes the possibility of a site-

dependent temperature, which we have incorporated into hi,i+1).

Based on Eq. (6.11), with b = 1, we see that in the ballistic case Ik ∼ L0, so that the NESS

will in general be far from local equilibrium. However, in the diffusive case Ik ∼ 1/L4 so that

Eq. (6.12) scales as 1/L3. Hence, we see that in the diffusive case the NESS tends to a locally

thermal state in the thermodynamic limit. This agrees with our macroscopic intuition that even

though a system may be out of equilibrium it is still in a local equilibrium state, but with a

position-dependent temperature.
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This result therefore provides a direct application for the CMI in understanding local prop-

erties of NESSs.
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Chapter 7

Conclusions

We have addressed the calculation of the irreversible entropy-production rate using a quantum

phase-space approach based on the Wigner entropy. In particular, we focused on networks of

weakly interacting harmonic nodes with arbitrary connectivity, and coupled to various reservoirs

at different temperatures. For this wide class of systems, we were able to obtain simple and

useful closed-form expressions for both the Wigner entropy-production rate and the entropy

flux, solely in terms of the second-order moments of the system. This is possible since we work

with an overall harmonic Hamiltonian, which preserves Gaussianity. In addition, we could

split the entropy-production rate and flux into contributions stemming from individual quasi-

probability currents associated with each open decay channel, which enables one to identify

the irreversibility generated by a single bath in a multi-bath lattice. We also discussed how

the internal coherent dynamics plays a central role in generating steady-state irreversibility, as

it is the leading mechanism enabling energy transport across the network. Then, we used our

framework to better understand the interplay between the various sources of irreversibility at

play in diffusive heat conduction through a harmonic chain. We mimicked the anharmonicity

required to establish the desired diffusive profile by adding auxiliary (self-consistent) reservoirs

to our model. In turn, this allowed us to break down the total steady-state irreversible entropy

production into a contribution due to the heat transport across the chain, and another one which

can be interpreted as the entropic cost of maintaining a stationary diffusive transport. These

results were addressed in the paper of Ref. [50].

We then turn to explore NESSs from an informational point of view. We have put forth

a detailed study on the information sharing in non-equilibrium steady-states. First, we have

shown that the conditional mutual information appears as a robust quantifier of the ability of
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the chain to share information between different parts. We then applied this to the same exactly

soluble model used above and obtained how the CMI scales with the system size and other

relevant quantities, which is summarized by Eq. (6.11). Finally, we have showed how this type

of knowledge may find applications in studies of local thermalization of non-equilibrium states,

a topic which touches at the heart of many discussions in many-body and statistical physics. A

paper (still in revision process) encompassing this second part also was performed [49].

From our studies, several natural questions emerge. The most basic is the aforementioned

universality of the scaling (6.11). Another interesting question is how these results would be

affected by anomalous diffusion (that is, in which J ∼ 1/Lα for some exponent α). By under-

standing what changes this would introduce in the scaling law (6.11), one could address the

question of what is the critical value of α for which local equilibration breaks down.
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Appendix A

Rényi-2 entropy for Gaussian systems

For Gaussian systems Rényi-2 entropy satisfies the strong subadditivity inequality [115], being

able to be used as a suitable tool to calculate informational-theoretical quantities. In this ap-

pendix, we show that it can be directed related with CM’s determinant, which is an analytical

advantage over the usual von-Neumann entropy.

Let us start this demonstration by writing the Rényi-2 entropy in terms of the system purity

P,

S 2(ρ) = − ln{tr(ρ2)} = − ln(P). (A.1)

We will separate this demonstration in two steps. First, we obtain an expression that relate the

purity with an integral of the Wigner function. Second, we solve this integral considering the

particular structure of a Gaussian Wigner function.

A.1 The purity and the Wigner function

We can write the displacement operator of a coherent state in the following compact way,

D(ξ) = eR
†Ωξ, (A.2)

where R is the 2L dimensional vector encompassing all bosonic operators (see Eq. (2.26)), ξ

the 2L dimensional vector of complex variables (see Eq. (4.3)) and Ω the 2L × 2L symplectic
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matrix (see Eq. (2.27)). As an example, for L = 2, we have that,

R†Ωξ = (a†1, a1, a
†

2, a2)



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0





α1

α∗1

α2

α∗2


= a†1α1 − a1α

∗
1 + a†2α2 − a2α

∗
2, (A.3)

which allow us to write the displacement operator as

D(ξ) = ea†1α1−a1α
∗
1+a†2α2−a2α

∗
2 = D(α1)D(α2), (A.4)

that is nothing but the composition rule for two subsequent displacements.

We now define the Wigner function, as we have done in Eq. (4.2), but here in a more compact

way making use of the above displacement operator1,

Wρ(ξ) =
1
π2L

∫
ek
†Ωξ tr[ρD(k)] dk, (A.5)

where k = (k1, k∗1, . . . , kL, k∗L)>. Let us now introduce the quantity P12:

P12 ≡ π
L
∫

Wρ1(ξ)Wρ2(ξ) dξ. (A.6)

Thus, substituting Eq. (A.5) into Eq. (A.6), one may rewrite it in terms of the displacement

operator,

P12 =
1
π3L

∫
dk dq tr[ρ1D(k)] tr[ρ2D(q)]

∫
dξe(k+q)†Ωξ. (A.7)

Note that the integral over ξ is the integral representation of the dirac delta function in its

complex form, ∫
dξe(k+q)†Ωξ = π2Lδ2(k1 + q1) . . . δ2(kL + qL), (A.8)

where δ2(α) ≡ δ (Re[α]) δ (Im[α]). Thus, Eq. (A.7) becomes,

P12 =
1
πL

∫
dk dq tr

[
ρ1D

(
k1, k∗1, . . . , kL, k∗L

)]
tr

[
ρ2D

(
q1, q∗1, . . . , qL, q∗L

)]
δ2(k1 + q1) . . . δ2(kL + qL)

=
1
πL

∫
dk tr

[
ρ1D (k)

]
tr

[
ρ2D (−k)

]
. (A.9)

1Note that the integral is of over all phase space, dk = dk1 dk∗1, . . . , dkL, dk∗L.
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Furthermore, since we are using a coherent basis, the trace of an operator O is given by

tr [O] =
1
πL

∫
dγ〈γ1 . . . γL|O |γ1 . . . γL〉, (A.10)

where γ = (γ1, γ
∗
1, . . . , γL, γ

∗
L)2. In this way, P12 becomes3

P12 =
1
π3L

∫
dk dγ dη〈γ1 . . . γL|ρ1D(k)|γ1 . . . γL〉〈η1 . . . ηL|ρ2D(k)†|η1 . . . ηL〉, (A.11)

and making the integral over the variable k,

P12 =
1
πL

∫
dγ dη〈γ1 . . . γL|ρ1δ

2(γ1 − η1) . . . δ2(γL − ηL)ρ2|η1 . . . ηL〉 (A.12)

=
1
πL

∫
dγ〈γ1 . . . γL|ρ1ρ2|γ1 . . . γL〉. (A.13)

Finally, using again Eq. (A.10), we have that

P12 ≡ π
L
∫

Wρ1(ξ)Wρ2(ξ) dξ = tr[ρ1ρ2]. (A.14)

Then, taking ρ1 = ρ2 = ρ, we obtain an expression to calculate the state purity in terms of the

Wigner function,

P = tr[ρ2] = πL
∫

Wρ(ξ)2 dξ. (A.15)

A.2 Purity of Gaussian states

Considering the particular case of Gaussian states, the Wigner function is completely character-

ized by the CM Θ and the vector of the means, µ (see Eq. (4.4)). Thus, the purity of Gaussian

states, can be computed substituting Eq. (4.4) into Eq. (A.15) and solving the integral over the

phase space,

P =
1

πL|Θ|

∫
e−(ξ−µ)†Θ−1(ξ−µ) dξ. (A.16)

Since the CM is positive semi-definite, it can be decomposed using a triangular matrixQ4,

Θ = QQ†. (A.17)
2As in the previous integrals, dγ = dγ dγ∗1 . . . dγL dγ∗L.
3We also have used the fact that, D(−k) = D(k)†.
4It is known by Cholesky decomposition.
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Now, let us make a change of variables defining a vector λ such that

Qλ = ξ − µ. (A.18)

The differential then becomes,

dξ = |Q| dλ =
√
|Θ| dλ, (A.19)

and the purity in Eq. (A.16) turn into

P =
1

πL
√
|Θ|

∫
dλe−λ

†λ, (A.20)

where, λ†λ =
∑2L

i=1 |λi|
2 = 2

∑L
i=1 |λi|

2. The problem, is then reduced to a simple gaussian

integral5,

P =

∫
dλ

πL
√
|Θ|

e−2
∑N

i=1 |λi |
2

=
1
√
|Θ|

(
1
π

∫
e−2|λi |

2
d2λi

)L

=
1

2L
√
|Θ|

. (A.21)

A.3 Entropy in term of the covariance matrix

Finally, taking the logarithm of the purity we obtain the desired expression relating the Rényi-2

entropy and the CM,

S 2(Θ) = L ln(2) +
1
2

ln |Θ|. (A.22)

We here purposely wrote S 2(Θ), rather then S 2(ρ), to emphasizes that a Gaussian system is

completely determined by the CM.

Although this expression is very simple to be used, it is not straightforward to obtain a

closed expression for CM’s determinant for arbitrary size L. We then address this problem in

Appendix B, but considering the particular structure of the ballistic/diffusive CM described by

Eqs. (3.8 - 3.10).

For simplicity, we will suppose no squeezing in the environments, allowing a full description

of the CM in terms of the C matrix (Eq. (2.30)). From Eq. (2.32) we have that,

Θ =

(
C +

I2

2
⊗ σ+σ−

)
+

(
CT +

I2

2
⊗ σ−σ+

)
, (A.23)

5We remain the notation of the main text, d2λi ≡ dλi dλ∗i .
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which motivates the definitions of a new matrix C̃ as,

C̃ =
IL

2
+C. (A.24)

Considering the particular model we have studied in chapter 3, the new covariance matrix C̃

will also be given by Eqs. (3.8 - 3.10), with exception of the diagonal terms,

C̃ii = 〈a†i ai〉 +
1
2

=
1
2

+
N1 + NL

2
+

1
2

γ(N1 − NL)
4λ2 + γ2 + γΓ(L − 1)

Γ(L − 2i + 1)

+
1
2

γ2(N1 − NL)
4λ2 + γ2 + γΓ(L − 1)

(δi,1 − δi,L). (A.25)

Now, we can write a simple expression to relate the determinant of Θ with the determinant of

C̃,

|Θ| = |C̃ |2, (A.26)

and the Rényi-2 entropy then becomes,

S 2(C̃) = L ln(2) + ln |C̃ |. (A.27)

Thus, the problem is reduced to find a closed formula for the determinant of the tridiagonal

L × L , C̃ matrix.

A.4 Characterizing correlations in terms of the covariance

matrix

Once correlations are always between two or more partitions it is necessary to know how to

characterize the state of a subsystem. For Gaussian systems, any subsystem is Gaussian and is

given by the correspondent partition of the CM. In practice, it means we have to throw away all

the rows and columns that do not belongs to the modes in question.

As an example, let us consider a Gaussian system composed by 6 modes,
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C̃ =



a1 x 0 0 0 0

x a2 x 0 0 0

0 x a3 x 0 0

0 0 x a4 x 0

0 0 0 x a5 x

0 0 0 0 x a6



. (A.28)

If one defines a partition A composed by the first two modes and a partition B by the others, the

reduced CMs would be written as,

C̃1,2 =


a1 x

x a2

 and C̃3,6 =



a3 x 0 0

x a4 x 0

0 x a5 x

0 0 x a6


, (A.29)

where from now on we will denote Mi, j the block of a matrix M composed by the modes i to

j.

Now, we are in position to redefine the Mutual Information (Eq. (6.1)) and the Conditional

Mutual Information (Eq. (6.3)) in terms of the Rényi-2 entropy and consequently to the CM’s

determinant. Starting with the MI we have that,

I2(A : B) = S 2(ρA) + S 2(ρB) − S 2(ρAB) ≥ 0. (A.30)

If we consider the partition A is composed by modes {1, . . . , k} and B by {k + 1, . . . , L}, using

the above notation and Eq. (A.27), one may obtain that,

I2(A : B) = ln
(
|C̃1,k||C̃k+1,L|

|C̃1,L|

)
. (A.31)
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Analogously, we can obtain the following expression for the CMI,

I2(A :C|B) = S 2(ρAB) + S 2(ρBC) − S 2(ρABC) − S 2(ρB), (A.32)

= ln
(
|C̃1,l||C̃k+1,L|

|C̃1,L||C̃k+1,l|

)
, (A.33)

where we have partitioned the system in the following way,

A = {1, . . . , k}, B = {k + 1, . . . , l} and C = {l + 1, . . . , L}. (A.34)
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Appendix B

Tridiagonal matrices’ determinants

In this appendix we will develop analytical expressions for matrix’ determinants for arbitrary

size. Motivated by the structure of the ballistic/diffusive CM used in the main text, we will

consider only tridiagonal matrices with off-diagonal constant. We will denote them by DL,

with the sub-index L being the dimension of the matrix.

For instance, if L = 5, we have that

D5 =



a1 z 0 0 0

z a2 z 0 0

0 z a3 z 0

0 0 z a4 z

0 0 0 z a5


, (B.1)

where, for now ai are arbitrary and z a constant. We then can define a new matrix TL, with

diagonal elements bi =
ai

z
(i = 1, . . . , L), by placing the off-diagonal as a common factor,

DL = zTL. (B.2)
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Turning back to our example of L = 5 we have that,

T5 =



b1 1 0 0 0

1 b2 1 0 0

0 1 b3 1 0

0 0 1 b4 1

0 0 0 1 b5


where bi =

ai

z
. (B.3)

Furthermore, the following relation for the determinants holds,

|DL| = zL|TL|. (B.4)

Thus, the problem is reduced to find an expression for |TL|.

Let us consider now the Laplace expansion for a determinant,

fn = bn fn−1 − fn−2, (B.5)

where,

fn = |Tn|, f0 = 1 and f1 = b1 =
a1

z
. (B.6)

Thus, we propose to figure out the problem by solving the recurrence relation of Eq. (B.5),

considering two particular structures. The first is the Toeplitz one (diagonal constant) and the

second considering linear diagonal. Less than boundary terms (which we will later consider),

they represent the two regime ballistic and diffusive studied in main text.

B.1 Tridiagonal Toeplitz matrix

We consider here the tridiagonal matrix (as in Eq. (B.3)), but with constant diagonal, bi ≡ b.

Thus, the recurrence relation of Eq. (B.5) becomes,

fn = b fn−1 − fn−2. (B.7)
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This is now comparable with the recurrence relation for Chebyshev-U polynomials,

Un+1(x) = 2xUn(x) − Un−1(x), (B.8)

where,

U1(x) = 2x and U0(x) = 1. (B.9)

Then, the solution of Eq. (B.7) can be given in terms of the Chebyshev-U polynomials,

fL = UL(b/2). (B.10)

Fortunately, these polynomials have a closed formula,

fL ≡ |TL| =
sinh ((L + 1)θ)

sinh(θ)
, with θ = arcosh(b/2). (B.11)

If one is interested in the thermodynamic limit (large L), we can expand the hyperbolic sine as,

sinh((L + 1)θ) ≈
eLθ

2
, (B.12)

then, the determinant becomes

|TL| ≈
eLθ

2 sinh(θ)
. (B.13)

Furthermore, if TL is a CM and one is interested to calculate Rényi-2 entropy (Eq. (A.22)) in

the thermodynamic limit, a linear scaling is obtained1,

S 2(TL) = L ln(2) +
1
2

ln |TL| ≈

(
1
2

arcosh(b/2) + ln(2)
)

L. (B.14)

B.2 Linear diagonals

Let us now suppose that the diagonal ofDL is linear,

ai = α + βi, (B.15)
1Since we are considering large L we have neglected the term ln(2 sinh(θ)).
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where α and β are constants. Thus, the recurrence Eq. (B.5) becomes,

fn = (A + Bn) fn−1 − fn−2, (B.16)

where,

f1 = A + B, f0 = 1, A =
α

z
, B =

β

z
. (B.17)

Recurrence relations of this sort are related to Bessel functions. Indeed, one may verify that,

fL =
π

B
[
J1+L+A/B(2/B)YA/B(2/B) − JA/B(2/B)Y1+L+A/B(2/B)

]
, (B.18)

where Jn(x) and Yn(x) are the Bessel functions of first and second kind, respectively. In order to

simplify the notation, let us define the functional,

F(L, A, B) =
π

B
[
J1+L+A/B(2/B)YA/B(2/B) − JA/B(2/B)Y1+L+A/B(2/B)

]
. (B.19)

Thus, we have that

fL = |TL| = F(L, A, B) (B.20)

B.3 Dealing with boundary effects

Looking carefully to the diagonal of the CM in Eq. (A.25), we see that there is an extra term in

the elements C̃11 and C̃LL. Thus, to apply the results obtained in Eq. (B.11) and Eq. (B.20) to

the CM of the ballistic/diffusive model, we need to make some adjusts.

We may then rewrite the recurrence relation of Eq. (B.7) as the “bottom-up Laplace expan-

sion” and the “top-down Laplace expansion”2,

|T1,L| = bL|T1,L−1| − |T1,L−2|, (B.21)

|T1,L| = b1|T2,L| − |T3,L|. (B.22)

2We will use the notation fixed in the example of Eq. (A.29).
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Thus, using Eq. (B.21) and Eq. (B.22), we can find formulas for |Ti,L| and |T1, f | respectively,

|T1, f | = b1|T2, f | − |T3, f |, f , L, (B.23)

|Ti,L| = bL|Ti,L−1| − |Ti,L−2|, i , 1. (B.24)

Now the matrices T2, f , T3, f , Ti,L−1 and Ti,L−2 no longer have boundary terms and their determin-

ants can be expressed in terms of the Chebyshev-U polynomials (Eq. (B.11)) or Bessel functions

(Eq. (B.20)). Finally, combining Eq. (B.21) with Eq. (B.22), we obtain the solution for the role

matrix T1,L,

|T1,L| = b1bL|T2,L−1| − bL|T3,L−1| − b1|T2,L−2| + |T3,L−2|. (B.25)

It is also worth noting that

|Di, f | = z f−i+1|Ti, f |, i, f = 1, . . . , L. (B.26)

B.4 Connection with the ballistic and diffusive covariance mat-

rix

Although the model we have considered in chapter 3 can be switched from ballistic to diffusive

transport just by changing some parameters, we could have considered here only the solution

for linear diagonals (Eq. (B.20)) and deal with the ballistic regime as a particular case. How-

ever, because (we think) it is not trivial to obtain the Chebyshev-U polynomials from Bessel

functions, we have opted to deal with each case separately.

As we have seen in sections A.3 and A.4, the Rényi-2 entropy, the Mutual Information and

the Conditional Mutual Information are given in terms of determinants of C̃ (defined in Eqs.

(A.24), (A.25), and (3.10)). Thus, in the following two subsection we obtain these determinants

in terms of the Chebyshev-U polynomials or Bessel functions.

B.4.1 Ballistic transport

A ballistic transport can be obtained by throwing away the auxiliary self-consistent reservoirs,

that is, taking Γ → 0 - see section 3.4 - in the C̃ matrix. Thus, using the solution for Toepliz
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matrices (Eq. (B.11)) and Eqs.(B.23 - B.26), one may obtain the following results,

|C̃i, f | = x f−i+1U f−i+1(a/2x), 1 < i < f < L, (B.27)

|C̃1, f | = x f
[a1

x
U f−1(a/2x) − U f−2(a/2x)

]
, f < L, (B.28)

|C̃i,L| = xL−i+1
[aL

x
UL−i(a/2x) − UL−i−1(a/2x)

]
, i > 1, (B.29)

|C̃1,L| = xL
[a1aL

x2 UL−2(a/2x) −
a1 + aL

x
UL−2(a/2x) + UL−4(a/2x)

]
, (B.30)

where,

ak = C̃kk =
1
2

+
N1 + NL

2
+ (δ1,k − δL,k)

1
2
γ2(N1 − NL)

4λ2 + γ2 , k = 1, . . . , L., (B.31)

and x is given by Eq. (3.21).

B.4.2 Diffusive transport

Now, considering the general case (Γ , 0), we will use the solution of Eq. (B.20) for the

matrix determinant. However, it will be necessary to generalize it to calculate the determinant

of blocks, that is,

|Ti, f | = F( f − i + 1, Ai, B), 1 < i < f < L, (B.32)

where Ti, f is a matrix with dimension f − i + 1 and diagonals bn,

bn =
C̃n+i−1,n+i−1

x
= A + Bn, n = 1, . . . , f − i + 1, (B.33)

with x being given by Eq. (3.10). Therefore, using Eq. (A.25), we have that A is going to depend

of i,

Ai = λΓ(i − 1) +

(
1
2x

+
N1 + NL

2x
− λΓ(L + 1)

)
, B = λΓ. (B.34)

and x is given by Eq. (3.10).
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Thus, by Eqs. (B.23 - B.26) we obtain,

|C̃i, f | = x f−i+1F( f − i + 1, Ai, B), 1 < i < f < L, (B.35)

|C̃1, f | = x f

[
C̃1,1

x
F( f − 1, A2, B) − F( f − 2, A3, B)

]
, 1 < f < L, (B.36)

|C̃i,L| = xL−i+1
[
C̃LL

x
F(L − i, Ai, B) − F(L − i − 1, Ai, B)

]
, 1 < i < L, (B.37)

|C̃1,L| = xL

[
C̃11C̃LL

x2 F(L − 2, A2, B) −
C̃LL

x
F(L − 3, A3, B)

]
−

[
C̃11

x
F(L − 3, A2, B) − F(L − 4, A3, B)

]
. (B.38)

B.5 Entropy, Mutual Information and Conditional Mutual

Information

Finally, we can use Eqs. (B.27-B.30) and Eqs. (B.35-B.38) to write closed expressions for the

Rényi-2 entropy (Eq. (A.27)), the Mutual Information (Eq. (A.31)) and the Conditional Mutual

Information (Eq. (A.33)). The results are going to be shown in terms of the Chebyshev-U

polynomials or Bessel functions. Unfortunately, we could not express the results in terms of

trivial functions3, which motivate us to use the well known Von-Neumann entropy in the main

text.

3Maybe if one take L large it is possible to use some asymptotic expressions.
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