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Recently, there has been a surge of interest in using Rényi entropies as quantifiers of correlations in many-body
quantum systems. However, it is well known that in general these entropies do not satisfy the strong subadditivity
inequality, which is a central property ensuring the positivity of correlation measures. In fact, in many cases they
do not even satisfy the weaker condition of subadditivity. In the present paper we shed light on this subject
by providing a detailed survey of Rényi entropies for bosonic and fermionic Gaussian states. We show that for
bosons the Rényi entropies always satisfy subadditivity, but not necessarily strong subadditivity. Conversely,
for fermions both do not hold in general. We provide the precise intervals of the Rényi index α for which
subadditivity and strong subadditivity are valid in each case.
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I. INTRODUCTION

There is currently a large effort from the quantum physics
community to further our understanding of the typical corre-
lation patterns of many-body quantum states [1–7]. Examples
include the dynamics of quantum quenches [8–14], quantum
Markov chains [15–17], Bell nonlocality [18], among others.
Remarkably, correlation patterns are also starting to become
accessible to controlled quantum platforms. For instance,
the correlations in an eight-site Bose-Hubbard model have
been measured in [19], while in Ref. [20] the authors have
implemented a type of matrix product state tomography for
a trapped ion system. These efforts are helping to shed light
on the important question of typicality of many body states
[7,21–34], i.e., which are the typical sectors of the Hilbert
space that are usually occupied by systems with well defined
structures.

Central to this discussion, therefore, are the tools used to
quantify correlations. Quite often, these are based on entropic
quantities. In the simplest scenario, a system with density
matrix ρAB is divided into a bipartition AB. The amount of
information shared between the two parts is then characterized
by the mutual information (MI) defined as [35]

I (A :B) = S(ρA) + S(ρB) − S(ρAB) � 0, (1)

where S(ρ) = −tr(ρ ln ρ) is the von Neumann entropy of
ρ and ρA = trBρAB and ρB = trAρAB are the reduced density
matrices of A and B. The MI is always non-negative, a fact
known as the subadditivity (SA) of the von Neumann entropy.
Moreover, it is zero if and only if A and B are in a product
state, i.e., ρAB = ρA ⊗ ρB. This ensures that I (A :B) is a gen-
uine measure of correlations. When ρAB is a pure state we get
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S(ρAB) = 0 and S(ρA) = S(ρB). In this case the MI becomes
twice the entanglement entropy. Instead, for mixed states the
MI provides a measure of the total amount of correlations
(quantum and classical) between A and B.

In addition to subadditivity, the von Neumann entropy also
satisfies a more general inequality known as strong subaddi-
tivity (SSA) [35]. Namely, given a tripartite state ρABC , then

S(ρAB) + S(ρBC ) � S(ρABC ) + S(ρB). (2)

The proof of this inequality, which is rather easy in the
classical setting, turns out to be much more complicated
in the quantum scenario [36] (although for theories with a
holographic dual it is remarkably simple [37]). The SSA is
one of the most fundamental results in quantum information
theory, being the bedrock behind a large number of important
results, including quantification of multipartite correlations.
Indeed, from it one is naturally led to define a quantity called
the conditional mutual information (CMI) [15–17,38–40],

I (A :C|B) = S(ρAB) + S(ρBC ) − S(ρABC ) − S(ρB) � 0, (3)

which quantifies the amount of information shared between A
and C given knowledge of B.

Despite the enormous success of the von Neumann entropy,
in recent years there has been a surge of interest in alternative
entropic quantifiers, particularly those given by the so-called
Rényi entropies, defined as

Sα (ρ) = 1

1 − α
ln trρα, (4)

where α ∈ [0,∞) is a continuous parameter. The von Neu-
mann entropy is recovered for α = 1 (understood as the limit
α → 1) whereas for α = 2 one gets the log of the purity of the
state, S2(ρ) = − ln trρ2. The Rényi entropy satisfies several
properties expected from an entropic quantifier, such as non-
negativity (vanishing for pure states and positive otherwise)
and additivity under the tensor product. However, there are
other desired properties that they generally violate. The most
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important is precisely the SSA (2), which is not satisfied for
any α �= 1. In fact, as shown in Ref. [41], the Rényi entropies
of a fixed order α in general satisfy no linear inequalities
whatsoever (although a “weak subadditivity” relation mixing
Sα and S0 was proved in [42] for all α). As a result, if one
naïvely introduces the Rényi mutual information (RMI) and
Rényi conditional mutual information (RCMI) as in (1) and
(3), i.e.,

Iα (A :B) = Sα (ρA) + Sα (ρB) − Sα (ρAB), (5)

Iα (A :C|B) = Sα (ρAB) + Sα (ρBC ) − Sα (ρABC ) − Sα (ρB), (6)

these quantities are not ensured to be non-negative and there-
fore become meaningless as correlation measures (although
meaningful alternative Rényi generalizations of the mutual
information can still be defined [43]). Explicit violations of
SSA were illustrated, for instance, in Ref. [44] for two qubits
and in Ref. [45] in the quench dynamics of the transverse field
Ising model. In spite of this, the quantities above were recently
measured experimentally in Ref. [19].

However, quite surprisingly, Adesso et al. have recently
found a specific situation that offers a curious exception to the
problem mentioned above [46] (see also [47]). Namely, when
restricted to Gaussian states of a many-body bosonic system,
the SSA turns out to be true for α = 2. This result offered
an interesting alternative for quantifying correlations using I2

in bosonic Gaussian states, which are of central interest, for
instance, to quantum optics and continuous variable quantum
computation. It has since led to more theoretical developments
including results that have no counterpart for the von Neu-
mann entropy [48,49].

Apart from this success story of the Rényi-2 entropy for
bosonic Gaussian states, not much is known about the Rényi
entropies for Gaussian states in general. In particular, there is
no information theory for fermionic Gaussian states based on
Rényi entropies with α �= 1. It is worth stressing at this point
that Gaussian states, both bosonic and fermionic, are quite
prevalent in modern condensed-matter physics, appearing in
a multitude of paradigmatic models such as the transverse
field Ising model [50–53] and models for topological phases
[54–58]. For the transverse field Ising and similar models
mappable to free fermions, Gaussian states naturally arise as
steady states when the system is brought out of equilibrium
by a quantum quench, in accordance with the logic of the
generalized Gibbs ensemble, even when the initial state is not
Gaussian [53,59–62] (note the exception of massless relativis-
tic bosons [63]). Moreover, in a recent work, the dynamics of
the logarithmic negativity in such a quench scenario has been
related to the RMI with α = 1/2 [64]. A moment’s thought
reveals that Gaussian states are also at play behind the scenes
in certain mean-field approximations such as Hartree-Fock
and Bogoliubov theory. With the ubiquitousness of Gaussian
states and the continued progress in uncovering relations
between observables and entropic quantities [65,66] in mind,
we see that furthering our understanding of SA and SSA for
Rényi entropies of Gaussian states is both a natural and timely
question. This is precisely the goal of this work.

In this paper we set out to map the full range of values
α for which the SA and SSA conditions are satisfied in the

case of bosonic and fermionic Gaussian many-body states.
We begin by discussing the covariance matrix approach for
computing the Rényi entropies for Gaussian states of bosons
and fermions in Sec. II. We make an effort to emphasize as
much as possible the similarity between both cases. From our
development we then find the following results: for bosonic
Gaussian states we prove that SA is satisfied for all 0 � α <

∞, while for fermions this only holds true for the interval
0 � α � 2 and we explicitly give a procedure to construct
violations for α > 2 (Sec. III). Section IV is devoted to SSA,
where we rely on numerical evidence to conjecture that for
bosons SSA holds true in the domain 0 � α � 2 and we show
explicit violations for α > 2. For fermions, on the other hand,
we suggest that SSA holds for 0 � α � 1, although explicit
violations in this case are only found for α � 1.3. In Sec. V
we gather some concluding remarks.

II. RÉNYI ENTROPY FOR GAUSSIAN STATES

In this section we discuss how to compute Rényi entropies
for Gaussian states by considering first bosonic and then
fermionic states

A. Bosonic systems

We consider a system of N bosonic modes a1, . . . , aN

satisfying [ai, a†
j ] = δi j and [ai, a j] = 0. We then define the

quadrature operators

qi = 1√
2

(a†
i + ai ), pi = i√

2
(a†

i − ai ) (7)

and collect them in the vector X = (q1, p1, . . . , qN , pN ). The
canonical commutation relations in terms of X are then
written as

[XI , XJ ] = i �IJ , � = IN ⊗ (iσy), (8)

where I, J = 1, . . . , 2N and σy is the Pauli matrix. The an-
tisymmetric matrix � is the symplectic form of the bosonic
algebra [67,68].

Given a state ρ, we now define the 2N × 2N covariance
matrix (CM) associated to the operators X as [69,70]

�IJ = 〈{XI , XJ}〉, (9)

where {, } represents the anticommutator and, for simplicity,
we assume 〈XI〉 = 0 since local unitary transformations are
not expected to affect the entanglement properties of the state.
The algebra (8) imposes that any physically reasonable CM
must satisfy the following bona fide condition:

� − i � � 0, (10)

which can be viewed as the generalized Schrödinger-
Robertson uncertainty relation.

It is well known from Williamson’s theorem [67,68] that
any CMs may be diagonalized by a symplectic transformation
M (i.e., M�MT = �) so that (8) is preserved and

M�MT = diag(σ1, σ1, . . . , σL, σL ), (11)

where the σi � 1 are called the symplectic eigenvalues of �

and correspond to the N positive eigenvalues of i��. It is
important to stress that they are not the true eigenvalues of
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the CM (these are not preserved by M), even though their
product

∏N
i=1 σ 2

i = det(M�MT) = det(�) happens to be basis
independent. So far these facts hold for arbitrary density
matrices. If we now assume that the state is Gaussian, i.e.,
fully characterized by its CM, then the density matrix in
this diagonal basis may be written as a product of thermal
oscillators,

ρ =
N∏

i=1

Z−1
i e−(1/2)βi ( p̃2

i +q̃2
i ), (12)

where Z−1
i = (1 − e−βi ) is a normalization constant while q̃i

and p̃i are related to the original quadrature operators qi, pi by
means of X̃ = MX . Moreover, the local temperatures βi are
uniquely determined by the symplectic eigenvalues according
to

σi = coth

(
βi

2

)
. (13)

From Eq. (12) it is now straightforward to compute the
corresponding Rényi-α entropy (4), which becomes

Sα (ρ) = 1

α − 1

N∑
i=1

ln

[(
σi + 1

2

)α

−
(

σi − 1

2

)α]
. (14)

For future convenience, let us introduce the function

f +
α (x) =

(
x + 1

2

)α

−
(

x − 1

2

)α

(15)

and rewrite (14) as

Sα (ρ) = 1

α − 1

N∑
i=1

ln f +
α (σi ). (16)

From this one can already see that the case α = 2 is rather
special since f +

2 (x) = x, which allows expressing the Rényi
entropy as the log determinant of the CM, namely

S2(ρ) = 1
2 ln det(�). (17)

The Rényi entropies satisfy a monotonicity property Sα1 (ρ) �
Sα2 (ρ) if α1 � α2. It is therefore useful to study the limits
α → 0,∞. This gives rise to the max entropy

S0(ρ) = N ln 0+ +
N∑

i=1

ln βi, (18)

which diverges as N lnα for α → 0+. This is not surprising as
the max entropy is formally equivalent to the log of the rank
of ρ and we are working with the infinite dimensional Hilbert
space for bosons. However, in suitable linear combinations of
entropies such as for the (conditional) mutual information, the
divergences cancel and we get a meaningful, finite, limiting
result. For pure states βi → ∞ and S0(ρ) = 0. The min
entropy can be computed as

S∞(ρ) =
N∑

i=1

ln(1 + ni ) (19)

in terms of the occupation numbers of the normal modes ni =
(eβi − 1)−1 = (σi − 1)/2. We will see that this can be used to
bound the (conditional) mutual information.

B. Fermionic systems

We now parallel the development above for the case of
fermions. Consider a system of N fermionic operators ci

satisfying {ci, c†
j } = δi j and {ci, c j} = 0. We define the set of

Majorana operators analogously to Eq. (7), as

γ2i−1 = 1√
2

(ci + c†
i ) , γ2i = i√

2
(c†

i − ci ), (20)

which together form the analog of X and satisfy

{γI , γJ} = δIJ . (21)

The fermionic CM is then constructed similarly to Eq. (9) as

�IJ = i 〈[γI , γJ ]〉. (22)

Any valid fermionic covariance matrix must now satisfy the
bona fide relation [71]

i � − 1 � 0, (23)

which again parallels Eq. (10). This can be equivalently stated
as ��† � 1. The Gaussian state is pure iff �2 = −1.

The fermionic CM can always be put in block diagonal
form by an orthogonal transformation M (i.e., MMT = 1) that
preserves (21), namely

M�MT =
N⊕

i=1

(
0 −σi

σi 0

)
, (24)

where σi ∈ [−1, 1]. Each block is then trivially diagonalized
and the eigenvalues of � are simply ±iσi. Unlike in the
bosonic case (11), these are the true eigenvalues of �. This
means in particular that any matrix function f (�) is block-
diagonalized by the same M, having f (±iσi) as its eigenval-
ues. A Gaussian fermionic state may then be written as

ρ =
N∏

j=1

Z−1
j e−i β jγ2 j−1γ2 j , (25)

where Zi = 2 cosh βi and

σi = tanh

(
βi

2

)
, (26)

which is the analog of Eq. (13).
From this we once again can readily compute the Rényi

entropy, which reads

Sα (ρ) = 1

1 − α

N∑
i=1

ln

[(
1 + σi

2

)α

+
(

1 − σi

2

)α]
. (27)

By defining

f −
α (x) =

(
1 + x

2

)α

+
(

1 − x

2

)α

, (28)

we can write the Rényi entropy as

Sα (ρ) = 1

1 − α

N∑
i=1

ln f −
α (σi ). (29)

Together with Eq. (16) this gives a fully unified description
of Rényi entropies for both bosonic and fermionic modes.
However, an important difference with respect to bosons
comes from the fact that here ±iσi are the true eigenvalues
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of the CMs. Namely, using f −
α (x) = f −

α (−x) one can rewrite
(29) as a log determinant for any α,

Sα (ρ) = 1

2(1 − α)
ln det f −

α (i �). (30)

The case α = 2 once again allows a simple expression linear
in the CM even though f −

2 (x) = (1 + x2)/2 is not a linear
function. This is due to the peculiar structure of �, which im-
plies det(1 − �2) = [ det(1 + �)]2 and yields for the Rényi-2
entropy

S2(ρ) = N ln(2) − ln det(1 + �). (31)

For fermions the max entropy is simply

S0(ρ) = N ln 2 (32)

as expected from the finite dimension of the Hilbert space,
except for pure states for which we should put S0(ρ) = 0. The
min entropy can be expressed in exactly the same way as for
bosons:

S∞(ρ) =
N∑

i=1

ln(1 + ni ), (33)

in terms of the fermionic occupation numbers ni = (eβi +
1)−1 = (1 − σi )/2 of the normal modes.

III. SUBADDITIVITY

In this section we study the analog of the SA inequality
(1) for the Rényi-α entropies of Gaussian states, which is
equivalent to non-negativity of the Rényi mutual information
(5). We show that it holds for any α in the bosonic case, while
for fermions it holds in the window α ∈ [0, 2].

A. Bosons

Let us consider a bipartition A ∪ B of a N-boson system
in the Gaussian state ρAB. The corresponding CM can be
parametrized in the block form

�AB =
(

�A χAB

χT
AB �B

)
. (34)

The reduced states ρA, ρB are also Gaussian, being fully char-
acterized by the reduced CM’s �A, �B. We denote the set of
symplectic eigenvalues σ AB

i of the full system by {di} and col-
lect the symplectic eigenvalues σ A

i and σ B
i of the subsystems

into a single set of elements {ci}. Both sets are assumed to be
organized in nondecreasing order. Finding the necessary and
sufficient conditions under which the symplectic spectra {ci}
and {di} are mutually consistent defines the Gaussian version
of the so-called quantum marginal problem. These conditions
have been found in [72] and amount to the following chain of
inequalities:

k∑
j=1

c j �
k∑

j=1

d j, k = 1, . . . , N, (35a)

cn −
N−1∑
j=1

c j � dn −
N−1∑
j=1

d j . (35b)

With the conventions above, the Rényi mutual information
(5) associated to the Rényi entropies (16) can be written as

Iα (A : B) =
N∑

j=1

[
g+

α (c j ) − g+
α (d j )

]
, (36)

where g+
α (x) ≡ 1

1−α
ln f +

α (x). The non-negativity of Iα then
follows straightforwardly from the fact that, for any α � 0
(α �= 1), g+

α (x) is a positive, monotonically increasing, con-
cave function of x in the domain x � 1 (see the Appendix).
Namely,

Iα �
N∑

j=1

g+
α

′(c j )(c j − d j )

=
N−1∑
k=1

[g+
α

′(ck ) − g+
α

′(ck+1)]
k∑

j=1

(c j − d j ) + g+
α

′(cN )

×
N∑

j=1

(c j − d j ) � 0. (37)

where the inequality in the first line uses concavity of g+
α ,

the second line is a convenient rewriting using Abel’s partial
summation formula, and the last inequality holds since each
term in the previous expression is ensured to be non-negative
by (35a) together with monotonicity and concavity of g+

α . In
other words, (37) shows rather remarkably the subadditivity
of all the quantum Rényi entropies in the particular class
of Gaussian states. It is interesting to note that the second
constraint (35b) plays no role in the proof.

B. Fermions

Now consider a bipartite N-fermion Gaussian state ρAB

with associated fermionic CM:

�AB =
(

�A χAB

−χT
AB �B

)
. (38)

The positive eigenvalues i�AB by will be denoted by {yi},
and we combine the positive eigenvalues i�A, i�B into the
set {xi}. The ordering in the fermionic case is assumed to
be nonincreasing. The Sing-Thomson theorem [73–75] then
implies that

k∑
j=1

x j �
k∑

j=1

y j, k = 1, . . . , N, (39a)

N−1∑
j=1

x j − xN �
N−1∑
j=1

y j − yN . (39b)

Let us define g−
α (x) = (1 − α)−1ln f −

α (x). Then we can write

Iα (A :B) =
N∑

j=1

[g−
α (x j ) − g−

α (y j )]. (40)

The function g−
α is monotonically decreasing and concave for

the interval α ∈ [0, 2]. Hence, for these values of α we can
use the sequence of steps identical to Eq. (37) to prove SA for
fermionic Gaussian states and 0 � α � 2.
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For α > 2 we have checked numerically for two and three
modes that SA is violated. Indeed, for two modes it is straight-
forward to construct a prototypical violating CM in this range.
For instance,

�AB =

⎛
⎜⎝

0 −λ −ξ 0
λ 0 0 −ξ

ξ 0 0 −λ

0 ξ λ 0

⎞
⎟⎠ (41)

has σ± = |λ ± ξ | and satisfies the bona fide condition (23)
as long as |λ ± ξ | � 1 with |λ| � 1 (for simplicity one can
take both to be positive). Assuming small ξ (for illustration
purposes only—this is not needed) it follows that

Iα (A : B) = 2g−
α (λ) − g−

α (λ + ξ ) − g−
α (λ − ξ ) (42)

= −g−
α

′′(λ) ξ 2 + O(ξ 4), (43)

which for any α > 2 can be made to violate SA since in this
case it is always possible to find a λ for which g−

α
′′(λ) is

positive (recall that g−
α (x) is no longer concave on the domain

x ∈ [0, 1]). A simple calculation shows that this correlation
matrix �AB is realized by a thermal state of the Hamiltonian

H = (β+ + β−)[c†
1c1 + c†

2c2] + i(β+ − β−)[c†
1c2 − c†

2c1],
(44)

where β± = 2 arctan σ± and the temperature defines the unit
of energy. In other words, the state ρ ∼ e−H with the Hamil-
tonian above leads precisely to the SA-violating CM (41).

IV. STRONG SUBADDITIVITY

In this section we take a step further over Sec. III and
present a complete survey of the regimes of validity of SSA
inequality (2) for the Rényi-α entropies of Gaussian states.
That is, we map the full range of values of α for which
the Rényi conditional mutual information (6) is ensured to
be non-negative (SSA satisfied) and those where it is not
(SSA violated). This is done both for bosons and fermions
by numerically generating a large number of bona fide CMs
and using them to find explicit violations of SSA for some
α. For bosons, we find strong evidence that SSA holds for all
α ∈ [0, 2] while in the fermionic case we find no violations in
the interval α ∈ [0, αmax] with αmax ≈ 1.3.

A. Bosons

Consider a tripartite system in the state ρABC and let us
parametrize its CM in block form as

�ABC =

⎛
⎜⎝

�A χAB χAC

χT
AB �B χBC

χT
AC χT

BC �C

⎞
⎟⎠. (45)

Since the reduced density matrix is still Gaussian, the cor-
responding covariance matrix may be simply obtained by
discarding the blocks one is tracing over. For instance, the CM
�AB associated with ρAB = TrC ρABC will be the one in (34).

Here we focus only on the cases where the full state ρABC

is mixed, since for pure states the SSA follows from SA using
the property that S(ρA) = S(ρĀ) for any subsystem A and its
complement Ā [35].

0 1 2 3 4 5 6

− 0.12

− 0.10

− 0.08

− 0.06

− 0.04

− 0.02

0.00

m
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(
(A

:C
|B

),
0

)

FIG. 1. Violation of strong subadditivity (SSA) of bosonic Rényi
entropies for three-mode Gaussian states. The plots were created
by randomly generating ∼200k bona fide correlation matrices and
computing for different α the Rényi conditional mutual information
Iα (A :C|B), where A, B, and C correspond to three single-mode
subsystems.

We start by reviewing the special case of α = 2 studied
in [46], the only one (apart from the trivial von Neumann case
α = 1) for which SSA is known to be satisfied. From (17) it
is straightforward to write the corresponding RCMI (6) as

I2(A :C|B) = 1

2
ln

det(�AB) det(�BC )

det(�ABC ) det(�B)
� 0. (46)

The non-negativity follows immediately from the Hadamard-
Fischer determinant inequality relating the minors of the
symmetric positive-semidefinite matrix �ABC .

For α �= 2 we need to deal with the generic expression (14)
involving particular functions of the symplectic eigenvalues.
This is rather nontrivial since the only known inequalities
relating the symplectic eigenvalues of the CM and those of
its reduced CMs are the ones in (35). We do this numerically
by generating a huge number of bona fide CMs of three- and
four-mode Gaussian states and use them to scan for violations
of SSA by computing the RCMI (6) for different values of
the index α. Figure 1 shows a scatter plot of the result. It
provides clear evidence that SSA is violated for all α > 2,
while no violation is found for 0 � α � 2. We conjecture that
this result holds true in general. Less extensive searches for
SSA violations by bona fide CMs with up to six modes have
not given any reason to believe that violations will be found
for higher numbers of modes, but we presently do not have a
proof. We hope to come back to this in future work.

Let us conclude this subsection with the statement that if
I∞(A :B|C) < 0, we find that Iα (A :B|C) < 0 for all α > α∗
with

α∗ = 1 + S∞(ρAB) + S∞(ρBC )

|I∞(A :B|C)| . (47)

Hence a SSA violation for S∞(ρ) implies SSA violation for
any finite α.1

1Using the bound [(σ + 1)/2]α−1 � f −
α (σ ) � [(σ + 1)/2]α we

can bound the RCMI as S∞(ρAB) � (α − 1)[Iα (A :B|C) − I∞(A :
B|C)] � S∞(ρAB) + S∞(ρBC ) from which the result follows.
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FIG. 2. Violation of strong subadditivity (SSA) of fermions for
three-mode Gaussian states. The plots were created by randomly
generating ∼300k bona fide correlation matrices and computing for
different α the Rényi conditional mutual information Iα (A :C|B) for
single-mode subsystems A, B, and C.

B. Fermions

The story for fermions is quite similar to that of bosons.
We consider a tripartite system in a state given by the block-
diagonal CM,

�ABC =

⎛
⎜⎝

�A χAB χAC

−χT
AB �B χBC

−χT
AC −χT

BC �C

⎞
⎟⎠, (48)

and its corresponding reductions to subsystems AB, BC, A,C.
Once more we can restrict attention only to mixed states.

Even though here all the Rényi entropies can be written in
the determinant form (30), no claim can be made based on the
Hadamard-Fisher determinant inequality since the fermionic
CM is not positive semidefinite. In particular, unlike the case
of bosons, not even the second Rényi entropy is guaranteed to
be strongly subadditive.

One again has to resort to numerics and deal with the
generic expression (16). We generate a large number of
random bona fide CMs of three- and four-mode states and
compute (6) looking for SSA violations as the Rényi index α

is varied. The results appear in Fig. 2. We find no violations of
SSA in the region α ∈ [0, αmax] with αmax ≈ 1.3, while many
violating counterexamples are found beyond this window.
The limiting value αmax above which violations occur is a
bit surprising. The most reasonable possibility is that the
limiting value is actually α = 1, but violations for 1 < α <

αmax are either very hard to find by random sampling or only
possible for larger numbers of modes. We generated similarly
exhaustive numbers of bona fide CMs with up to 12 modes for
fermions, in an attempt to find such violations with α < αmax,
but without result. Again, we lack a formal proof for SSA to
hold for α ∈ [0, 1], but we conjecture it to be true.

V. FINAL REMARKS

We have studied the Rényi entropies of bosonic and
fermionic Gaussian states using the covariance matrix

approach. A special effort has been made to clarify as much
as possible the technical similarities between the bosonic and
fermionic calculations. As our main result, we have obtained
a complete map of the regimes of validity of the strong
subaddivity (SSA) and subadditivity (SA) inequalities as a
function of the Rényi index α. We prove that SA holds for all
α � 0 in the case of bosons and for α ∈ [0, 2] in the case of
fermions. The proofs rely only on concavity properties of the
entropy functions together with a set of inequalities relating
the (symplectic) eigenvalues of the full correlation matrix �AB

and those of its bipartitions �A,B. The situation becomes more
complicated for the SSA, for which it was necessary to resort
to numerics. We provided strong numerical evidence that SSA
is satisfied for α ∈ [0, 2] and violated for α > 2 in the case of
bosons, while for fermions we conjecture α ∈ [0, 1] to be free
of violations even though explicit violations are only found
for α � αmax ≈ 1.3.

Our calculations for the SA for fermions put on firmer
grounds the results reported in [45], where it was shown that
for temperature-driven quenches in the Ising model the Rényi
mutual information in the resulting nonequilibrium steady
state can become negative for α > 2 while it is definitely
positive for α < 2. It also sheds light on the recent results
of [64], which showed that at late times after a quench in
integrable theories the logarithmic negativity becomes propor-
tional to the Rényi mutual information with α = 1

2 . Our results
guarantee that this object is always non-negative for both free
bosons and free fermions, which strengthen the case for it as
a good entanglement quantifier.

As discussed in the Introduction, our main goal with
these results was to clarify the possible ranges of validity in
which Rényi-based correlation quantifiers can be employed.
This is particularly important in light of the fact that some
Rényi entropies (particularly the Rényi-2) naturally appear in
analytical, numerical, and even experimental approaches. For
instance, in Ref. [19] the authors experimentally implemented
a method to measure the Rényi-2 entropy in a bosonic system,
from which they construct the corresponding Rényi-2 mutual
information. Their system, however, is generally in non-
Gaussian states so that the positivity of the Rényi-2 mutual
information is not guaranteed.

Notwithstanding, it is our hope that by continuing with this
approach one may be able to map out these ranges of validity
for different classes of states. For instance, a natural candidate
would be tensor networks with well defined structures, such
as matrix product states.

An obvious continuation of this work is to prove the
conjectured domains of validity of the SSA for the Rényi-
α entropies. The proof is likely to involve tools other than
the ones appearing in the SA proof (in particular, a α-
dependent property of the entropy functions g±

α that restricts
the proof to the range α ∈ [0, 2] for bosons and α ∈ [0, 1]
for fermions). One can also use inspiration from standard
operator-based approaches to similar proofs (as opposed to
the present one based on eigenvalues), such as the one
used in [47,76] or the Schur complement techniques intro-
duced in [48,49]. We hope to report on this in the near
future.
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APPENDIX: CONCAVITY PROPERTIES
OF THE FUNCTIONS g±

α

This Appendix is devoted to study the concavity properties
of the entropy functions

g±
α (x) = ±1

α − 1
ln f ±

α (x),

f ±
α (x) = [x + 1]α

2α
∓ [±(x − 1)]α

2α
, (A1)

where upper signs correspond to bosons and lower signs to
fermions. It will be convenient to introduce the shorthand no-
tation x1 = x + 1 and x2 = ±(x − 1) so that both cases can be
treated in a unified way as f ±

α (x) = 2−α (xα
1 ∓ xα

2 ). Recall that
in the bosonic case the domain is x � 1, meaning that x1 � 2
and x2 � 0; for fermions, on the other hand, the domain is
x ∈ [−1, 1] but since the function is even one can focus only
on the subdomain x ∈ [0, 1] so that x1 ∈ [1, 2], x2 ∈ [0, 1]. It

is then straightforward to write the second derivative of g±
α as

∂2
x g±

α (x) = ±1

α − 1

f ±
α ∂2

x f ±
α − (∂x f ±

α )2

( f ±
α )2

= α(x1x2)α−1

(α − 1)( f ±
α )2

[∓(yα−1 + y1−α )

+ (1 − α)(y + y−1) ± 2α], (A2)

where we introduced y = x1
x2

� 1. In other to prove concavity
of g±

α , we have to show that ∂2
x g±

α � 0 for every x in the
domain.

We focus first on bosons. Since the prefactor in (A2)
is negative for 0 � α < 1 and positive for α > 1, the task
becomes to show that the term in the square brackets is non-
negative in the former case and nonpositive in the latter. Both
results follow trivially from the Bernoulli inequalities yμ �
(1 − μ) + μy (for y > 0 and 0 � μ � 1) and yμ � (1 − μ) +
μy (for y > 0 and μ � 1 or μ � 0) with μ = α. This proves
that g+

α (x) is concave for all α � 0.
Now we move to fermions. For 0 � α < 1, the concavity

of g−
α is a direct consequence of the concavity of f −

α (i.e., it
is preserved by the log), namely the fact that ∂2

x f −
α = α(α −

1) f −
α−2 � 0. For α > 1, we first notice that the prefactor in

(A2) is positive and hence what remains is to show that the
term inside the square brackets is nonpositive. Clearly this is
not going to happen for all α since the positive y-dependent
piece can easily overcome the negative contributions for large
enough α. The limiting value for which this is avoided turns
out to be α = 2. Indeed, the nonpositivity of the square
brackets for α ∈ [1, 2] follows straightforwardly from the first
Bernoulli inequality above with μ = α − 1. In other words,
g−

α (x) is concave for 0 � α � 2.
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