
Journal of Physics A: Mathematical and Theoretical

PAPER

Analysis of the conditional mutual information in ballistic and diffusive
non-equilibrium steady-states
To cite this article: William T B Malouf et al 2020 J. Phys. A: Math. Theor. 53 305302

 

View the article online for updates and enhancements.

This content was downloaded from IP address 200.144.63.84 on 16/07/2020 at 18:09

https://doi.org/10.1088/1751-8121/ab93fd
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsu2kgkz_5-de_c6iwBlLqX1Yrz4fS6gdZ44akNPjExiAsB-yzR0lvbXRw6NY8Opjb9HTxXgUrmelHI5PYTOrk7nR-NXQYjKpEe1DBAhRlNUMmzsSc1oua-WTn3m_wp-GICw9LMgguUCbRDE96Vdhhx7LM40V1DMG569gLNBnSuU6lBA1UFvQ-_FNr2vCEjfMBQ9g68hk3aLA5J8DgbumS6gtLSeuFWcDF-tSmQbZQEKlSD4t7mB&sig=Cg0ArKJSzNMr_9iuMag8&adurl=http://iopscience.org/books


Journal of Physics A: Mathematical and Theoretical

J. Phys. A: Math. Theor. 53 (2020) 305302 (16pp) https://doi.org/10.1088/1751-8121/ab93fd

Analysis of the conditional mutual
information in ballistic and diffusive
non-equilibrium steady-states

William T B Malouf1,2, John Goold3, Gerardo Adesso2 and
Gabriel T Landi1,4

1 Instituto de Física da Universidade de São Paulo, 05314-970 São Paulo, Brazil
2 School of Mathematical Sciences, University of Nottingham, University Park,
Nottingham NG7 2RD, United Kingdom
3 School of Physics, Trinity College Dublin, Dublin 2, Ireland

E-mail: gtlandi@if.usp.br

Received 19 June 2019, revised 23 March 2020
Accepted for publication 18 May 2020
Published 3 July 2020

Abstract
The conditional mutual information (CMI) I(A : C|B) quantifies the amount of
correlations shared between A and C given B. It therefore functions as a more
general quantifier of bipartite correlations in multipartite scenarios, playing an
important role in the theory of quantum Markov chains. In this paper we carry
out a detailed study on the behavior of the CMI in non-equilibrium steady-states
(NESS) of a quantum chain placed between two baths at different temperatures.
These results are used to shed light on the mechanisms behind ballistic and
diffusive transport regimes and how they affect correlations between different
parts of a chain. We carry our study for the specific case of a 1D bosonic chain
subject to local Lindblad dissipators at the boundaries. In addition, the chain is
also subject to self-consistent reservoirs at each site, which are used to tune the
transport between ballistic and diffusive. As a result, we find that the CMI is
independent of the chain size L in the ballistic regime, but decays algebraically
with L in the diffusive case. Finally, we also show how this scaling can be used
to discuss the notion of local thermalization in non-equilibrium steady-states.
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1. Introduction

When a system is coupled to two reservoirs kept at different temperatures, it eventually reaches
a non-equilibrium steady-state (NESS), characterized by the existence of a heat current flowing
from the hot to the cold bath. Substantial effort has been dedicated over the past decades in
furthering our general understanding of NESSs. For instance, important insights have been
gained on the microscopic mechanisms responsible for the emergence of Fourier’s law [1–13],
the development of steady-state fluctuation theorems [14–18] and the description of NESSs
supporting the transport of more general types of excitations, such as magnetization currents
[9–11, 19–24] and even radiation squeezing [25, 26].

Informational aspects, however, have been much less explored. Excitations traveling
through a chain also carry information [27, 28], so that currents ultimately change the way
different parts of a chain become correlated. A thorough understanding of how correlations
between different part of the system behave in the NESS could provide valuable information
on the multipartite structure of non-equilibrium states. Studies on this topic, however, are still
scarce [29–33], despite already being within reach of platforms such as ultra-cold atoms [34],
trapped ions [35] and opto-mechanical systems [25, 36].

One of the key questions in studies of the NESS, is what are the ingredients required to
produce different kinds of transport regimes. Integrable systems usually tend to NESSs with a
ballistic heat flow, where the heat current J is independent of the system size L. Non-integrable
systems, on the other hand, tend in general to have currents scaling as J ∼ 1/Lα, where α is
an exponent that has the value α = 1 in the diffusive case [37, 38]. It is then natural to enquire
how the correlations between parts of a chain behave in different transport regimes.

Correlations between distant parts of a chain can be neatly quantified using the condi-
tional mutual information (CMI) I(A : C|B), which measures the amount of information shared
between A and C given B [39–43]. This type of quantifier is relevant when one is interested
in understanding the correlations between distant parts of the chain and how these are affected
by a partition in the middle. In this paper we carry out a detailed study on the behavior of the
CMI in the NESS of a one-dimensional bosonic chain subject to local Lindblad baths at the
boundaries [8–11, 13, 44] (figure 1(a)). In order to introduce diffusiveness, we also add a set
of self-consistent reservoirs [2] that function as an additional noise source (figure 1(b)).

Central to our approach is the fact that self-consistent reservoirs preserve Gaussianity and
therefore allow us to use tools from Gaussian quantum information [45–47]. This allow us
to study chains with arbitrary size and therefore find, in detail, how the CMI scales with all
parameters in the system. As an application, we connect our results with a recent theorem
by Kato and Brandão on [41] the thermalization of approximate quantum Markov chains. We
show that, from knowledge of the CMI, one can show that diffusive chains tend to be locally
thermal, whereas the same cannot be said for the ballistic case.

This paper is divided as follows. In section 2 we introduce the CMI, discuss its basic features
and argue why it is a relevant quantifier for the case of NESSs. In section 3 we then introduce
the main model we are going to study, as well as the solution for the NESS. The results are
then presented in section 4 and the conclusions in section 5. We also include several appendices
discussing solution methods and other technical aspects.

2. Conditional mutual information

Consider a quantum chain with L sites and prepared in a certain state ρS , where
S = {1, . . . , L} denotes the corresponding set of sites. The reduced density matrix of a given
subset A ⊂ S is defined as ρA = trS/AρS, where S/A stands for the partial trace over all sites
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Figure 1. (a) A boundary-driven one-dimensional quantum chain subject to two baths at
each end. (b) By including additional noise sources within the chain, here implemented
using the idea of self-consistent reservoirs, it is possible to tune the flow from ballistic
to diffusive.

that are not in the set A. The total amount of information shared between two disconnected
subsets A and B of S, can be quantified by the mutual information (MI) [48]

I(A:B) = S(ρA) + S(ρB) − S(ρAB) � 0, (1)

where S(ρ) = −tr(ρ ln ρ) is the von Neumann entropy. This quantity measures the amount
of information (quantum and classical) contained in the global state ρAB, but absent in the
marginalized state ρA ⊗ ρB. If ρAB is a pure state (which is seldom the case for NESSs), this
reduces to twice the entanglement entropy.

The MI can also be extended to the multipartite scenario. For instance, the quantity

I(A:B:C) = S(ρA) + S(ρB) + S(ρB) − S(ρABC) � 0, (2)

measures the total amount of information that is contained in ρABC, but which is absent in the
marginalized state ρA ⊗ ρB ⊗ ρC. Carrying this logic all the way toward a single site, one finds
the so-called total correlations (TC) [49]

T =

L∑
i=1

S(ρi) − S(ρS) � 0, (3)

where ρi is the reduced density matrix of site i. This quantity is useful in understanding cor-
relations from a global perspective, without reference to the geometry of the lattice or any
partitioning.

When the chain S is split into a bipartition of the form A = {1, . . . , k} and B = {k +
1, . . . , L}, the MI (1) will fully capture the information shared between A and B. However,
when one wishes to study disconnected bipartitions, a subtlety arises. Consider for instance a
tripartition ABC, where A = {1, . . . , k}, B = {k + 1, . . . , k + b} and C = {k + b + 1, . . . , L}.
While the correlations between A and C can also be quantified by the MI (1), this information
will in general depend on the amount of knowledge one has about B. This is a consequence
of the fact that part of the correlations between A and C could be solely due to the lack of
information about B that both share. To account for this one introduces the conditional mutual
information (CMI) [50, 51]

I(A:C|B) = S(ρAB) + S(ρBC) − S(ρABC) − S(ρB) � 0. (4)
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Figure 2. The chain rule (5) connecting the MI (1) and the CMI (4).

It quantifies the amount of correlations shared between A and C, given B. Knowledge on how
I(A:C|B) depends on the size b = |B| of the middle partition will therefore provide information
on how B degrades the correlations between A and C. We also mention in passing that the non-
negativity of the CMI is a consequence of the famous strong sub-additivity inequality [52],
which is perhaps the most important property of the von Neumann entropy.

The connection between the CMI (4) and the MI (1) can be established by means of the
so-called chain rule [51] (see figure 2):

I(A:C|B) = I(AB:C) − I(B:C). (5)

This formula clarifies the meaning of the CMI as representing the information shared between
AB and C, subtracted from that part which refers to correlations that already exist between B
and C. Of course, an equivalent formula also holds with a partition the other way around.

We now move on to study these concepts within the specific context of an exactly soluble
model for an NESS, which will allow us to study the MI and CMI for arbitrary chain sizes.

3. Boundary-driven bosonic chain under self-consistent reservoirs

3.1. The model

We consider a system with L bosonic modes ai, with the same frequency ω and interacting
according to the Hamiltonian

H = ω

L∑
i=1

a†
i ai + iλ

L−1∑
i=1

(a†
i ai+1 − aia

†
i+1), (6)

where λ is a constant and the phase was chosen merely for simplicity. In addition, the system
is also subject to two reservoirs at each end, which we choose to model by the Lindblad master
equation

dρ
dt

= −i[H, ρ] + D1(ρ) + DL(ρ), (7)

where the Di are taken to be local Lindblad dissipators of the form

Di(ρ) = (Ni + 1)D[ai] + NiD[a†
i ], (8)
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where D[L] = LρL† − 1
2{L†L, ρ} and Ni is the local Bose–Einstein thermal distribution. Fur-

ther details about this model, including some tools from Gaussian open quantum systems, are
discussed in appendices A and B.

The NESS of equation (7) can be found analytically and is known to present a ballistic heat
flow [1, 8, 9, 53]. Diffusive transport in general requires anharmonic interactions, which can
seldom be treated analytically. Instead, a customary approach to induce diffusivity is to add
additional energy-conserving noise sources within the chain [2, 8, 12, 13, 54–56]. The typ-
ical dephasing noise used for this purpose, however, does not preserve Gaussianity. This, as
discussed below, is essential in order to compute entropic quantities. Instead, we approach the
problem here using the concept of self-consistent reservoirs [2] (called Büttiker probes in the
quantum transport community). For a comparison with other dephasing noises, see appendix
C). The idea consists in adding L additional thermal reservoirs D̃i(ρ), one at each site, of the
same form as equation (8), but with temperatures chosen so as to match the local occupa-
tion number in the NESS, Ñi = 〈a†

i ai〉 (figure 1(b)). This ensures that no current flows to the
auxiliary reservoirs, but only to the physical baths at the end-points.

Thus, instead of equation (7), we consider the NESS produced by the master equation,

dρ
dt

= −i[H, ρ] + γD1(ρ) + γDL(ρ) + Γ

L∑
i=1

D̃i(ρ). (9)

Here γ is the coupling to the physical baths, whereas Γ is the coupling to the self-consistent
(auxiliary) baths. Hence Γ can also be interpreted as an additional noise source responsible for
changing the flow from ballistic to diffusive. The NESS of this model can be computed using
a variation of the method used in references [8–11, 13]. We shall leave the specific details to
appendix C and focus here only on the main results. In appendix D we also show that it is
straightforward to modify this model to introduce squeezing in the reservoirs, which can be
used as a tool for introducing quantum features in the NESS.

3.2. Properties of the NESS

The occupation numbers in the NESS, for the inner sites i = 2, . . . , L − 1, reads

〈a†
i ai〉 =

N1 + NL

2
+

1
2

γ(N1 − NL)
4λ2 + γ2 + γΓ(L − 1)

Γ(L − 2i + 1)

+
1
2

γ2(N1 − NL)
4λ2 + γ2 + γΓ(L − 1)

(δi,1 − δi,L). (10)

For Γ ≡ 0, we obtain a flat profile typical of a ballistic behavior,

〈a†
i ai〉 =

N1 + NL

2
+

1
2
γ2(N1 − NL)

4λ2 + γ2
(δi,1 − δi,L). (11)

This is illustrated in figure 3(a) for different values of λ. Conversely, for any Γ �= 0 and
L sufficiently large, the profile approaches a linear interpolation between the bath-induced
occupations N1 and NL,

〈a†
i ai〉 	

(L − i)N1 + (i − 1)NL

L − 1
+

γ

2Γ
(N1 − NL)

L − 1
(δi,1 − δi,L). (12)

This is shown in figure 3(b) for different values ofΓ. It essentially interpolates linearly between
N1 and NL, except for small end-point corrections.
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Figure 3. Occupation profile 〈a†i ai〉 as a function of the site number i. (a) Ballistic case
(Γ = 0) for different values of λ. (b) Diffusive case, with λ = 1 and different values of
Γ. Other parameters are L = 10, γ = 1, N1 = 2 and NL = 1.

The only non-zero correlation in the system is between nearest-neighbors and reads

〈a†
i ai+1〉 =

γλ

4λ2 + γ2 + γΓ(L − 1)
(NL − N1). (13)

This correlator determines the particle current [8, 9]

J = λ〈a†
i ai+1 + a†

i+1ai〉 =
2γλ2

4λ2 + γ2 + γΓ(L − 1)
(NL − N1). (14)

Thus, we see that if Γ ≡ 0 we get a ballistic current,

J =
2γλ2

4λ2 + γ2
(NL − N1), (15)

which is independent of L. Conversely, for any Γ �= 0, in the limit of large L we get a diffusive
behavior

J 	 2λ2

Γ

(NL − N1)
L

∼ 1
L
. (16)

A scaling of this form, with J inversely proportional to L, is the hallmark of Fourier’s law.

3.3. Calculation of the von Neumann entropy

Due to the Gaussianity of the model, the state of the system is fully determined by the covari-
ance matrix (CM). This will provide us with a simple method to compute the von Neumann
entropies in terms only of symplectic eigenvalues [45, 47, 57]. The CM of L modes is defined
as the 2L × 2L matrix

Θi, j =
1
2
〈{Xi, X†

j}〉, (17)

where X = (a1, a†
1, . . . , aL, a†

L) and we have assumed the first moments are zero for sim-
plicity. CMs are usually written in terms of quadrature operators [46, 47]. The structure in
equation (17), however, turns out to be quite convenient for the problem at hand since it allows
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Figure 4. (a) Log–log plot of the mutual information (MI) I(A : B) (equation (1))
between two halves of the chain as a function of L, for different values of the self-
consistent noise Γ. (b) Same but for the total correlations T (equation (3)). The curve for
Γ = 1 was multiplied by 10−3 to improve visibility. In all curves we set N1 = 2, NL = 1
and γ = λ = 1.

us to readily separate the CM in terms of two components,

Ci, j = 〈a†
jai〉, (18)

Bi, j = 〈aia j〉, (19)

which are both L × L. The relation between Θ and C, B can then be written rather elegantly as

Θ =
I2L

2
+ C ⊗ (σ+σ−) + CT ⊗ (σ−σ+) + B ⊗ σ+ + B∗ ⊗ σ−, (20)

whereσi are the usual Pauli matrices. In the NESS of equation (9), the matrix B is zero, whereas
C is tridiagonal, with entries given by equations (10) and (13).

The von Neumann entropy for a Gaussian state can be directly computed from the
symplectic eigenvalues of Θ, which are defined as

{νk} = eigs+(2ΣΘ), (21)

where Σ = IL ⊗ σz is the symplectic form related to our choice of structure for Θ. Here, eigs+
means selecting only the positive eigenvalues. The von Neumann entropy is then given by
[45, 47]

S(ρ) =
L∑

k=1

{
νk + 1

2
ln

(
νk + 1

2

)
− (νk − 1)

2
ln

(
νk − 1

2

)}
. (22)

The same approach is used for considering any reduced density matrices, which is also conve-
nient since the reduced density matrix of a Gaussian state is also Gaussian and therefore has a
CM which is simply obtained by dropping from Θ the elements one wishes to trace over.

4. Results

4.1. Mutual information and total correlations

We begin our analysis by computing the mutual information I(A : B) [equation (1)] for a sym-
metric bipartition at L/2. The results as a function of L, for different values of Γ, are shown
in figure 4(a). As can be seen, I(A : B) is independent of L in the ballistic case (Γ = 0), but

7
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Figure 5. Conditional mutual information (CMI) I(A : C|B) (equation (4)) for a sym-
metric tripartition with the middle block having size b = |B|. (a) Log of the CMI as a
function of b, for both the ballistic case (Γ = 0, solid lines) and diffusive case (Γ = 0.1,
dashed lines), with different values of N1 and fixed L = 40 and NL = 1. In both cases
the CMI behaves as I(A : C|B) ∼ 1/Rb, where R > 1 is a constant that depends on the
temperature gradient. (b) Log–log plot of the CMI as a function of L for b = 1. If Γ = 0
then I(A : C|B) is independent of L, whereas for Γ �= 0 we get I(A : C|B) ∼ 1/L4. (c)
Log–log plot of the CMI vs. L for different values of b with N1 = 15, NL = 1 and
Γ = 0.1. For large L the CMI scales as I(A : C|B) ∼ 1/L2b+2. (d) Finite size scaling,
equation (23), for two different values of N1, with NL = 1 and multiple values of Γ, L
and b. In all curves we set γ = λ = 1.

scales as I(A : B) ∼ 1/L2 in the diffusive case. In figure 4(b) we present for comparison the
total correlations [equation (3)]. For ballistic transport the TC is an extensive quantity, scaling
as T ∼ L. Conversely, for diffusive transport we find T ∼ 1/L. This decay of the amount of
correlations as one approaches the thermodynamic limit was also found in reference [58] for
two-particle entanglement.

4.2. Conditional mutual information

Next we turn to the CMI, which is summarized in figure 5. We focus on symmetric tripartitions
ABC with b = |B| sites in the middle. As illustrated in figure 5(a), we find that in both regimes
the CMI decays exponentially with b, as I(A : C|B) = 1/Rb, where R is a constant that depends
non-trivially on all parameters of the model. The dependence of the CMI on L is shown in
figure 5(b) for b = 1 and in figure 5(c) for multiple values of b. We find that for ballistic
transport the CMI is independent of L, whereas for diffusive transport it scales as I(A : C|B) ∼
1/L2b+2.

From these numerical simulations we therefore propose the following scaling law for the
CMI:

I(A : C|B) =
u

(v + ΓL)2b+2
, (23)

8
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where u and v are constants. The behavior also holds for b = 0, in which case one recovers the
MI in equation (1). The appearance of L in the diffusive case has a dramatic consequence, as it
implies that the correlations between even neighboring pats tends to zero in the thermodynamic
limit when diffusivity is present. To confirm this scaling law behavior we present in figure 5(d)
plots of I−1/(2b+2) vs ΓL for different values of Γ, L and b. According to equation (23), this
should lead to a fully collapsed straight line, which is precisely what is observed.

Equation (23) provides a full characterization of the information sharing for the bosonic
model (9). It shows that the information sharing is exponentially suppressed by the size b of
the middle partition, for both ballistic and diffusive cases. However, in the diffusive case, this
suppression is greatly enhanced by a factor depending on the size L of the chain. Unfortu-
nately, it is not possible to state whether such a scaling behavior is universal. It will quite
likely be true for fermionic chains, in view of their similarity with the present model (see ref-
erence [58]). There are rare situations, however, which could serve as counterexamples. One,
for instance, is the spin helix model studied in reference [59], where in certain cases the NESS
may be in a product state, despite having a non-zero current. Another example is the Fibonacci
quasi-periodic model [60], which is a fully non-interacting free-fermion or free-boson model
which, nonetheless, can present any kind of transport (from ballistic, to super-diffusive, dif-
fusive and sub-diffusive) depending on the disorder strength. These examples point to the
fact that diffusive transport can be obtained from entirely different steady-states. The struc-
ture of the CMI found here should therefore not be expected to be universal. In addition, one
also has to deal with the issue that in general, the NESS of many-body boundary-driven sys-
tems having diffusive transport is unknown, as there are no exactly soluble models and only
a handful can be treated using tensor-network or related numerical methods. Notwithstanding
these drawbacks, however, we still feel that the results reported in this paper are meaningful,
as the characterization of specific models is the first step toward a more general theoretical
framework.

4.3. Local equilibration

As first put forth in reference [30], the behavior of the CMI can also shed light on questions
concerning the Hilbert space tensor structure of the NESS and local equilibration. Motivated
by this, we now show that the scaling rule (23) for the ballistic and diffusive scenarios can
give precise information about how close the NESS is from local equilibrium. To accomplish
this, we make use of a recently proved theorem by Kato and Brandão [41]. Let Ik denote the
CMI with a tripartition at position k and only 1 site in the middle. The authors have shown
that if Ik < ε for all k, then there exists a local Hamiltonian H =

∑
ihi,i+1, acting only on sites

i, i + 1, such that

S

(
ρS

∣∣∣∣
∣∣∣∣ e−H

tr e−H

)
< εL, (24)

where S(ρ‖σ) = tr(ρ ln ρ− ρ ln σ) is the quantum relative entropy. This means that states
with vanishingly small Ik tend to be locally thermal (which includes the possibility of a
site-dependent temperature, which we have incorporated into hi,i+1).

Based on equation (23), with b = 1, we see that in the ballistic case Ik ∼ L0, so that the
NESS will in general be far from local equilibrium. However, in the diffusive case Ik ∼ 1/L4

so that equation (24) scales as 1/L3. Hence, we see that in the diffusive case the NESS tends to
a locally thermal state in the thermodynamic limit. This agrees with our macroscopic intuition
that even though a system may be out of equilibrium it is still in a local equilibrium state, but

9
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with a position-dependent temperature. This result therefore provides a direct application for
the CMI in understanding local properties of NESSs.

5. Conclusions

In this paper we have put forth a detailed study on the behavior of the conditional mutual infor-
mation in an exactly soluble NESS. Our main result is summarized in equation (23). It shows
that even in the ballistic case, the CMI decays exponentially with the separation b between
partitions A and C. Moreover, in the diffusive case it also decays algebraically with the total
size L of the chain, hence vanishing in the thermodynamic limit. We also showed how this
type of knowledge may find applications in studies of local thermalization of non-equilibrium
states, a topic which touches at the heart of many discussions in many-body and statistical
physics. From our studies, several natural questions emerge. The most basic is the universality
and/or typicality of the scaling (23). Another interesting question is how these results would be
affected by anomalous diffusion (that is, in which J ∼ 1/Lα for some exponent α). By under-
standing what changes this would introduce in the scaling law (23), one could address the
question of what is the critical value of α for which local equilibration breaks down.
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Appendix A. Lyapunov equation

The steady-state of Gaussian bosonic problems can be studied by solving the Lyapunov
equation for the covariance matrix. Here we shall consider a slightly more general scenario
as that treated in the main text. In particular, we wish to show how to write down equations
in which the environments also contain squeezing, as this could be useful for studying the
interplay between classical and quantum information.

We therefore begin by discussing the following model:

dρ
dt

= −i[H, ρ] +
L∑

i=1

Di(ρ), (A1)

where H is given in equation (6) and Di(ρ) represent local squeezed thermal baths, defined by

Di(ρ) = γi(Ni + 1)

[
aiρa†

i −
1
2
{a†

i ai, ρ}
]
+ γiNi

[
a†

i ρai −
1
2
{aia

†
i , ρ}

]

− γiMi

[
a†

i ρa†
i −

1
2
{a†

i a
†
i , ρ}

]
− γiM

∗
i

[
aiρai −

1
2
{aiai, ρ}

]
. (A2)
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Here Ni and Mi are constants that can be associated to the thermal fluctuations and the degree
of squeezing according to

Ni +
1
2
=

(
n̄i +

1
2

)
cosh(2ri), Mi =

(
n̄i +

1
2

)
eiθi sinh(2ri), (A3)

where n̄i is the local Bose–Einstein occupation and zi = rieiθi is the local squeezing value. In
the main text we have worked with zi = 0 so that Mi = 0 and Ni = n̄i. Additional discussions
on the use of Gaussian techniques to solve this model can also be found in reference [61].

The dynamics of the CM under the master equation (A1) can be written as a Lyapunov
equation:

dΘ
dt

= WΘ+ΘW† + F , (A4)

where

W = W ⊗ I2, (A5)

with

Wi, j = −γi

2
δi, j + iωδi j + λ(δi+1, j − δi, j+1) (A6)

and

F = diag(F1, 0, . . . , 0, FL), (A7)

with

Fi = γi

⎛
⎜⎝Ni +

1
2

Mi

Mi Ni +
1
2

⎞
⎟⎠ . (A8)

Instead of dealing with the full Lyapunov equation (A4), we can use the fact that the Hamil-
tonian does not spontaneously generate squeezing to factor the evolution into two parts, related
to the reduced covariance matrices C and B in equations (18) and (19). Using this tensor
structure in equation (A5) allows us to write to separate equations for C and B:

dC
dt

= WC + CW† + FN , (A9)

dB
dt

= WB + BW† + FM , (A10)

where

FN = diag(γ1N1, . . . , γLNL), (A11)

FM = diag(γ1M1, . . . , γLNL). (A12)

Note how the two equations (A9) and (A10) are now structurally identical, which is a
consequence of a convenient choice of parameters in the master equation.
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The NESS is then obtained by setting the right-hand side of equations (A9) and (A10) to
zero; viz,

WC + CW† + FN = 0, (A13)

WB + BW† + FM = 0. (A14)

If there is no squeezing in all environments, zi = 0, then FM = 0 and we therefore obtain B = 0.
This is the situation considered in the main text.

Appendix B. Local vs global master equations

In this section we clarify the physical interpretation of the master equation (A1) used in the
main text. There is a longstanding discussion on the precise meaning of the boundary driven
(local) Lindblad dissipators used in equation (A2). As is well known, microscopic derivations
of the Lindblad equation will lead to global dissipators which act non-locally on the system.
Hence, the local forms used in equation (A2) are often taken as phenomenological descriptions.
However, global dissipators are also known to have serious deficiencies [62]. Recently, some
of us [63] have compared the local and global approaches with exact solutions based on the
quantum Langevin equations, for the case of two harmonic oscillators. It was found that the
local approach of equation (A2) can actually outperform the global approach depending on the
parameters of the model.

Consequently, two important questions naturally emerge. The first is what is the precise
meaning of the parameters n̄1 and n̄L in equation (A3). The results in reference [63] show that,
within certain parameter ranges, it is possible to attribute to n̄i a function of the temperature of
the reservoirs as

n̄i =
1

eω/Ti − 1
, (B1)

where ω is the frequency of oscillation of the local modes. Thus, within certain parameters
it is correct to say that n̄1 − n̄L represents a gradient of temperature. However, within other
parameter ranges this may not be as precise. For this reason we avoided introducing the precise
notion of temperature and, instead, interpreted n̄1 − n̄L as a gradient of the boundary drives.

The second question concerns the meaning of the current J appearing in equation (14) by
construction, it represents the current of particles, as it is derived from a continuity equation
of the local occupation number

d〈a†
i ai〉

dt
= Ji−1,i − Ji,i+1, i = 2, . . . , L − 1. (B2)

Similar schemes could be developed to describe a current of energy. However, recently some
of us have shown that there is also an alternative interpretation in terms of the method of
repeated interactions [64]. This method can be used to generate local master equations from
a physically consistent model [65, 66] where the environment is described by the sequential
interactions with a series of ‘environmental units’, which are then discarded after each stroke.
As we have shown, within this framework it is possible to reconcile local master equations
with thermodynamics by identifying a work cost associated with turning the interactions with
the units on and off. Once this work term is identified, it turns out (for the specific case of a
bosonic chain) that the current (14) will also correspond to the heat current to the baths, up to
a constant ω. Thus, to summarize, if one interprets the master equation (A1) as stemming from
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the method of repeated interactions, the current J represents both the particle and heat currents.
If not, then J is to be interpreted solely as the current of particles.

Appendix C. Self-consistent reservoirs

We now focus on equation (A13). Analogous results can be stated for equation (A14) by simply
replacing Ni with Mi. We first consider the ballistic model, in which γ1 = γL = γ and γi = 0
otherwise. The matrices W and FN then become

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−γ/2 λ 0 0 0 . . . 0 0
−λ 0 λ 0 0 . . . 0 0

0 −λ 0 λ 0 . . . 0 0
...

...
...

...
...

. . . 0 0
0 0 0 0 0 . . . 0 λ
0 0 0 0 0 . . . −λ −γ/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

and

FN = γ diag(N1, 0, . . . , 0, NL).

We next add the self-consistent reservoirs. This means we should add to equation (A13) the
additional terms

WC + CW† + FN − ΓC + F̃N = 0 (C1)

where Γ is the coupling constant to the self-consistent reservoirs and

F̃N = Γ diag(Ñ1, Ñ2, . . . , ÑL−1, ÑL).

Here Ñi are the thermal occupations of the self-consistent reservoirs, which are chosen as

Ñi = 〈a†
i ai〉 = Ci,i.

Thus, equation (C1) can be written as

WC + CW† + FN − ΓΔ(C) = 0, (C2)

where Δ(C ) is the operation of removing all diagonals from C:

Δ(C) = C − diag(C1,1, C2,2, . . . , CL,L).

Equation (C2) is now formally identical to the model studied in references [8, 11], which
instead of using self-consistent baths, used dephasing baths of the form

K(ρ) =
Γ

2

L∑
i=1

[
a†

i aiρa†
i ai −

1
2
{(a†

i ai)2, ρ}
]

, (C3)

Even though both models lead to the same equation for the covariances, it turns out that the
steady-states themselves are different. The reason is that the dephasing model (C3) does not
preserve Gaussianity since the Lindblad generators are quadratic, instead of linear, in the cre-
ation and annihilation operators. Consequently, the NESS of the self-consistent reservoirs is
Gaussian, but that of the dephasing model is not. This will be further discussed in the next
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section. We also mention that the self-consistent model can be readily extended for the case of
squeezing, whereas the dephasing model cannot, since a dissipator such as (C3) preserves the
number of particles, but does not preserve the level of squeezing.

The solution of equation (C2) is then identical to that studied in references [8, 11]. The
matrix C is tridiagonal, of the form

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

A1 x 0 0 0 . . . 0 0
x A2 x 0 0 . . . 0 0
0 x A3 x 0 . . . 0 0
...

...
...

...
...

. . . 0 0
0 0 0 0 0 . . . 0 x
0 0 0 0 0 . . . x AL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (C4)

where Ai = 〈a†
i ai〉 is given in equation (10) and x = 〈a†

i ai+1〉 is given in equation (13).

Appendix D. General NESS covariance matrix with squeezing

If we introduce squeezing in the reservoirs, then equation (A14) will give a non-trivial solution
for S. This solution is identical to that for C, with Ni replaced by Mi. Thus, in the NESS with
squeezing, S would also be tridiagonal, with

Ri := 〈aiai〉 = =
M1 + ML

2
+

1
2

γ(M1 − ML)
4λ2 + γ2 + γΓ(L − 1)

Γ(L − 2i + 1)

+
1
2

γ2(M1 − ML)
4λ2 + γ2 + γΓ(L − 1)

(δi,1 − δi,L), (D1)

y := 〈aiai+1〉 =
γλ

4λ2 + γ2 + γΓ(L − 1)
(ML − M1). (D2)

From C and S we can then reconstruct the full CM Θ using equation (20). We then find that Θ
will be block tridiagonal, of the form

Θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q1 Z 0 0 0 . . . 0 0
Z Q2 Z 0 0 . . . 0 0
0 Z Q3 Z 0 . . . 0 0
...

...
...

...
...

. . . 0 0
0 0 0 0 0 . . . 0 Z
0 0 0 0 0 . . . Z QL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (D3)

where

Qi =

⎛
⎜⎝Ai +

1
2

Ri

R∗
i Ai +

1
2

⎞
⎟⎠ , Z =

(
x y

y∗ x

)
. (D4)
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