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The information on a quantum process acquired through measurements plays a crucial role in the
determination of its nonequilibrium thermodynamic properties. We report on the experimental inference of
the stochastic entropy production rate for a continuously monitored mesoscopic quantum system. We
consider an optomechanical system subjected to continuous displacement Gaussian measurements and
characterize the entropy production rate of the individual trajectories followed by the system in its
stochastic dynamics, employing a phase-space description in terms of the Wigner entropy. Owing to the
specific regime of our experiment, we are able to single out the informational contribution to the entropy
production arising from conditioning the state on the measurement outcomes. Our experiment embodies a
significant step towards the demonstration of full-scale control of fundamental thermodynamic processes at
the mesoscopic quantum scale.
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The fundamental connections between information and
thermodynamics dates back to the seminal contributions by
Maxwell, Szilard, and Landauer [1]. The process of
acquiring information can impact the entropic balance of
a given physical process. Such information must thus be
accounted for when formulating the second law, and
considered on equal footing to other thermodynamic
quantities, such as heat and work. This is particularly
relevant for processes involving microscopic systems,
which are fundamentally dominated by fluctuations: the
acquisition of information through measurements introdu-
ces additional stochasticity and makes the overall process
strongly dependent on the monitoring methodology.
Let us briefly illustrate the building blocks of the

formulation of thermodynamics at the stochastic level.
The changes dS in the entropy of a system subjected to
a process can be attributed both to a flow of entropy ϕ
between the system and its surroundings and to a con-
tribution π associated to the irreversible production of
entropy [2]. We can thus write

dS ¼ ϕþ π; ð1Þ

where both ϕ and π are stochastic quantities that fluctuate
with each repetition of the experiment. Averaging over
many realizations yields the entropy flux and production
rates, Φ and Π, respectively. The second law enforces Π ≥
0 with Π ¼ 0 when the system is in equilibrium. The

introduction of measurement and feedback processes pro-
foundly affects the above statements, as it has been studied
in both classical [3–7] and quantum contexts [6,8–10].
Experimental assessments of such modifications have been
reported recently in a variety of systems, including classical
Brownian particles [11], superconducting qubits [12,13],
trapped ions [14,15], and nuclear magnetic resonance
[16,17]. Frameworks for describing the dynamics of con-
tinuously monitored quantum systems have been developed
[18–22] and fundamental fluctuation theorems involving
heat, work, and entropy for continuously monitored quan-
tum two-level systems have been studied [23–26], includ-
ing assessments at the single-trajectory level [27,28].
When assessing a monitored system, one must distin-

guish between the unconditional evolution and the dynam-
ics conditioned on the measurement records [6,9,29]. It can
be shown that the average entropy flux rate of the condi-
tional dynamics Φc equals the unconditional one Φuc [30].
However, the same is not true for the entropy production
rate that governs the irreversibility of the process.
Acquiring information can only make the process more
reversible, so that the average entropy production

R
tΠcdτ

of the conditional trajectories will be smaller than that of
the unconditional one

R
tΠucdτ. Their difference is pre-

cisely associated with an information-theoretic term and
can be written as [7,29,30]

Πc ¼ Πuc þ _I ; ð2Þ
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where _I is the net rate at which information is acquired
through measurement. This term thus captures the funda-
mental effect of the measurement, providing a valuable link
between information and thermodynamics.
Despite its importance, thus far there has been no

experimental assessment of the influence of such informa-
tion theoretic contribution, arising from quantum measure-
ments, to the entropy production. In this Letter, we fill such
a gap by reporting the experimental observations of the
impact of weak continuous measurements on the non-
equilibrium thermodynamics of a mesoscopic mechanical
resonator [31]. Our system consists of a nanomechanical
resonator coupled to an optical cavity and exposed to the
effects of both electromagnetic and phononic environ-
ments. We continuously monitor its position by means
of homodyne measurements on the output optical field
[31]. Combining the phase-space formalism laid down in
Ref. [30] with state retrodiction methods [31], we are able
to characterize the entropy production at the level of
individual quantum trajectories. It should be noted that,
in the phase-space formalism, we chose the Wigner entropy
as the entropic measure which, despite its limitations to
Gaussian dynamics, presents several advantages when
considering nonstandard thermodynamics setups [32]
(see the discussion in the following). Remarkably, we
are able to single out precisely the contribution of the
measurement influence to the entropy production.
Our experiment probes both the relaxation dynamics and

the steady state. The latter, in particular, configures an
informational steady state, where information acquired
from the measurement is constantly counterbalancing noise
introduced by the environment. In addition to the net rate of
information gain _I , we are also able to single out the
differential information gain GðtÞ, which represents the rate
at which information must be acquired in each small time
step in order to maintain this steady state. Our work thus
embodies a step forward towards the full characterization of
quantum mesoscopic irreversibility and its control via
suitably arranged measurements.
Experimental setup.—The experimental system is pro-

vided by an ultracoherent soft-clamped membrane reso-
nator [cf. inset of Fig. 1]. The central defect, embedded in a
phononic crystal, supports a localized, “soft-clamped”
mechanical mode [33] at the resonance frequency
Ωm=ð2πÞ ¼ 1.14 MHz. Once cooled to a temperature of
T ¼ 11 K, we find for this mode a quality factor
Q ¼ Ωm=Γm ¼ 1.03 × 109, where Γm is the energy dis-
sipation rate. The mechanical system is dispersively
coupled to the frequency of a Fabry-Perot cavity mode
(linewidth κ=ð2πÞ ¼ 18.5 MHz), with vacuum optome-
chanical coupling rate g0=ð2πÞ ¼ 129 Hz. The cavity mode
is pumped by an external probe laser to an averaged photon
occupancy n̄cav. We assume that the semiclassical steady
state of the nonlinear dynamics has been reached and, when
speaking of different modes, we refer to the fluctuations

around such a mean steady state, as it is common practice
[34]. In this linearized interaction regime, the effective,
multiphoton optomechanical coupling, enhanced by the
average cavity photon occupancy, is g ¼ g0

ffiffiffiffiffiffiffiffi
n̄cav

p
and the

fluctuations of the system evolve according to a
Hamiltonian that is quadratic in the system’s fluctuations.
This ensures that all the states remain Gaussian.
We use an auxiliary light field to stabilize the system and

provide precooling of other mechanical modes. Such beam
also introduces additional damping and cooling on the
mode of interest, effectively changing its thermal environ-
ment. In addition, any small detuning of the probe beam
from the cavity resonance causes additional damping. We
account for these effects by introducing the effective energy
damping rate and bath occupancy Γm=ð2πÞ ¼ 19 Hz and
n̄th ¼ 14, respectively. The total thermal decoherence rate
is thus γ ¼ Γmðn̄th þ 1=2Þ ¼ 2π × 265 Hz.
The quantum measurement is performed by imprinting,

through the optomechanical interaction, the mechanical
displacement in the phase quadrature of the probe laser.
Such quadrature is measured by a phase-sensitive meas-
urement of the output field, implemented using a balanced
homodyne receiver with detection efficiency ηdet ¼ 74%
[cf. inset of Fig. 1].
Our experiment operates in the nonresolved-sideband

regime Ωm ≪ κ, which enforces a separation of time scales
and allows the cavity mode to be adiabatically eliminated
[31]. In a frame rotating at frequency Ωm and within the
rotating wave approximation, the conditional dynamics of
the mechanical mode alone is well described by the
stochastic master equation (SME) [35,36]
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FIG. 1. Conditional mechanical evolution. Measured condi-
tional variance VðtÞ (blue line), from the initial unconditional
value Vuc ≈ 34 to the steady state Vss ≈ 0.8. The dashed line is a
theoretical prediction. The inset shows a sketch of the exper-
imental system, which comprises a cryogenic optomechanical
cavity resonantly driven by a coherent probe laser. The mechani-
cal resonator is in thermal contact with two baths: a thermal,
cryogenic bath and the optical bath. The output field is con-
tinuously monitored by means of a homodyne receiver. The
photocurrent i is used to estimate the conditional mechanical
state.
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dρc ¼ ðLth þ Lqba þ LstocÞρcdt: ð3Þ

The term Lthρ ¼ Γmðn̄th þ 1ÞD½ĉ�ρþ Γmn̄thD½ĉ†�ρ in
Eq. (3) describes the contact with the effective mechanical
phonon bath. Here ĉ ¼ ðX̂ þ iŶÞ= ffiffiffi

2
p

is the annihilation
operator of the mechanical mode (written in terms of
quadratures X̂; Ŷ) and D½Â�ρ ¼ ÂρÂ† − fÂ†Â; ρg=2. The
quantum measurement backaction is described by
Lqbaρc ¼ Γqba½DðĉÞ þDðĉ†Þ�ρc, which results in radiation
pressure force fluctuations with a decoherence rate
Γqba ¼ 4g2=κ ≈ 2π × 0.36 kHz. Finally, the term

Lstocρc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηdetΓqba

p ðHρcÞ · dW ð4Þ

with the vectors Hρc ¼ ðHðX̂Þρc;HðŶÞρcÞT and dW ¼
ðdWX; dWYÞT , describes the stochastic contribution to the
dynamics stemming from conditioning upon the measure-
ment outcomes, with HðÂÞρ ¼ Âρþ ρÂ† − hÂþ Â†iρρ,
and dWX;Y independent real Wiener increments [19,36].
The unconditional mechanical dynamics is retrieved by

neglecting Lstocρc. The corresponding Gaussian steady-
state density matrix is characterized by vanishing first
cumulants, ruc ¼ ðhX̂iuc; hŶiucÞT ¼ 0, and a diagonal
covariance matrix with elements Vuc ¼ hX̂2iuc ¼ hŶ2iuc ¼
n̄th þ 1=2þ Γqba=Γm. We use such state density matrix as
the initial preparation in all experiments reported below.
This is the natural steady state of the optomechanical
system, thus its preparation requires only to wait for the
initial brief transient to decay, before conditioning upon the
measurement outcomes. The conditional dynamics
described by Eq. (3), on the other hand, has both first
and second cumulants evolving nontrivially according to

drðtÞ ¼ −
Γm

2
rdtþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ηdetΓqba

q
VðtÞdW; ð5Þ

_VðtÞ ¼ Γm½Vuc − VðtÞ� − 4ηdetΓqbaVðtÞ2: ð6Þ

The ensuing dynamics gives the covariance VðtÞ ¼ VðtÞ1
where we have introduced the identity matrix 1 and the
c-number variance VðtÞ¼ hX̂2i− hX̂i2¼hŶ2i− hŶi2 [37].
The first cumulants thus evolve stochastically, while the
second ones obey a deterministic nonlinear evolution. It
should be noted that, the process entailed by this model is
dynamically stable, as it can be easily verified following the
criteria discussed in Ref. [44]. This ensures the conver-
gence of any quantity integrated over long-time windows.
The last term in Eq. (6) is associated with the information

acquired by the measurement, and we dub it innovation.
It is nonpositive as acquired information can never increase
the uncertainty about the mechanical motion. According to
Eq. (6), the initial unconditional varianceVuc evolves into the
conditional steady-state value Vss ¼ −μþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μðμþ 2VucÞ
p

with μ ¼ Γm=ð8ηdetΓqbaÞ. Owing to the innovation term,

Vss ≤ Vuc given that μ > 0. The continuous weak measure-
ments thus lead to a conditional steady-state density matrix
with a higher purity than the unconditional one [45,46]. This
is an instance of measurement-based cooling and was
experimentally demonstrated in Ref. [31]. The conditional
first cumulants rðtÞ in Eq. (5) are related to the experimental
homodyning measurement outcomes iðtÞ through iðtÞdt ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ηdetΓqba

p
rðtÞdtþ dW. In practice, the latter relation is

used to express dW in terms of the outcomes, iðtÞ, and
substituted in Eq. (5). This yields a recursive relation used to
experimentally filter the data iðtÞ to obtain the first cumulant
rðtÞ. The conditional variance VðtÞ, however, evolves
independently of the specific measurement outcomes. To
assesses it experimentally we thus employ a prediction-
retrodiction method [31], which reconstructs VðtÞ by com-
bining data on rðt0Þ acquired at earlier (t0 < t) and later times
(t0 > t). Such future outcomes can be used to obtain a
retrodicted trajectory, rbðtÞ, [47] using an experimental filter
similar to what has been derived from rðtÞ [37]. The
fluctuations of the difference dðtÞ ¼ rðtÞ − rbðtÞ over an
ensemble of independent realizations can be shown to be
directly connected to VðtÞ according to the relation [37]

VdðtÞ ¼ VðtÞ þ Vss þ Γm=ð4ηdetΓqbaÞ: ð7Þ

In the limit of high cooperativity (Γqba ≫ Γm) and large
detection efficiency (ηdet ≈ 1) the last term can be neglected.
The values ofVss andVðtÞ are then readily obtained asVss ¼
Vdð∞Þ=2 [31] and VðtÞ ¼ VdðtÞ − Vss, respectively.
Figure 1 shows the evolution of VðtÞ from the initial

unconditional value Vuc, all the way to the steady-state
value Vss. The experimental data compare very well to the
theoretical prediction provided by Eq. (6), thus strongly
corroborating the suitability of our model.
Entropy production along individual trajectories.—We

are now in a position to assess the thermodynamics of the
system at the level of individual quantum trajectories. Our
setup is not a standard thermodynamic system due to the
presence of the optical cavity, which acts as a nonthermal
bath. The usual formulation of entropy production thus
does not apply. Despite this, it is possible to employ an
alternative put forth in Ref. [32], which makes use of
quantum phase-space methods and is adequate for the
description of Gaussian dynamics. This approach has
already been successfully applied to the experimental
characterization of the mean entropy production in the
dynamics of open mesoscopic systems [48]. In Ref. [30],
the method was extended to account for the presence of
quantum-limited detectors continuously monitoring the
system.
When applied to our experimental endeavors [37], such

theoretical framework shows that the conditional entropy
flux and production rates, defined in Eq. (1), can be written
in terms of the first and second cumulants as
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ϕc;r ¼
Γm

nth þ 1=2
½ðn̄th þ 1=2Þ − θðtÞ� − 4ΓqbaθðtÞ;

πc;r ¼ Γm

�
θðtÞ

n̄th þ 1=2
þ Vuc

VðtÞ − 2

�
þ 4Γqba½θðtÞ − ηdetVðtÞ�;

ð8Þ

where θðtÞ ¼ VðtÞ þ rðtÞTrðtÞ=2 encompasses all the sto-
chastic contributions [cf. Eq. (5)]. We can experimentally
reconstruct such quantities by means of the measured
stochastic trajectories rðtÞ and the inferred conditional
variance VðtÞ. We show in Fig. 2 some realizations of
the stochastic entropy flux and production rates. Despite
the low thermal occupancy of n̄th ≈ 14 phonons,
these quantities fluctuate substantially, highlighting the
essential role of fluctuations in the thermodynamics of
the system.
We also average them over 3600 trajectories, yielding the

conditional flux and production rates Φc ¼ Eðϕc;rÞ and
Πc ¼ Eðπc;rÞ, which are shown in Fig. 2, dark blue. These
quantities can be readily computed from our model by
noting that, owing to Eqs. (5) and (6) and our choice of
initial conditions, we have E½θðtÞ� ¼ Vuc. From Fig. 2 we
gather that bothΦc andΠc relax monotonically towards the
new steady-state values. However, even at the steady state,
the entropy production rate Πc does not vanish due to the

nonequilibrium nature of the stationary state, where the
effects of the thermal bath, measurement backaction, and
information gain compete with each other.
Information gain.—The influence that monitoring the

system has on the irreversibility of the dynamics is encoded
in the mismatch between the conditional entropy produc-
tion rate Πc and the unconditional one Πuc [cf. Eq. (2)].
Such mismatch is quantified by the net rate of information
gain achieved through measuring

_I ¼ ΓmðVuc=VðtÞ − 1Þ − 4ηdetΓqbaVðtÞ: ð9Þ

The temporal behavior of _I reconstructed from the exper-
imental data is shown in Fig. 3. As in our case the system is
prepared in the steady state of the unconditional dynamics,
the first and second cumulants in the absence of monitoring
remain constant in time, and the unconditional rate of
entropy production keeps the value Πuc ¼ Γm½Vuc=ðn̄th þ
1=2Þ − 1� þ 4ΓqbaVuc (cf. Ref. [37] for further details). We
can thus subtract such value from Πc in Fig. 2 to obtain the
net rate of acquired information due to the continuous
monitoring.
As the quantity −

R∞
0

_Idt quantifies the mutual infor-
mation between system and detector [30], and given that _I
vanishes in the (conditional) steady state [cf. Fig. 3], such
quantity tends to a constant in the long-time limit. This is
intuitively understood from the fact that, in the steady state,
monitoring the system does not add any additional infor-
mation. If, however, the monitoring process suddenly stops,
the conditional steady state will not be sustained and the
system will heat-up back towards Vuc. Constant monitoring
is thus necessary to maintain the conditional steady state. In
other words, even at the steady state, information is
constantly being acquired, but noise is constantly being
introduced by the phonon bath. It is thus interesting to
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FIG. 2. Stochastic entropy flux and production rates. (a) The
stochastic entropy flux rates (light blue) for a sample of ten
trajectories. The dark blue line is the ensemble average over all
the trajectories. (b) The stochastic entropy production rates (light
blue) and the ensemble average (dark blue), for the same sample
of trajectories.
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FIG. 3. Informational contribution to the entropy production
rate. We obtain the informational contribution (dark blue) from
the entropy production. The dashed (dot-dashed) line is the
differential gain of information due to the measurement (loss of
information due to noise input by the phonon bath).
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identify which of the terms in _I is responsible for the
incremental gains of information required to maintain the
conditional steady state.
This concept can be readily understood from inspecting

Eq. (9), which consists of the competition between the
noise introduced by the phonon bath (at rate Γm) and the
gain of information (proportional to the detection efficiency
ηdet). We can thus quite naturally introduce the differential
gain GðtÞ ≔ −4ηdetΓqbaVðtÞ and notice that, in light of the
interpretation of the last term in Eq. (6) as an innovation
rate, GðtÞ is the contribution of this innovation to _I . The
behaviors of _I and GðtÞ inferred from the experimental data
are shown in Fig. 3: the initial closeness of GðtÞ to _I
suggests that the early stages of the dynamics are strongly
affected by the differential information gain. As the
dynamics approaches the steady state, however, the con-
tribution from GðtÞ become less significant. However, while
_I → 0, GðtÞ tends to the (in general small) non-null value
Gð∞Þ ¼ −4ηdetΓqbaVss, which thus represents the gain of
information per unit time that the detector must acquire in
order to maintain the steady state.
Conclusions.—We have investigated the effects of weak

continuous measurements on the thermodynamics of a
mesoscopic mechanical system. By employing a phase-
space formalism [30] and the retrodictive techniques used
in Ref. [31], we have connected pivotal thermodynamic
quantities, such as entropy production and flux rates along
individual dynamical trajectories, to accessible experimen-
tal data. The working point of our experiment has enabled
us to single out the contributions to the entropy production
of the system due solely to the information acquired by
monitoring the system. Such contribution decreases in time
as the system reaches a nonequilibrium steady state.
Our endeavors demonstrate the key role played by

measurements in influencing the energetics of a quantum
system. Remarkably, they showcase the intricate interplay
between fundamental energy-exchange processes and
information in setting up (and sustaining) the dynamical
and steady-state features of a process. Such influences can
be further explored by assessing whether the control of
informational terms to entropy production stemming from
suitable measurement strategy could be used as an effective
tool for quantum state engineering [49]. Another interesting
direction would address composite systems endowed with
initial quantum correlations and the experimental study of
their effects, in conjunction with continuous monitoring, on
the thermodynamics of the systems.
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