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Abstract

In the last decade, the study of thermodynamic phenomena in ultra-small scales, where
quantum mechanics becomes imperative, has gained a lot of attention. The possibility of
controlling single quantum states in nowadays experimental setups has encouraged a more
intense inquiry over the intersection between thermodynamics and quantum mechanics,
which is known as quantum thermodynamics. Particularly relevant in this framework is
the study of quantum heat engines, that is, quantum systems undergoing thermodynamic
cycles. Thermodynamic cycles contain all the aspects of thermodynamics, thus it’s a good
testbed for a better comprehension of the thermodynamics of quantum systems. More-
over, modelling quantum heat engines is crucial for the design of future ultra-small en-
gines. Nonetheless, another aspect must be taken into account, finite-time operation. It’s
very important for the optimization of the output power of the engine. In this dissertation,
we present a new model of finite-time quantum heat engines. By making use of collisional
models, we construct a model in which a generic quantum chain experiences sequential
pure heat and pure work strokes. Dictated by stroboscopic evolution, the engine’s state
goes through a transient regime until the limit-cycle is reached. After the achievement
of the limit-cycle, our results indicate that only the boundary sites of the quantum chain
are relevant for the heat currents exchanged with the baths. By means of analytical and
numerical methods, we present how the model is useful for optimizing the output power
of stroke-based quantum heat engines, without decreasing their respective efficiencies.
Lastly, we prove that there is a universal efficiency value, the Otto efficiency, for a whole
family of models containing a specific kind of internal interactions. For completeness,
other methods from the literature which deal with finite-time quantum heat engines are
also presented and discussed.

Keywords: Quantum thermodynamics; Quantum heat engines; Open quantum systems;
Finite-time thermodynamics; Collisional models.
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Resumo

Na última década, o estudo de fenômenos termodinâmicos em escalas ultra-pequenas,
onde a mecânica quântica se faz necessária, tem recebido muita atenção. A possibili-
dade de controlar estados quânticos individuais em plataformas experimentais da atual-
idade incentivou a intensificação das pesquisas sobre a intersecção entre termodinâmica
e mecânica quântica, a qual é conhecida como termodinâmica quântica. Particularmente
relevante neste contexto é o estudo de máquinas térmicas quânticas, isto é, sistemas quân-
ticos submetidos a ciclos termodinâmicos. Ciclos termodinâmicos contêm todos os as-
pectos da termodinâmica, sendo portanto uma boa plataforma para melhor compreensão
da termodinâmica de sistemas quânticos. Além disso, a modelagem de máquinas térmicas
quânticas é crucial para o projeto de futuras máquinas térmicas ultra-pequenas. Não ob-
stante, outro aspecto deve ser levado em consideração, a operação em tempo finito. Isto é
muito importante para a otimização da potência de saída de máquinas térmicas em geral.
Nesta dissertação, nós apresentamos um novo modelo de máquinas térmicas quânticas em
tempo finito. Por meio do uso de modelos colisionais, nós criamos um modelo no qual
uma cadeia quântica genérica passa sequencialmente por processos puramente de troca
de calor ou trabalho. Ditado por evolução estroboscópica, o estado da máquina passa
por um regime transitório até que o ciclo limite seja alcançado. Após a entrada no ciclo
limite, nossos resultados indicam que somente os sítios nas bordas da cadeia quântica
são determinantes para as correntes de calor trocadas com os banhos. Lançando mão de
métodos analíticos e numéricos, nós apresentamos como o modelo é útil para otimizar a
potência de saída de máquinas térmicas quânticas operadas em fases, sem diminuir suas
respectivas eficiências. Por fim, nós provamos que há um valor universal de eficiência, a
eficiência de Otto, para toda uma família de modelos que contêm um tipo específico de
interações internas. Por completeza, outros métodos da literatura que tratam de máquinas
térmicas quânticas em tempo finito são apresentados e discutidos.

Palavras-chave: Termodinâmica quântica; Máquinas térmicas quânticas; Sistemas quân-
ticos abertos; Termodinâmica em tempo finito; Modelos colisionais.

ii



List of Symbols & Abbreviations

:= Defined as

˙ Derivative with respect to t (time)

⊕ Direct sum

⊗ Tensor/Kronecker product

∀ For all

ˆ Vectorized superoperator

∈ Is an element of

N Set of the Natural numbers

O Big O/Error term

< Set of the Real numbers

<>0 Set of the positive Real numbers

tr Trace

† Conjugate transpose

ᵀ Transpose

th Thermal

GKSL Gorini-Kossakowski-Sudarshan-Lindblad

QED Quod Erat Demonstrandum

QHE Quantum Heat Engine

QHO Quantum Harmonic Oscillator

RHS Right Hand Side

SZE Szilard Engine

vec Vectorized state

iii



List of Figures

1.1 Yearly number of arXiv papers containing either “quantum heat engines”
or “quantum thermal machines” in their titles, from 2010 to 2019. . . . . 3

2.1 The Carnot cycle represented (a) schematically and (b) diagrammatically. 7

2.2 The Otto cycle represented (a) schematically and (b) diagrammatically. . . 8

3.1 (a) Basic structure of an open quantum system and (b) schematic time
evolution of the state of the quantum system. . . . . . . . . . . . . . . . 11

3.2 Pictorial representation of a quantum system S interacting with a thermal
bath E through an interaction V(t). The interaction and the system are
controlled externally. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Pictorial depiction of the erasure procedure, which culminates at Lan-
dauer’s principle. W is the work applied to the particle and Q is the
dissipated heat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Scheme of the Szilard engine. (a) the wall is inserted, (b) the position of
the gas particle is measured and registered, (c) work is extracted by means
of isothermal expansion, (d) the memory is erased (Landauer’s principle)
and the wall is removed. . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Model of the maser as a heat engine [13]. A hot bath at temperature TH

couples with the 1-3 transition (frequency ωH) of a three-level system,
while a cold bath at temperature TC couples with the 2-3 transition (fre-
quency ωC). The jump from 2 to 1 at frequency ωS is considered to be
an extracted signal if population inversion (p2 > p1) occurs. The same
system may operate as a refrigerator, if run backwards. . . . . . . . . . . 20

4.2 Basic model of an autonomous QHE. Two qubits (1 and 2) thermalized
with respect to the baths interact with an infinite ladder representing the
work load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Plot of (a) the energy of the working fluid for all strokes, as a function
of 1/ω and in the case of reversible (dashed branches) and irreversible
(continuous branches) quasi-static cycles. Plot of (b) the entropy produc-
tion and the efficiency as functions of ω3. The parameters are equal to:
TC = 0.4, TH = 1.0, ω1 = 2.0, ω2 = 1.0, ω3 = 0.4 (except for (b)) and
ω4 = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iv



LIST OF FIGURES v

5.1 Sequential interactions composing a collisional model. The system in-
teracts for a time τ with an environment ancilla, prepared in a state ρE,
which is then discarded and a fresh new one is introduced. . . . . . . . . 28

5.2 Plots of the expectation values of (a) σz, (b) σx and (c) σy for both the
collisional model and the master equation. The insets show zoomed re-
gions of all three plots. The chosen values of the parameters are: ω =

1.0, g = 0.7,T = 0.5, τ = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Plots of the expectation values of (a) σz, (b) σx and (c) σy for both the
collisional model and the master equation. Same parameters as in Fig. 5.2,
but now τ = 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1 The stroboscopic two-stroke quantum heat engine is modelled as having
a (a) Heat stroke (q) and a (b) Work stroke (w). In the heat stroke, the
internal interactions between the sites of the system are turned off, while
the boundary sites 1 and N interact respectively with a cold bath at tem-
perature TC and a hot bath at temperature TH (TH > TC). On the other
hand, during the work stroke the system is disconnected from the baths.
The internal interactions are turned on, represented by VS , putting forth
an unitary evolution of the whole system. These strokes are sequentially
implemented, in a cyclic fashion, as depicted by the arrows surrounding
(a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Evolution of the state of the system from its initial state ρ0
S to the limit-

cycle, comprised of ρ∗S and ρ̃∗S . As it is shown, the state of the system
evolves stroboscopically. . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Plots of the local populations (a) Zn
1 , Z̃n

1 and (b) Zn
2 , Z̃n

2 with respect to
the number n of performed cycles. The gray dashed lines represent the
stationary values Z∗i , Z̃∗i . The values of the parameters used to obtain
these plots are: λ = 0.2, p = 0.99, TC = 0.4, TH = 0.8, ω1 = 0.75,
ω2 = 1.0, g = 0.3 and times τq = τw = 1.0 fixed. The system is initially
in a product state of the qubits, each one in its own ground state. . . . . . 44

6.4 Plots of the correlations (a) S n, S̃ n and (b) An, Ãn with respect to the num-
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Chapter 1

Introduction

It’s no surprise to anyone that the industrial revolutions happening since the 19th cen-
tury have shaped the world around us. Despite the clever and ingenious technologies
developed during the Antiquity, by people like the Egyptians, Greeks and Romans – to
cite a few – and the Middle Ages [1], the disruptive innovations that started to appear
roughly two hundred years ago are beyond comparison regarding their good and bad ef-
fects to humanity. The power of steam drove the British Empire to its greatest extension
during the Victorian era, reinforcing economical and cultural exchanges between distant
parts of the globe. Steam was used to move engines, as put forward by Watt in the end
of the 18th century. The possibility of transforming one kind of energy (heat) into another
one (work) boosted the studies of thermodynamics, the branch of physics that deals with
the correlations between different kinds of energies and the constraints in converting one
type into another.

The technological breakthrough of heat engines came as a practical necessity, while
the theoretical background was still incipient. What was then known about thermal pro-
cesses was learned mainly through observing the phenomena and describing them heuris-
tically. However, this scientific path would not last too long. As soon as optimization
and design issues arose, a new scientific strategy grounded on theory would be needed.
Indeed, when faced with the question of what was the greatest efficiency an engine could
achieve, a mechanical engineer of the French Army, named Sadi Carnot, devised a theo-
retical model of an engine that had the highest possible efficiency [2]. Without knowing,
Sadi Carnot had formulated one possible statement of the 2nd law of thermodynamics1.
After this remarkable work, a myriad of others followed in that same century, by people
like Clausius, Boltzmann and Gibbs. Although thermodynamics became a much broader
research field, expanding to statistical mechanics, chemistry and more recently quantum
mechanics, it is still deeply rooted in the engine’s task of converting heat into work. Along
the following decades, engines gained more efficiency and applications, once new fuels
started to be used, such as coal, oil fuels, gasoline and even steam produced by the heat
that is released by nuclear reactors.

Not only the efficiency with which engines convert energy is important, but also the
extracted power. In fact it is not only important, it is pivotal for their operation. The
analysis of the extracted power, aiming at its optimization, isn’t possible within the stan-

1This statement is one of many possibilities (e.g. Clausius statement, Kelvin-Planck statement) of de-
scribing the 2nd law of thermodynamics.
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2 1. INTRODUCTION

dard equilibrium thermodynamics framework. This is due to the fact that processes that
keep the system in equilibrium at all times are very slow, thus the power tends to zero.
Therefore, finite-time heat engines must be studied if one wants to take into account the
extracted power. This might be done using endoreversible thermodynamics, an approx-
imation of standard thermodynamics for finite-time processes. By doing so, it turns out
that there is a trade-off between efficiency and power for (classical) finite-time heat en-
gines [3]. Nevertheless, although not yet established theoretically, physicists and engi-
neers empirically “knew” this trade-off, creating various new and powerful engines, such
as gas turbines and internal combustion engines.

However, thermodynamics is far from being totally understood. The great develop-
ment of this scientific field and the technological innovations related to it, were based on
macroscopic objects or huge amounts of particles, in the case of statistical mechanics.
However, there has been a growing development of experimental control of systems in
ultra-small scales, such as trapped-ions [4–6], cavity quantum electrodynamics (cavity
QED) [7–9] and semiconductor quantum dots [10–12]. In these experimental setups, the
systems are in the quantum regime and phenomena not found in the macro-world start
to appear. Hence, questions like how does thermodynamics extend to the quantum scale,
or what are the possible implementations of heat engines in the quantum realm, become
more relevant than ever. Answering these questions will reinforce knowledge about the
foundations of physics, enable better energy management in emergent technologies, such
as quantum computers, and bring ideas of future technological applications.

Meant to address these questions, the young research field known as quantum ther-
modynamics treats the interaction of quantum systems with an environment in thermody-
namic terms: heat, work and entropy production. Despite the great insight by Scovil and
Schulz-Dubois of looking at the maser, a quantum system per se, as a heat engine [13],
the setting of a solid theory of quantum thermodynamics was only possible after the the-
ory of open quantum systems, an extension of standard quantum mechanics to systems
interacting with an environment, was structured. Surprisingly, the first works exploring
thermodynamic features of open quantum systems were related to heat engines [14, 15]. It
sets a route of research, focusing on heat engines at the quantum scale, or even to a broader
topic, thermodynamic cycles applied to quantum systems, which is the theoretical basis
of the operation of heat engines and other thermodynamic devices (e.g. refrigerators).

In confluence with the development of a theory of thermodynamics in the quantum
realm, is another research field known as quantum information theory, which studies as-
pects of information theory in quantum systems. The relation between information and
thermodynamics dates back to the proposition of an apparent paradox by Maxwell. He
imagined a box containing a certain gas and divided in two halves by a wall. Then, what
if an entity – afterwards nicknamed “demon” – knew2 the positions and velocities of all
gas particles? It could then place the fastest (hottest) in one side of the box and the slow-
est (coldest) in the other one. The apparent paradox comes when one realizes that this
hypothetical situation leads to heat flowing from a cold to a hot body, something that is
forbidden by the 2nd law of thermodynamics. Just after many years this problem was
solved, mainly by the elucidating works of Landauer [16] and Bennett [17], who showed
the intimate relation of information and thermodynamics, or more specifically, the equiv-

2The ideas of knowing and not-knowing/ignorance, are the basis of information theory, following the
definition of entropy given by Shannon.
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alence of Shannon entropy to thermodynamic entropy, apart from a kB factor, where kB is
the Boltzmann constant (kB = 1.380649 × 10−23 J/K). The hint that information could be
used as a thermodynamic resource came with the devise of an engine based on Maxwell’s
paradox by Szilard, in an attempt to solve the then apparent paradox [18]. This idea, to-
gether with what was learned from the aforementioned works of Landauer and Bennett,
gave birth to the so-called Szilard engine (SZE), which bridges two different research ar-
eas, heat engines and information theory. From this point, many of the theoretical tools
developed in the studies of quantum information theory can be applied to quantum ther-
modynamics and Quantum Heat Engines (QHEs).

During the last decade, the amount of scientific papers on quantum heat engines grew
considerably, as it can be seen in Fig. 1.1. It shows the number of paper titles matching
either “quantum heat engines” or “quantum thermal machines” (occasionally used by
some authors) on arXiv.org in the period 2010–2019. From a few papers in the beginning
of the decade, the yearly quantity of scientific articles jumped to 33 in 2019 alone. As
we enter a new decade, until the 18th of September 2020, 32 new papers with similar
titles had already appeared on arXiv.org, as accessed by the author on that same day.
Therefore, there is an increasing trend in the research of quantum heat engines, reflecting
the importance that physicists are putting on these studies and justifying the relevance of
the present dissertation.

Figure 1.1: Yearly number of arXiv papers containing either “quantum heat engines” or
“quantum thermal machines” in their titles, from 2010 to 2019.

Within the context of rapid development of the studies concerning quantum heat en-
gines, this master’s dissertation intends to give an original contribution to the specific
matter of modelling finite-time QHEs. As it is shown by the historic maturing of classical
heat engines, knowing how to optimize the power output without decreasing too much the
efficiency is essential. Beyond that, heat engines are implementations of thermodynamic
cycles, which contain all the main aspects of thermodynamics and are the cornerstone of
this research field since the pioneering work of Sadi Carnot in 1824. Hence, it is expected
that, broadening the studies of heat engines to the quantum domain is fundamental for
future technologies that need outstanding energy management in ultra-small scales, and
also for the theoretical understanding of the real nature of thermodynamics and its relation
to quantum mechanics.

https://arxiv.org/
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The model herein proposed makes use of a theoretical tool, known as collisional
models [19–27]. This technique is associated with the Stoßzahlansatz3, that appears in
Boltzmann’s works, which were inspired by previous Maxwell’s papers, as a hypothesis
of molecular chaos [28]. By applying collisional models, one considers generic quan-
tum systems interacting sequentially with a stream of identical environment units. Each
interaction, or “collision”, is independent of each other and corresponds to a quantum
dynamical map connecting the initial state to the final state. It’s repeated for an integer
number of times, meaning that the time evolution of the system’s state is said to follow
a stroboscopic4 dynamics [21, 29]. This setup might be connected to quantum master
equations, which dictate the continuous-time evolution of the state of a system interacting
with an environment [30, 31]. This is done by making some approximations regarding
the duration of each interaction. Since quantum master equations are the standard way
of dealing with the operation of quantum heat engines, collisional models ought be con-
sidered even more general. Furthermore, the discrete nature of collisional models allows
an easier treatment of the finite-time dynamics of QHEs when compared to other ap-
proaches [32–35]. Also, collisional models are flexible when choosing the quantum state
of the environment units. Thus, resources stemming from quantum information theory
(i.e. entanglement, coherence) can be explored in the context of QHEs [21].

By using the aforementioned technique to model the heat baths [20, 22] and gener-
alizing the SWAP engine [36–40], the stroboscopic two-stroke QHE model is conceived.
This QHE switches between pure heat and pure work strokes or processes. In the former,
the internal interactions of the working fluid – considered as a generic quantum chain –
are turned off, and the boundaries are connected to the streams of units modelling the
cold and hot baths. By choosing the correct kind of interaction with the baths, the en-
ergy cost of switching it on and off goes to zero, and as a consequence, all the energy
that leaves (enters) the bath enters (leaves) the working fluid in the form of heat. On the
other hand, in the pure work stroke, the working fluid is disconnected from the baths, and
its internal interactions are turned on. The dynamics is then unitary, due to the fact that
the working fluid is a closed system and its state evolves according to the von Neumann
equation. Differently from the heat stroke case, switching on and off these internal in-
teractions has an energy cost. This in turn is identified as work. We show that the state
of the system undergoes a stroboscopic evolution, passing from a transient regime and
ending in the limit-cycle. When it’s reached, solely the boundary sites of the quantum
chain are determinant for the heat currents exchanged with the baths. In order to prove
the effectiveness of the model, it’s applied to two different scenarios. The first considers
the working fluid as being made of only two qubits. In this case, an analytical treatment is
done, by means of solving a set of difference equations, whose variables are operators of
the working fluid. In contrast, the second case, which consists of generic N spin chains,
is solved numerically. Finally, the parameter space is explored in both scenarios, aiming
at optimizing the output power. Interestingly, the efficiency is found to be equal to the
Otto efficiency, for whatever choice of parameters. For this reason, we say that there is a
family of models, characterized by a specific kind of internal interactions, that share an
universal Otto efficiency.

The dissertation is organized as follows: in Chapters 2–5, the main physical con-

3“Impulse number approach”, in German.
4In analogy with the visual effect of seeing a sequence of snapshots of a continuous movement.
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cepts and mathematical expressions relevant for the treatment of finite-time QHEs are
discussed. Starting with Chapter 2, the concept of thermodynamic cycles is reviewed.
Three specific cycles are particularly studied: the Carnot cycle, the Otto cycle and the en-
doreversible cycle. This chapter aims at discussing qualitatively the cycles and presenting
their efficiencies. Moreover, in Chapter 3, the theory of open quantum systems is pre-
sented and its relation to thermodynamics is made explicit, originating one formulation of
the theory of quantum thermodynamics. Also, in the same chapter, the overlap between
(quantum) thermodynamics and (quantum) information theory is explored, by analyzing
Landauer’s principle and the Szilard engine. Next, in Chapter 4, we introduce what are
QHEs and divide them in two categories: continuous-time QHEs and stroke-based QHEs.
An example for each kind of QHE is then discussed. Collisional models are then explored
in Chapter 5. It starts with the general picture, where the basics of these models are pre-
sented. Following it, the particular case of auxiliary systems in a certain thermal state
is treated, as well as the correspondent system’s steady-state. The chapter ends with the
comparison of the aforementioned special case and quantum master equations, showing
that the latter is obtained from the former by means of taking the limit of infinitely fast
interactions.

The succeeding chapter (Chapter 6) is the most important in the dissertation, where
the stroboscopic two-stroke QHE is presented and studied according to what was previ-
ously stated. The content of this chapter is based on the preprint recently submitted to
arXiv.org [29], which was also recently approved to be published in Physical Review A.
In order to compare the outcomes of the model therein proposed, in Chapter 7 two other
methods for treating finite-time QHEs, namely, shortcut-to-adiabaticity and Lindblad-
Floquet theory, are discussed. Finally, in the Conclusion (Chapter 8), the dissertation
is briefly reviewed, with emphasis on the stroboscopic two-stroke quantum heat engine
(Chapter 6). Also, possible routes for the continuation of this work and experimental im-
plementations are considered. Throughout the dissertation, natural units are employed:
kB = ~ = 1.

https://ariv.org/abs/2008.07512


Chapter 2

Classical thermodynamics: cycles

Classical thermodynamics is deeply rooted in observing thermal processes, such as the
heating associated with work applied against friction, or simply how heat flows from hot
to cold bodies. The research field arose from the description of thermal phenomena and
the formulation of postulates based on the observations, which are known as the four laws
of thermodynamics. These laws (by definition) dictate all finite-temperature processes of
any macroscopic system. We will not go further into the laws of thermodynamics, for a
nice overview, check Chapter 1 of Ref. [41].

Of special interest in this chapter is the concept of thermodynamic cycle. This object
is the cornerstone of all thermal machines (e.g. heat engines). It consists of a repetitive
sequence of processes, namely thermalization with a bath (heat reservoir) and expan-
sion/compression of a gas, arranged in specific ways (e.g. isothermal expansion: a gas is
expanded while in contact with a hot bath, maintaining the temperature constant). From
the many existing cycles, we now focus on three specifically, the Carnot cycle, the Otto
cycle and the endoreversible cycle.

2.1 Carnot cycle

In the beginning of the 19th century, Sadi Carnot put forth a theoretical cycle that
would be the most efficient possible, that is, with the greatest output-input ratio. He
constructed the model from the concept of reversible processes, transformations that occur
very slowly and can be done in both ways without any extra energy cost. His result was a
turning point in the history of thermodynamics as a scientific subject [42] and paved the
way for the many developments in this research field during the last two centuries.

The Carnot cycle is defined by four processes (strokes): (i) isothermal expansion, (ii)
adiabatic expansion, (iii) isothermal compression and (iv) adiabatic compression, which
are applied to a gas, called generically “working fluid”. Adiabatic means that there is no
exchange of heat between any of the two baths (one at a cold temperature TC and the other
at a hot temperature TH > TC) and the working fluid. The state of the working fluid is
considered to be always in an equilibrium state (thermal equilibrium is defined by the 0th

law of thermodynamics), since all the processes are quasi-static (very slow). The state of
the working fluid can be characterized solely by macroscopic quantities, such as internal
energy (E), volume (V) and total number of particles in the working fluid (N). These
processes are schematically represented in Fig. 2.1a.

6
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(a) Schematic representation of the Carnot cy-
cle.

(b) Pressure-volume (P-V) diagram.

Figure 2.1: The Carnot cycle represented (a) schematically and (b) diagrammatically.

The pressure-volume (P-V) diagram (Fig. 2.1b) characterizes the state of the working
fluid during the transformations. Pressure is defined as minus the derivative of E with
respect to V , for fixed S (entropy) and N [41]. Heat is only exchanged when the work-
ing fluid is put to interact with the hot (i) and cold (iii) baths. In all processes there is
work involved, since V is always changing (W = −

∫
PdV). According to the 1st law of

thermodynamics (energy conservation) and the cyclic property of E (
∮

dE = 0), we have
that

QC + QH −W = 0, (2.1)

where heat is positive when it enters the working fluid and work is positive when extracted
by an external agent.

Furthermore, we might also write the expression quantifying the entropy production,
following the 2nd law of thermodynamics and the cyclic property of S (

∮
dS = 0),

Σ = −
QC

TC
−
QH

TH
> 0, (2.2)

which in the case of the Carnot cycle is strictly equal to zero (reversible processes). Com-
bining Eqs. (2.1) and (2.2), one might find that the efficiency of the Carnot cycle is ex-
pressed by,

ηC =
W

QH
≡ 1 −

TC

TH
. (2.3)

Since it saturates the bound given by (2.2), it is the maximum efficiency one can have in
cyclic thermal operations.

Other cycles will inherently have lower efficiencies and nonzero entropy production.
From the previous equations, the efficiency of any cycle might be written generically as,

η = ηC −
TC

QH
Σ, (2.4)

where QH,TC > 0 and Σ > 0, resulting in η 6 ηC, as previously stated. This expression
is curious, because it links any other cycle to the Carnot cycle, meaning that these other



8 2. CLASSICAL THERMODYNAMICS: CYCLES

cycles may be seen as specific cases of the Carnot cycle, what points to some kind of
universality between thermodynamic cycles1.

Also, it is worth mentioning that the cycle may be operated backwards, whose result
is a refrigerator, instead of a heat engine. It means that W,QH < 0 and QC > 0, or in
other terms, an external agent applies work to the working fluid in order to transport heat
from the cold to the hot bath [41].

2.2 Otto cycle
The Otto cycle is of practical importance when it comes to modelling power cycles,

being a coarse description of a gasoline combustion engine [41]. This cycle also consists
of four strokes: (i) adiabatic compression, (ii) hot isochoric2, (iii) adiabatic expansion
and (iv) cold isochoric, all applied to a working fluid. The transformations (i) and (iii)
are (ideally) reversible and do not produce any entropy, on the other hand (ii) and (iv)
are inherently irreversible, what results in a nonzero entropy production during the iso-
chorics. This irreversibility can also be explained by the fact that there is only heat being
exchanged. Again we can use macroscopic quantities (E,V,N) to describe the state of the
working fluid. A schematic depiction of the cycle is shown in Fig. 2.2a.

(a) Schematic representation of the Otto cycle. (b) Pressure-volume (P-V) diagram.

Figure 2.2: The Otto cycle represented (a) schematically and (b) diagrammatically.

Looking at the P-V diagram of the Otto cycle (Fig. 2.2b), we identify the different
branches that represent the strokes and see that heat is only exchanged during the iso-
chorics. Furthermore, work in these same two processes is equal to zero, since V is
constant. Hence, work is nonzero only during the adiabatic strokes. This is an interest-
ing feature of the Otto cycle, heat and work are decoupled, existing solely in different
processes. This separation comes with the cost of producing entropy and decreasing the
efficiency compared to the Carnot cycle.

The efficiency of the classical Otto cycle is expressed by [41]:

ηO =
W

QH
≡ 1 −

(VB

VA

)1−γ

, (2.5)

1Until the present moment I have never seen this being discussed in any standard thermodynamics book,
but it is a compelling way of looking at how the cycles are related.

2Constant volume.
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where VA,VB are the volumes at points A and B, and γ is the specific heat ratio. Combin-
ing this with (2.4), one gets

Σ =
QH

TC

[
ηC −

(V2

V1

)1−γ ]
> 0, (2.6)

which is the entropy produced during one cycle. The Otto cycle will be frequently men-
tioned throughout the dissertation and will play an important role when talking about
quantum heat engines.

2.3 Endoreversible cycle
Even though the Carnot cycle presents the greatest achievable efficiency, it has a ma-

jor problem when it comes to practical applications. It is due to the fact that, since all
strokes must be operated quasi-statically, each cycle will take a huge amount of time to
be completed, which makes the extracted power tend to zero (P =W/cycle period→ 0).
Therefore, a compromise between extracted power and efficiency must be taken into ac-
count when designing an engine in real life.

In order to treat this issue, the concept of endoreversible thermodynamics [3, 43, 44]
must be taken into account. It basically consists of considering that the working fluid is
at all times in local equilibrium at a different temperature than the bath, and never fully
equilibrates with it when they are put to interact. Thus, from the point of view of the bath,
the cycle performed by the working fluid is irreversible [44]. This framework matches the
consideration that the cycle is completed in finite-time.

A very significant contribution to the theoretical study of finite-time heat engines
in the context of endoreversible thermodynamics, was the work done by Curzon and
Ahlborn [3]. The authors showed that for a Carnot cycle operated in finite-time, the
efficiency at maximum power is

ηCA = 1 −

√
TC

TH
. (2.7)

This result is strictly smaller than (2.3), except in the trivial cases TC → 0, TH → ∞,
TC = TH. It gives a better estimate of real life efficiencies than the Carnot cycle, as it
can be seen in Table 2.1. Although the data therein presented is some decades old, they
show how the Curzon-Ahlborn efficiency is close to efficiencies of (then) existing power
sources.

Power source TC (◦C) TH (◦C) ηC ηCA ηreal

West Thurrock (U.K.) Coal Fired Steam Plant 25 565 64.1% 40% 36%
CANDU (Canada) PHW Nuclear Reactor 25 300 48.0% 28% 30%
Larderello (Italy) Geothermal Steam Plant 80 250 32.3% 17.5% 16%

Table 2.1: Comparison of different real life efficiencies with the Carnot and the Curzon-
Ahlborn efficiencies. These data were taken from Ref. [3].



Chapter 3

Quantum thermodynamics

Curiously the first proposal for the quantization of energy, the cornerstone of quantum
mechanics, occurred when Planck was studying thermal phenomena (radiation) of black
bodies [45]. Then it would be argued that the “birth” of quantum mechanics has thus
always been intimately related to thermodynamics. However, the early historical devel-
opment of quantum mechanics happened apart from thermodynamics, because they were
seen as entities that lived in radically different size scales, quantum mechanics dealing
with atom size objects and thermodynamics an emergent phenomenon of large systems.

Thermodynamics is related to the interaction of a system with its environment. Stan-
dard quantum mechanics considers that the system being studied is closed, that is, it
doesn’t exchange energy and matter with its surroundings. Hence, a formulation of how
quantum states evolve under interaction with external systems is crucial to put quantum
mechanics and thermodynamics on equal footing. One strategy to solve it is by using the
theory of open quantum systems [46].

3.1 Open quantum systems
Differently from closed quantum systems, the dynamics of open quantum systems

cannot be, in general, described by unitary evolution in time. Consider a quantum system
S surrounded by an environment E (Fig. 3.1a). Both are subsystems of the global sys-
tem S ⊕ E, which in turn is considered to be closed, thus evolving according to unitary
dynamics [46]. Furthermore, the global Hamiltonian is generically,

HS E(t) = HS + HE + VS E(t), (3.1)

where HS and HE live in the Hilbert space of the system (HS ) and of the environment
(HE), respectively. The total Hamiltonian HS E(t) and the interaction VS E(t) live in the
tensor product Hilbert spaceHS ⊗HE, meaning that they act on both system and environ-
ment. The time dependence of VS E(t) is not strictly needed, but it was taken for the sake
of generality. The double-headed arrows in Fig. 3.1a mean that energy can flow from one
subsystem to the other, as a consequence of the interaction Hamiltonian VS E(t).

The time evolution of the state of subsystem S – also known as the reduced state1 of S
– in terms of its density operator ρS can be done in two different ways [46], as it is shown

1This is analogous to marginalized probabilities in statistics.

10
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(a) Quantum system (S) and its environment
(E).

(b) Illustration of the two possible ways of
evolving the system’s state in time.

Figure 3.1: (a) Basic structure of an open quantum system and (b) schematic time evolu-
tion of the state of the quantum system.

in Fig. 3.1b. First, we start with the hypothesis that in the beginning of the dynamics
(t = 0) the states of the subsystems are not correlated, that is, the global state ρS E(0) is a
product state,

ρS E(0) = ρS (0) ⊗ ρE = ρS (0)ρE,

One way is to evolve unitarily the global state throughUt and in the end of the evolution
trace out the degrees of freedom of the environment – called a partial trace – to obtain the
final reduced state of the quantum system. In symbolic terms:

ρS (t) = trE{ρS E(t)}
= trE

{
Ut[ρS E(0)]

}
, (3.2)

where Ut[ρS E(0)] := Ut ρS (0)ρEU†t , Ut = T e−i
∫ t

0 dt′HS E(t′) and T is the time-ordering op-
erator. The unitary operator Ut comes from the solution of the von Neumann equation
describing the evolution of S ⊕ E:

dρS E

dt
= −i

[
HS E(t), ρS E]. (3.3)

The second way is to define a dynamical map Φt, which acts directly on the reduced
state ρS ,

ρS (t) = Φt[ρS (0)]. (3.4)

The dynamical map Φt is completely positive and trace preserving (CPTP),

Φt[ρS (0)] > 0, “completely positive”,

tr
{
Φt[ρS (0)]

}
= tr{ρS (0)} = 1, “trace preserving”.

In the above, Φt[ρS (0)] > 0 means the resulting state is a positive semi-definite operator.
If the internal correlations of the environment decay at a much faster rate than the time
scale of the system dynamics, thanks to the many degrees of freedom of the environment,
the family of maps {Φt, t > 0} will usually follow the semigroup property [46]

Φt1+t2(ρS ) = Φt1 ◦ Φt2(ρS ). (3.6)
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This characteristic is a manifestation of the Markovian dynamics behind Φt, which results
from the lack of memory effects in the reduced system dynamics2. Finally, {Φt, t > 0} is
called a quantum dynamical semigroup.

By noting that Φt maps density matrices inside the same space pertaining to HS , it
can be expressed in terms of operators living only in that Hilbert space,

Φt(ρS ) =
∑

i

Ki ρS K†i , with
∑

i

K†i Ki = I, (3.7)

where I is the identity operator. The operators {Ki} that satisfy (3.7) are said to be Kraus
operators. Maps following these properties are called quantum operations and they are
the most general evolution maps that can exist for a quantum system [46, 47].

Furthermore, given a quantum dynamical semigroup acting on a finite-dimensional
Hilbert space, there is a generator of this semigroup L that satisfies [46]

Φt = eLt, (3.8)

which in turn is the solution of a first-order differential equation, known as the Markovian
master equation:

dρS

dt
= LρS . (3.9)

In analogy with the Liouville equation in classical physics, the generator L is called
the Liouvillian. The most general form of L was determined by the works of Gorini,
Kossakowski and Sudarshan [30], and Lindblad [48], and reads [46]:

LρS = −i
[
HS , ρS

]
+

N2−1∑
k=1

γk

(
MkρS M†

k −
1
2

{
M†

k Mk, ρS

})
, (3.10)

where {Mk} are operators acting onL, N is the dimension ofHS , {·, ·} is the anti-commutator3

and γk > 0 are the relaxation rates, encoding how fast the system exchanges energy with
the environment. Combining Eqs. (3.9) and (3.10), one then gets the GKSL master equa-
tion:

dρS

dt
= −i

[
HS , ρS

]
+

N2−1∑
k=1

γk

(
MkρS M†

k −
1
2

{
M†

k Mk, ρS

})
. (3.11)

The first term of (3.11) gives rise to the unitary evolution, just as in the case of the von
Neumann equation, and the second term is the general form of a dissipatorD(ρS ), encod-
ing the exchange of information with the environment.

3.2 Heat, work and entropy production

Relying on the concepts presented in the last section, we now present how thermody-
namic quantities are translated to the quantum realm.

2Memory effect is the back-flow of information/energy from the environment into the system. Whenever
this happens, we say that the dynamics is non-Markovian.

3{a, b} := a b + b a.
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First, let’s start defining what is the equivalent of the classical thermal equilibrium
state, called the Gibbs state. The equilibrium state is defined as the one that maximizes
the von Neumann entropy (S (ρ) = − tr{ρ ln ρ}), according to the “Principle of Maximum
Entropy”. Knowing only the dimension of the Hilbert space of a certain system whose
density operator is ρ, the temperature T of the bath in contact with the system, the sys-
tem’s Hamiltonian H and its energy E = tr{Hρ}, it is possible to show that the state that
maximizes entropy is equal to [49, 50]:

ρth =
e−βH

Z
, with Z = tr{e−βH}, (3.12)

where β = 1/T is the inverse temperature. Intuitively, one expects that, when put into
contact with a thermal bath whose state is constant and memoryless (Born-Markov ap-
proximation), a quantum system should thermalize to (3.12). The next step is to define
what is heat and work from the 1st law of thermodynamics (conservation of energy).

Figure 3.2: Pictorial representation of a quantum system S interacting with a thermal bath
E through an interaction V(t). The interaction and the system are controlled externally.

We start considering a quantum system S that is in contact with a thermal bath E at
temperature T and Hamiltonian HE. An external agent (Fig. 3.2) may manipulate the
Hamiltonian of the system S (HS (t)) and the interaction between system S and bath E
(V(t)). The total Hamiltonian is then:

HS E(t) = HS (t) + HE + V(t),

and as it acts on the global system S⊕E, which is isolated, the global dynamics is unitary.
As a result, any total variation of energy is associated with the work done by the external
agent [19, 51]:

Ẇ(t) := −
dES E(t)

dt
= −tr

{ d
dt

[HS (t) + V(t)] ρS E(t)]
}
, (3.13)

which is positive if work is extracted. On the other hand, looking only at the system S or
the bath, the dynamics is dissipative. The energy that leaves the thermal bath and enters
into the system S is defined as the heat [19, 21, 51]:

Q̇(t) := −tr
{
HE

dρS E(t)
dt

}
, (3.14)
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which is defined in such a way that heat is positive when it enters the system. Writing the
time derivative of the interaction energy

V̇(t) =
d
dt

tr{V(t)ρS E(t)}, (3.15)

and defining the amount of work extracted from S,

ẆS (t) := Ẇ(t) + V̇(t), (3.16)

the 1st law of thermodynamics is recovered:

dES (t)
dt

= Q̇(t) − ẆS (t), (3.17)

In order to obtain the 2nd law of thermodynamics in this framework, we first define
the entropy production as being equal to [52],

Σ(t) := ∆S (t) − βQ(t), (3.18)

where ∆S (t) is the difference of von Neumann entropy of S between 0 and t, and Q(t) is
the Eq. (3.14) integrated with respect to time. The second term on the RHS of Eq. (3.18)
is the entropy exchanged between the system S and the bath, being expressed in the
same manner as defined by Clausius [53]. Considering that the initial global state is
uncorrelated, ρS E(0) = ρS ⊗ ρ

th
E = ρSρ

th
E , it can be shown that Eq. (3.18) may be written in

terms of the relative entropy between the joint state at time t and the product of the state
of the system S with the thermal state of the bath [19, 52]:

Σ(t) = D[ρS E(t)||ρS (t)ρth
E ] ≥ 0, (3.19)

with D[ρ||σ] := tr{ρlnρ}− tr{ρlnσ} > 0 being the quantum relative entropy. It is important
to notice, however, that the non-negativity of (3.19) does not imply the non-negativity of
the entropy production rate, Σ̇ (see below). Thus, (3.19) is a “weak” expression of the 2nd

law of thermodynamics.
What is remarkable about the treatment shown above is that it is independent of the

size of the thermal bath, such that the previous results hold even if the bath’s size is of the
same order of magnitude of the system’s size. In such a case, the bath’s state is heavily
influenced by the system [19]. Another thing that is worth commenting is that the total
energy

ES E(t) = ES + EE(t) + tr
{
V(t) ρS E(t)

}
,

is not solely the sum of the local energies of the system S and the bath, but the sum of
these local energies and a non-local energy due to the interaction V(t) [49]. Here we
have a major difference between classical (macroscopic) thermodynamics and quantum
thermodynamics, interactions cannot be neglected when accounting for the total energy
of a system. Doing so is justified when we have macroscopic objects, whose interaction
is by far weaker than the internal energies of the objects. However, in the quantum realm
interactions can be of the same order of magnitude of the local energies, and neglecting
them is generally a bad approximation. Not only interactions become relevant in the
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energy balance, when going down to very small sizes, but also fluctuations (the previous
quantities are averages) become important [40, 54–56].

The special case where the interaction energy does not contribute turns out to be as-
sociated with the condition

[HS (t) + HE(t),V(t)] = 0, ∀t ∈ <, (3.20)

known as strict energy conservation. It can be shown that this ensures tr{V(t) ρS E(t)} =

tr{V(0) ρS E(0)}, thus V̇ = 0 (these calculations can be found in Chapter 5). It means that
no energy is trapped in the interaction. The interactions that satisfy Eq. (3.20) are the
generators of special quantum operations, called thermal operations [21, 57, 58].

For master equations derived from models which either satisfy (3.20) exactly, or at
least satisfy it approximately, it’s then possible to conveniently write heat and work as

Ẇ(t) = tr
{dHS (t)

dt
ρS (t)

}
, (3.21)

Q̇(t) = tr
{
HS (t)

dρS (t)
dt

}
= tr

{
HS (t)L ρS (t)

}
= tr

{
HS (t)D(ρS )

}
. (3.22)

And also, as a result of applying Spohn’s inequality [59], the entropy production rate is
found to be greater than or equal to zero,

Σ̇(t) =
dS (t)

dt
− βQ̇(t) > 0, (3.23)

which is stronger than (3.19). Calculating quantum thermodynamic quantities and mod-
elling quantum heat engines using GKSL master equations is historically at the root of
the field of quantum thermodynamics, which dates back to works of Alicki [14] and
Kosloff [15].

3.3 Information & thermodynamics

In the last sections, we have seen how open quantum systems relate with quantum
thermodynamics. In a broader sense, the latter may be associated to another research
field, known as quantum information theory. This research field, which the reader can
get in touch by checking Refs. [47, 60], studies how information theory can be translated
to the quantum realm and its possible applications. Thus, we should expect that also
thermodynamics is somehow connected to (quantum) information theory, which is not
only an important fundamental inquiry [61, 62], but also a cornerstone of future quan-
tum technologies. As a matter of fact, recent works have explored this relation between
information and thermodynamics to design quantum engines fueled by information [63–
66].
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3.3.1 Landauer’s principle
Information is physical [67]. Far from a mere abstract concept, information needs a

physical substrate where it can be encoded, processed and transmitted. The main works
that explore this connection gravitate around Landauer’s principle [16]. It postulates that
erasing information implies a heat dissipation of at least T ln 2 for each classical bit,
where T is the environment’s temperature. This principle already shows the intimate
relationship between (quantum) information and thermodynamics, which we shall expose
in more detail.

Figure 3.3: Pictorial depiction of the erasure procedure, which culminates at Landauer’s
principle. W is the work applied to the particle and Q is the dissipated heat.

In Fig. 3.3, it’s shown a simple example of the erasure procedure - in the classical
picture - that generates dissipation. A particle may be in the left or in the right partition of
a cavity, whose wall dividing the two halves can only be crossed through the action of an
external agent. Then, one wants to erase the information of where the particle is by fixing
a final state for whatever the initial state of the system was. In order to do so, a workW
must be applied onto the cavity, hence, if the particle was in the left partition, it will move
to the right one, and if it was already on the right side, it will continue there.

According to Boltzmann, entropy might be expressed as [42],

S = ln Ω, (3.24)

where Ω is the number of accessible (micro)states. The erasure procedure has an entropy
variation associated with it inside the cavity, for the system starts with 2 accessible states
and ends with only 1 possible state. Hence,

∆S = S f − S i

= ln Ω f − ln Ωi

=��
�*0

ln 1 − ln 2
= − ln 2, (3.25)

which implies that the entropy of the “rest of the world” increases at least by ln 2. From
the 2nd law of thermodynamics and assuming that the internal energy of the system cavity-
particle is the same before and after the erasure, the work applied to the particle satisfies

W > ∆F = −T∆S , (3.26)



3. QUANTUM THERMODYNAMICS 17

being F the Helmholtz free energy and T the temperature of the environment surrounding
the cavity. Finally, by using the 1st law of thermodynamics (heat is positive when flowing
to the environment), one finds that

Q > T ln 2, (3.27)

which is exactly what states the Landauer’s principle. Its version for a quantum setup,
which can be at zero temperature, is done in Ref. [68].

In summary, from simple reasoning one can show the validity of the bound postulated
by Landauer. Its universality is expressed by the minimal information it requires to be
calculated. This bound has been tested experimentally in microscopic systems [69–72],
showing its robustness.

3.3.2 Szilard engine
Directly associated to the overlap between information and thermodynamics lies the

famous Maxwell’s paradox (also known as Maxwell’s “demon”). In order to test the limits
of the 2nd law of thermodynamics, Maxwell devised a gedanken4 experiment [73]. A
hypothetical entity (the demon), possessing information about the positions and velocities
of the particles forming a gas, could separate hot (fast) particles from cold (slow) particles,
which corresponds to heat flowing from a cold bath to a hot bath, something forbidden
the 2nd law of thermodynamics.

In 1929, Szilard5 came up with a heat engine which makes use of Maxwell’s paradox,
this machine is called the Szilard engine [18]. Together with the idea of using Landauer’s
principle, conceived by Bennett [17], the Szilard engine (SZE) operation is shown in
Fig. 3.4. In the classical framework, we consider a cavity containing a gas particle, in
which a wall is inserted (Fig. 3.4a). After placing this barrier, we still don’t know where
exactly the particle is, so a sneaky entity with a modest memory of one bit measures the
position of the particle and registers it (Fig. 3.4b). By knowing where the gas particle is,
the wall can be coupled to an external mechanism, such that, by expanding isothermically
in contact with a bath at temperature T , the particle will deliver a certain amount of work
(Fig. 3.4c). Finally, the wall is removed and the memory of the entity is erased, starting
all over again the cycle (Fig. 3.4d).

The work extracted from the cavity is equal to [75],

Wextracted = T
∫ V

V/2
dV ′

1
V ′

= T ln 2, (3.28)

where V is the volume of the cavity. However, due to the inherent energy cost of erasing
the memory of the entity stemming from Landauer’s principle,

Werasure > T ln 2, (3.29)
4“Thought”, in German.
5Leo Szilard is at the same time very important in scientific history and unknown to many people. He

was essential to the Manhattan Project, since he had the original idea of using neutrons to obtain sustained
nuclear reactions. Curiously, he had this idea while crossing a street and observing the movement of the
cars in London [74].
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the net work balance is not positive,

Wnet =Wextracted −Werasure 6 0. (3.30)

Also, the heat that enters the bath due to the erasure is equal to or greater than the heat
absorbed by the particle. Hence, in the end of the cycle, there is no full conversion of heat
into work, as one would naively think. As a result, the 2nd law of thermodynamics is saved
and the “demon” exorcised [75]. Finally, Landauer’s principle guarantees consistency of a
thermodynamic cycle containing information theory resources. Just as before, a quantum
version of this reasoning is feasible [63].

Far beyond the case of SZEs, the relation between information and thermodynamics
is of great relevance for other subjects, such as information processing in ultra-small sys-
tems [76]; establishing how and with what efficiency quantum information resources (co-
herence, entanglement, etc.) can be transformed into work and vice-versa6 [62, 77–79];
and implementing quantum heat engines operating with engineered reservoirs containing
quantum information resources [80–84].

Figure 3.4: Scheme of the Szilard engine. (a) the wall is inserted, (b) the position of
the gas particle is measured and registered, (c) work is extracted by means of isothermal
expansion, (d) the memory is erased (Landauer’s principle) and the wall is removed.

As a last remark, a key problem to fully describe (quantum) information and ther-
modynamics on equal footing is unifying the framework in which they exist, in order to
have models and concepts that naturally comprehend both. For the modelling part only,
one possibility is to use collisional models, which are studied in Chapter 5 and they are
also the building blocks of the quantum heat engine model presented in Chapter 6. Fi-
nally, setting a common conceptual ground is a hard quest, since it requires rethinking
already established aspects of thermodynamics and information theory, in a coherent and
non-contradictory manner. An interesting (and unconventional) approach is known as
constructor theory of thermodynamics [85], which applies elements introduced by con-
structor theory (e.g. possible/impossible tasks) to hold together thermodynamics and

6This is part of a broader research field called resource theory of thermodynamics.
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information theory. The constructor theory is a kind of “theory of everything”, it was cre-
ated by David Deutsch7 and it’s currently being developed by him, Chiara Marletto and
other researchers in the University of Oxford. The curious reader is encouraged to check
Ref. [86].

7Deutsch is well known for his pioneering works on quantum computation.



Chapter 4

Quantum heat engines

Although the research field of quantum heat engines (QHEs) is quite young, some old
works have set the ground so that in our days the seed would germinate. Even before
the works of Alicki [14] and Kosloff [15], which were very important to start a structured
approach of studying QHEs, an older paper dating from the 1950’s was the first to envision
quantum systems working as heat engines. The short and authentic paper of Scovil and
Schulz-Dubois [13] modelled the three-level maser as a heat engine (see Fig. 4.1), giving
also experimental reasoning to the model. Therefore, they described a quantum system
using thermodynamic arguments.

Figure 4.1: Model of the maser as a heat engine [13]. A hot bath at temperature TH

couples with the 1-3 transition (frequency ωH) of a three-level system, while a cold bath
at temperature TC couples with the 2-3 transition (frequency ωC). The jump from 2 to 1
at frequency ωS is considered to be an extracted signal if population inversion (p2 > p1)
occurs. The same system may operate as a refrigerator, if run backwards.

The fast miniaturization of devices and the prospect of novel quantum technologies
in the near future [87], makes it imperative to understand the relation between quan-
tum mechanics and thermodynamics. Conceiving heat engines in the quantum realm is a
promising approach to fill the gaps between the two branches of physics, since they are in
the very foundations of classical thermodynamics. The relevance of understanding how
to describe quantum and thermodynamic phenomena in a single language lies not only
on enlarging the knowledge basis on fundamental physics, but also on providing tools
to optimize ultra-small heat engines and to harness quantum effects in thermodynamic
processes.

Quantum heat engines come in various flavors, being broadly classified as either

20
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continuous-time QHEs or stroke-based QHEs. The original contributions of this disser-
tation (Chapter 6) are in the context of the latter. But, for concreteness, in the remainder
of this chapter we will discuss both cases, side by side, in order to better appreciate their
differences and similarities.

4.1 Continuous-time quantum heat engines
As the name suggests, continuous-time QHEs operate continuously in time, that is,

all the processes that constitute the engine happen “all at the same time”1. As a result,
we do not work with integrated quantities, but with currents of heat and work flowing
between the parts. Another characteristic of continuous-time QHEs is that they operate in
a non-equilibrium steady-state (NESS), meaning that it’s a fixed point of the dynamical
equation that dictates the time evolution of the working fluid’s state, which is also out-
of-equilibrium, making it possible to sustain heat and work currents [88]. Continuous-
time QHEs can also be formulated in the context of resource theories [57, 58, 89–91].
This framework is intimately related to quantum information theory [90], being suited
for determining what are the limits of operation of a certain quantum system, given a set
of rules to be obeyed (e.g. global energy conservation). Although very important, this
approach to QHEs will not be specifically treated in this dissertation, whose aim is at
finite-time operation.

Continuous-time QHEs can be modelled to be autonomous [88, 92]. By autonomous
we mean that these QHEs operate by themselves, having all components embedded into
them, thus an external agent is not needed [88, 92, 93]. Autonomous QHEs work on
the principle of population inversion in quantum systems that are used as working fluids.
The simplest quantum system that could be used for autonomous operation is the qutrit
(a three-level system) [94], similar to the maser model of Scovil and Schulz-Dubois [13].
However, only considering this model is not enough, as it works close to equilibrium and
a dynamical description of the working fluid is desired [88, 92].

The model of autonomous QHEs that is studied in Refs. [95–97] is a generalization
of the Scovil-Schulz-Dubois model [13]. This basic model is shown in Fig. 4.2. It shows
two qubits, 1 and 2, which have frequencies ωC and ωH and are thermalized with baths
at temperatures TC and TH (TH > TC), respectively. The natural flow of heat from 2 to
1 (from hot to cold) is conditioned to an increase of the energy of a work load, depicted
as an infinite ladder with equally spaced energy levels satisfying the resonance condition
ωW = ωH − ωC. The three entities interact through the Hamiltonian

V = χ
(
σ−H σ

+
C a† + σ+

H σ
−
C a

)
, (4.1)

where the σ’s are Pauli operators2, which describe the level transitions of the qubits 1 and
2, and a†, a are, respectively, the creation and annihilation operators that act on the ladder,
injecting (extracting) one quantum of energy into (from) the work load.

The work load effectively interacts with a virtual qubit [97], which is a two-dimensional
subspace of the qubits {|g〉C |e〉H , |e〉C |g〉H}. This virtual qubit has a transition frequency

1In reality, they may be happening at different moments, but their time scales are so short that it seems
that they are simultaneous.

2For a Hilbert space of dimension 2: σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
.
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Figure 4.2: Basic model of an autonomous QHE. Two qubits (1 and 2) thermalized with
respect to the baths interact with an infinite ladder representing the work load.

equal to ωH − ωC. Now, considering weak interaction and a population ratio between
excited (e) and ground (g) states of qubit 1 or 2 being equal to

p(e)
x

p(g)
x

= e−βxωx , with x = C,H,

the population ratio between the two states of the virtual qubit will be

p(g)
C p(e)

H

p(e)
C p(g)

H

= e−βHωH+βCωC ≡ e−βVωW . (4.2)

The parameter βV = 1/TV is the inverse virtual temperature of the virtual qubit,

TV =
ωH − ωC

βHωH − βCωC
. (4.3)

This virtual temperature must be less than 03, which guarantees that the state |g〉C |e〉H is
more likely to be populated than |e〉C |g〉H, enabling energy to be transferred to the work
load. By doing the proper calculations of the dynamics of the populations of the energy
levels of the ladder (as it is done in Ref. [97]), one finds that the ratio between the total
energy rate in the work load ĖW and the heat rate flowing from the hot bath Q̇H is equal
to,

η =
ĖW

Q̇H

= 1 −
ωC

ωH
6 1 −

TC

TH
. (4.4)

By identifying variables of Section 2.2 with the present ones, VA → 1/ωC, VB → 1/ωH

and γ = 0, we find that (4.4) is the Otto efficiency. The reversed operation of an au-
tonomous QHE generates an absorption refrigerator, where the work load drains energy
from both qubits 1 and 2.

Nevertheless, when one needs an external power source and/or an intricate feedback
control, we say that the continuous-time QHE is driven [92]. By using an external power

3Virtual/effective temperatures may be negative.
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source, it means that actually the system operates as a refrigerator. One example of driven
continuous-time QHE operating as a refrigerator is the maser model of Scovil-Schulz-
Dubois run backwards. This can be seen as a simple model of laser cooling [88], a very
important technology in experimental condensed matter physics, used, for example, in
trapped ion setups to implement quantum algorithms [98]. On the other hand, by also
introducing measurements and a feedback loop to regularize the operation of the QHE,
the work load attached to the engine becomes a quantum flywheel, which stores in a stable
way the energy contained in the load [99].

4.2 Stroke-based quantum heat engines
As already discussed in Chapter 2, strokes are thermodynamical processes that can be

put into sequence to form a cycle. In the case of stroke-based QHEs, it is not different,
transformations of open quantum systems are viewed as strokes and concatenating them
gives rise to a quantum thermodynamical cycle. Since each stroke has an explicit length
of time associated with it, time is an important parameter to be taken into account, for
things to not happen “all at once”, as it was the case with continuous-time QHEs, but at
specific times. This feature may be explored to optimize the operation of the QHE, in
resemblance with the work of Curzon and Ahlborn [35, 92].

In general terms, strokes can be associated to dynamical maps Sα acting on the state
of the working fluid ρt ≡ ρ(t),

Sα : ρt0 → ρt0+τα ,

where the subscript α is a label for the stroke being performed and τα is the time allocated
for the process α. Furthermore, assuming that these maps form a quantum dynamical
semigroup, they can be written as [c.f. Eq. (3.8)],

Sα = eLατα , (4.5)

with Lα being the Liouvillian of stroke α. Then, the dynamical map that represents the
whole cycle C, composed of k strokes, is found by making the composition of all maps,

ρt0+τ = C(ρt0) = Sk ◦ · · · ◦ S1(ρt0) =

k∏
α=1

eLαταρt0 , (4.6)

in which we define τ =
∑k
α=1 τα as the cycle period. In the end, after a certain number n∗

of cycles, it’s expected that the state of the working fluid will reach a stationary regime,
which corresponds to the fixed-point of the cycle’s map,

ρ∗ = C(ρ∗), (4.7)

and the system is said to have entered the limit-cycle [100]. Finally, the state of the work-
ing fluid after any stroke is found by solving the dynamical equations of motion in (4.6),
having in mind the GKSL equation [c.f. Eq.(3.11)], whose dissipator and Hamiltonian de-
pend on the specific characteristics of the working fluid, the thermal baths and the stroke
itself.

A simple example of stroke-based QHE is the four-stroke quantum Carnot cycle,
which is now presented in the case that the working fluid is a quantum harmonic oscillator
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(QHO) with Hamiltonian Ht = ωt(a†a+1/2), where ωt is a time-dependent frequency and
a, a† are the annihilation and creation operators, respectively4. Starting with the Carnot
cycle, we need the following strokes (see Fig. 4.3a): (a) hot isothermal expansion, (b)
isentropic5 expansion, (c) cold isothermal compression and (d) isentropic compression.
The isentropic processes are simply unitary evolution maps. We discuss here the case
of quasi-static cycles. Following the adiabatic theorem [101], each isentropic process
changes the energy E of the QHO according to,

E f =
ω f

ωi
Ei = ω f tr

{(
a†a +

1
2

)
ρi

}
=
ω f

2
coth

(
ωi

2Ti

)
, (4.8)

where the indices i and f stand for “initial” and “final”, respectively. Then, the frequencies
for these strokes are equal to ωi = ω2, ω f = ω3 (expansion) or ωi = ω4, ω f = ω1

(compression), as shown in Fig. 4.3a. The term containing the temperature Ti in (4.8) is
explained by the fact that initially the working fluid is in a thermal state of temperature
Ti, where Ti = TH, TC for an isentropic expansion or compression, respectively. Thus,
〈a†a〉i = tr{a†a ρi} = 1/(eβiωi − 1) = n̄i, in which n̄i is the Bose-Einstein occupation with
βiωi = βHω2 (expansion) or βiωi = βCω4 (compression). The extracted work during the
isentropic strokes is equal to minus the sum of the energy variations,

Wb,d = −(E f − Ei)(b) − (E f − Ei)(d)

= −
(ω3 − ω2)

2
coth

(
ω2

2TH

)
−

(ω1 − ω4)
2

coth
(
ω4

2TC

)
. (4.9)

Since these strokes are isentropic, there is no exchange of heat with the baths Q = 0.
The isentropic strokes are complemented by the hot and cold isothermals. These

strokes are more intricate, since one must implement a protocol for both the coupling
with the baths and the frequency of the QHO. The final state is calculated by applying the
resultant maps – which will follow the form of (3.11) – to the initial state of each stroke.
Following the calculations done in Appendix A, one finds that the extracted work during
both isothermal strokes is expressed by,

Wa,c = −TH ln
[sinh

(
ω2/2TH

)
sinh

(
ω1/2TH

)] − TC ln
[sinh

(
ω4/2TC

)
sinh

(
ω3/2TC

)], (4.10)

which is followed by a heat exchanged with the hot bath equal to,

QH = E2 − E1 − TH ln
[sinh

(
ω2/2TH

)
sinh

(
ω1/2TH

)], (4.11)

with E j = 1
2ω j coth(βHω j/2) being the energy at the points j = 1, 2. Then, the efficiency

is given by,

η =
Wa,c +Wb,d

QH
, (4.12)

4In this simple case, it’s assumed that the QHE is already in the limit-cycle. The general treatment of
stroke-based QHEs, as previously presented, is by far more complicated.

5Constant entropy.
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where the resultant expression comes from the replacement of the terms using Eqs. (4.9)–
(4.11). It is readily seen that, in general, this expression is not equal to the Carnot ef-
ficiency. The explanation is that, although quasi-static, the cycle may not be reversible.
It’s what happens when at the end of an isentropic stroke (continuous and green branches
in Fig. 4.3a), the energy of the QHO doesn’t match the initial energy of the subsequent
isothermal stroke (red and blue continuous branches in Fig. 4.3a). Whenever it happens,
the system will have to thermalize with the bath by exchanging heat irreversibly (red and
blue curly arrows in Fig. 4.3a). This in turn will result in entropy production, lowering the
efficiency of the QHE. To ensure quasi-static reversibility, we must make the energies at
the end of the isentropic strokes match the ones at the beginning of the isothermal strokes
(see the dashed branches in Fig. 4.3a). In this case, no extra heat is exchanged with the
baths, entropy production is equal to zero and the Carnot efficiency is recovered. By im-
posing that the energies of the branches match with each other, the following condition is
found [35]:

TC

TH
=
ω3

ω2
=
ω4

ω1
. (4.13)

As a result, Eq. (4.12) becomes identically equal to the Carnot efficiency ηC = 1−TC/TH.
As previously discussed in Chapter 2, the power is asymptotically equal to zero when

one has the Carnot efficiency. Lifting this constraint opens the path of exploring finite-
time behavior, that is, adjusting the protocols and time allocations to optimize the balance
between efficiency and power, while paying the cost of producing entropy. However, the
calculations presented in this chapter are restricted to quasi-static strokes. Getting rid of
this constraint implies solving much more complicated dynamics (time-dependent GKSL
master equations). Hence, one needs to apply approximations [32], or make use of math-
ematical methods, such as Floquet theory [35] and closed-algebras [102], or introduce the
concept of quantum friction [33, 103–105].

(a) Diagram of the Carnot cycle. (b) Entropy production and efficiency.

Figure 4.3: Plot of (a) the energy of the working fluid for all strokes, as a function of 1/ω
and in the case of reversible (dashed branches) and irreversible (continuous branches)
quasi-static cycles. Plot of (b) the entropy production and the efficiency as functions of
ω3. The parameters are equal to: TC = 0.4, TH = 1.0, ω1 = 2.0, ω2 = 1.0, ω3 = 0.4
(except for (b)) and ω4 = 0.8.
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The total entropy production can be found by using Eq. (2.4),

Σ =
QH

TC
(ηC − η)

=
QH

TC

(
1 −

TC

TH

)
−
Wa,c +Wb,d

TC
, (4.14)

which is plotted together with the efficiency for different values ofω3 (Fig. 4.3b). Looking
at these plots, we reaffirm that entropy production decreases the efficiency. When Σ goes
to zero, η reaches the Carnot efficiency (TC = 0.4, TH = 1.0, ηC = 1 − 0.4/1.0 = 0.6), as
depicted by the gray dashed lines.

By solely using the framework of time-dependent GKSL master equations, one is still
limited in studying finite-time behavior, as it was already said. The techniques aforemen-
tioned (approximations, closed-algebras, Floquet theory and quantum friction) are valid
and have their merits, however it is difficult to know whether the cost-benefit analysis is
positive, since all alternatives lead to complicated calculations that, together with a more
complex working fluid, makes them prohibitive for the design of real-life QHEs.

Together with these issues, the trade-off between power and efficiency may be prob-
lematic for realistic applications. One interesting route is to use the idea of shortcut-to-
adiabaticity, which shall be discussed in Chapter 7.

Finally, in the time-dependent GKSL master equations approach, it’s hard to embed
genuine quantum effects into the QHE model, such as coherence and entanglement. It
would be interesting to conceive another route of investigation, which is adapted to quan-
tum effects. Therefore, their relation with thermodynamics would be better understood.
On top of that, such an approach to finite-time QHEs must be less complex than the
methods aforementioned. Looking for a candidate that fulfills these requirements was a
particular motivation of this dissertation. Results that will be presented in Chapter 6 pro-
vide an alternative way of modelling finite-time QHEs that doesn’t suffer from the same
problems as its “competitors”.



Chapter 5

Collisional models

It is commonly considered that thermal baths are reservoirs containing a large number
of constituents. This, together with generally complicated internal interactions, generate a
fast decay of their correlations, as already mentioned in Chapter 3. It’s the basis on which
quantum master equations in the GKSL form are usually obtained. Moreover, these as-
sumptions have another consequence regarding the state of the bath. It is taken for granted
that, at all times, the bath’s state is a fixed thermal state, meaning constant bath tempera-
ture. However, it happens that, for ultra-small systems, the baths may be of comparable
size as the working fluid, breaking down the assumption that the bath’s state remains un-
changed. In addition, trending experimental setups are able to manipulate single quantum
states [4–12], and integrating this technological aspect with quantum thermodynamics is
a promising way of modelling and testing thermodynamical phenomena in the quantum
realm [106–109].

A strategy which has gained a lot of attention in recent years is the application of the
so-called collisional models1 [19–27]. These consist of a set of possible implementations
of environments, beyond the standard heat bath [19, 21]. Even more, they may be used in
different approaches, such as modelling quantum stochastic systems [27], transport in spin
chains [22, 26] and quantum heat engines [20, 29, 38]. Collisional models pave the way
for a framework in which information and thermodynamic quantities are mixed together,
so that their relation might be better understood. And, in addition, their discretized nature
makes them ideal candidates to model finite-time QHEs [29].

5.1 The general picture

The basic setup of a collisional model is shown in Fig. 5.1. The environment is seen
as a stream of identical units, or ancillas2, in a well-defined state ρE and Hamiltonian HE.
During a time τ, one ancilla interacts through the Hamiltonian V with a system whose
state is ρ0

S and Hamiltonian HS . It’s important to emphasize that, initially, the system and
ancilla are uncorrelated (i.e. ρSE = ρ0

S ρE). After the interaction, the ancilla is discarded
and a fresh one is introduced, starting the process again. For simplicity, we assume that
the time that it takes for the next interaction to start is negligible. In symbols, the first

1Also called “repeated interactions”.
2Plural of ancilla: auxiliary, accessory (in this context).

27



28 5. COLLISIONAL MODELS

Figure 5.1: Sequential interactions composing a collisional model. The system interacts
for a time τ with an environment ancilla, prepared in a state ρE, which is then discarded
and a fresh new one is introduced.

collision can be summarized by

ρ1
S = trE{ρ

′
SE}

= trE
{
US E ρ

0
S ρEU†S E

}
= E(ρ0

S ), (5.1)

where US E = e−i(HS +HE+V)τ and E is the quantum map connecting ρ0
S to ρ1

S . Likewise, the
final state of the ancilla which will be discarded is

ρ′E = trS {ρ
′
SE}

= trS
{
US E ρ

0
S ρEU†S E

}
. (5.2)

Repeating this procedure n+1 times then yields the stroboscopic (discrete-time) evolution
of the system, in the form

ρn+1
S = E(ρn

S ). (5.3)

For consistency, the global state ρSEn and the state of the environment ρEn will also be
labelled. It is important to note that the initial state of all ancillas is the same {ρEn ≡

ρE | ∀n ∈ N}. However, after the interaction that is no longer the case, since each ancilla
interacts with the system at a different moment {ρ′En

, ρ′Em
| n , m}. The map E leads the

system to a unique steady-state ρ∗S ,

ρ∗S = E(ρ∗S ), (5.4)

which satisfies the Data Processing Inequality (DPI) [19, 31, 46]

D[ρn
S ||ρ

∗
S ] > D[E(ρn

S )||E(ρ∗S )] = D[ρn+1
S ||ρ

∗
S ], (5.5)

where D[ρ||σ] = tr{ρlnρ − ρlnσ} is the quantum relative entropy. This strict inequality
means that ρ∗S is indeed unique, and also that D[E(ρn

S )||ρ∗S ] is monotonically decreasing
and bounded from below [19].

Moreover, the global evolution of the system plus the environment ancilla is unitary,
meaning that the total energy is conserved at any moment, thus

tr{(HS + HE + V)(ρ′SEn
− ρn

S ρEn)} = 0, ∀n ∈ Z. (5.6)

This expression may be expanded, so that one obtains,

∆En
S = Qn −Wn

on/off, (5.7)
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where ∆En
S = tr{HS (ρn+1

S − ρn
S )}, Qn := −∆En

E = −tr{HE(ρ′En
− ρE)} is defined as the heat

flowing between the system and the ancilla [19, 110], andWn
on/off

= tr{V(ρ′SEn
− ρn

S ρE)}.
The last term is known as the on/off work, which is the cost of switching the interaction
on and off [19, 20]. This term may be also justified by looking at the global Hamiltonian
as time-dependent,

HS E(t) = HS + HE + λ(t)V,

where λ(t) is a boxcar function equal to 1 only during the interaction time τ. The work is
defined using the standard expression,

Won/off = − lim
ε→0

∫ τ+ε

−ε

dt
〈
∂HS E(t)
∂t

〉
.

The only component of the Hamiltonian that is time-dependent is λ(t). Its derivative is
a pair of anti-parallel Dirac deltas, one at the beginning of the interaction and the other
one afterwards. Thus, the result of the integration depends on the initial time, when the
interaction is turned on, and on the final time, when the interaction vanishes. After doing
the calculations, the result is exactly the same as previously defined for the on/off work.

After tracing out the ancilla, we loose information about the correlations created be-
tween system and ancilla during the interaction. This loss of information is quantified by
the mutual information,

I(ρ′SEn
) = S (ρn+1

S ) + S (ρ′En
) − S (ρ′SEn

), (5.8)

in which S (ρ) = −tr{ρlnρ} is the von Neumann entropy. Also, the change in the state of
the environment ancilla must be taken into account, by means of the relative entropy:

D[ρ′En
||ρE] = tr{ρ′En

lnρ′En
− ρ′En

lnρE}. (5.9)

Eqs. (5.8) and (5.9) summed together give us how irreversible the process is, quantified
by its entropy production [19, 111],

Σn = I(ρ′SEn
) + D[ρ′En

||ρE] > 0. (5.10)

These results are very general and do not assume anything about the structure of the
states of the system and ancillas. Also, all energy sources are identified and well con-
trolled, which is something crucial for a consistent thermodynamic framework. Here lies
a core difference from the master equations approach. These describe precisely the dy-
namics of the system’s state, but the approximations in the derivation have an impact
on tracking all energy sources. This, in turn, has fundamental consequences on the
thermodynamics of the system. As it shall be seen, collisional models might be used
to obtain quantum master equations, stressing their generality.

5.2 Thermal state ancillas
Very relevant to quantum thermodynamics is the case of environments composed of

thermal state ancillas. These have a well defined temperature T = β−1 and are written in
the Gibbs state form,

ρE =
e−βHE

ZE
, (5.11)
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where ZE = tr{e−βHE } is the partition function of the environment ancilla. Also, the inter-
action V is chosen such that there is strict energy conservation, that is,

[HS + HE,V] = 0.

Notice that V does not commute with HS and HE individually, only with their sum. There-
fore, the operator US E will also present this same property. The open dynamics of a
system interacting with a thermal environment by means of a strict energy conserving
unitary is called a thermal operation. [21, 57, 58]. Thermal operations have the special
attribute of solely exchanging energy between two parties, without trapping energy in the
interaction,

Wn
on/off = tr{V(ρ′S En

− ρn
SρE)}

= tr{U†S EVUS E ρ
n
SρE − Vρn

SρE}

≡ 0, (5.12)

and
∆En

E = −∆En
S . (5.13)

The minus sign defines the heat as positive when it enters the system,

∆En
S = Qn. (5.14)

Using Eqs. (5.8) and (5.9) in Eq. (5.10), and knowing that the system and the ancilla
are uncorrelated in the beginning of the interaction, one gets

Σn = I(ρ′S En
) + D[ρ′En

||ρE]
= ∆S n

S +
��

��S (ρ′En
) − S (ρE) −

��
��S (ρ′En

) − tr{ρ′En
ln ρE}

= ∆S n
S + β∆En

E

= ∆S n
S − βQ

n, (5.15)

where ∆S n
S := S (ρn+1

S ) − S (ρn
S ). Eq. (5.15) is exactly the standard expression for the

entropy production in the context of thermodynamics [19, 52]. Then, we can identify the
second term on the RHS as the entropy flux between the bath and system.

5.2.1 Steady-state
Assuming that the system reaches the steady-state, its state variables (energy and

entropy) will satisfy
∆S ∗S = ∆E∗S = ∆E∗E = 0,

which also implies
Q∗ = Σ∗ = 0,

corroborating the premise that it is a steady-state. By means of thermodynamic argu-
ments, one would say that the system has thermalized with the bath, being now also an
equilibrium state with temperature T = β−1. To confirm this reasoning, suppose that the
steady-state of the system is

ρ∗S =
e−βHS

ZS
, (5.16)
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where ZS = tr{e−βHS } is the partition function. Then, Eq.(5.4) becomes

ρ∗S = trE{US E
e−βHS

ZS

e−βHE

ZE
U†S E}

=
1

ZS ZE
trE{US Ee−β(HS +HE)U†S E}

=
e−βHS

ZS��ZE
trE{e−βHE }︸     ︷︷     ︸
��ZE

=
e−βHS

ZS
, QED. (5.17)

Crucially, we used here the fact that US E is a thermal operation, so that it commutes with
HS + HE (but not with each one individually). Therefore, (5.16) is indeed the steady-state
of the system. Then, we say that system was thermalized through sequential “collisions”
with a stream of thermal ancillas. It appeals to our intuition of thermalization: particles at
different temperatures collide until they reach an equilibrium distribution of position and
momenta.

5.3 Connection to quantum master equations
A powerful trait of collisional models, apart from their versatility and discretized na-

ture, is the possibility of deriving quantum master equations by applying certain approx-
imations [20, 21]. The key idea is to pass from discrete-time to constinuous-time, by
means of rescaling the interaction and taking the limit of very fast collisions. Far from
being only a mathematical trick, the rescaling procedure has a physical meaning. As al-
ready discussed in Chapter 3, the correlations of a (large) thermal bath decay very fast,
that is, the characteristic time of the bath is way shorter than the time scale in which the
dynamics of the system happens. Therefore, it is reasonable that, in order to “mimic”
large baths, one can take the limit of very fast collisions and by doing so, the interaction
must be infinitely large to compensate for the short time in which it takes place.

So, let us start with the derivation. First, we rescale the interaction and write the total
Hamiltonian as

HS E = HS + HE +
1
√
τ

V. (5.18)

Hence, by taking τ → 0, it is guaranteed that a very strong interaction will impose ex-
change of information/energy between system and bath. The square root will be soon
justified. The state of the system after each interaction is given by (5.3) and applying the
new rescaled interaction we have,

ρn+1
S = trE{e−iτ(HS +HE+V/

√
τ)ρn

SρEeiτ(HS +HE+V/
√
τ)}. (5.19)

Expanding this in a power series yields

ρn+1
S = trE{ρ

n
SρE − iτ[HS E, ρ

n
SρE] −

τ2

2
[
HS E, [HS E, ρ

n
SρE]

]
+ O(τ3)}

= ρn
S − iτ[HS , ρ

n
S ] −

τ2

2
trE

{[
HS E, [HS E, ρ

n
SρE]

]
+ O(τ3)

}
.
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Dividing it by τ on both sides, it’s written as

ρn+1
S − ρn

S

τ
= −i[HS , ρ

n
S ] −

τ

2
trE

{[
HS E, [HS E, ρ

n
SρE]

]
+ O(τ3)

}
. (5.20)

When we take the limit τ → 0, most contributions in the second term of the RHS will
vanish. However, the rescaling in V used in (5.18), will now compensate and lead to one
term being finite:

lim
τ→0

ρn+1
S − ρn

S

τ
= −i[HS , ρ

n
S ] −

1
2

trE

{[
V, [V, ρn

SρE]
]}

dρS

dt
= −i[HS , ρS ] −

1
2

trE

{[
V, [V, ρSρE]

]}
, (5.21)

justifying the square root in the interaction term, so that it would survive when taking the
limit τ→ 0. The expression in (5.21) already looks like a quantum master equation. The
first term on the RHS is responsible for the unitary evolution and the second is a kind of
“general” dissipator, which applies to any desired interaction,

D(ρS ) := −
1
2

trE

{[
V, [V, ρSρE]

]}
. (5.22)

In the context of strict energy conservation, the interaction can be generically written
in terms of the eigenoperators of the system {Lk} and bath {Ak},

V =
∑

k

gk(L
†

k Ak + LkA†k), (5.23)

where the eigenoperators satisfy [HS , Lk] = −ωkLk, [HE, Ak] = −ωkAk and k are the
resonant modes between system and bath. The commutators related to the eigenopera-
tors make explicit that only resonant modes are taken into account3, because these are
the modes that mainly drive the interaction. Inserting (5.23) into (5.22), the result is a
dissipator in GKSL form [20, 21],

D(ρS ) =
∑

k

{
γ−k

[
LkρS L†k −

1
2

{
L†k Lk, ρS

}]
+ γ+

k

[
L†kρS Lk −

1
2

{
LkL†k , ρS

}]}
, (5.24)

with γ−k := |gk|
2 tr{AkA†kρE} and γ+

k := |gk|
2 tr{A†kAkρE} being the decay rates modulated by

the thermal statistical distribution of the bath.
Using the Baker-Campbell-Hausdorff (BCH) formula4, together with the fact that {Ak}

are eigenoperators of HE, one gets

eβHE Ake−βHE = Ake−βωk .

Then, the ratio between the decay rates simplifies to a detailed balance relation [46],

γ+
k

γ−k
=

tr{A†kAkρE}

tr{AkA†kρE}

=
��

���
�

tr{A†kρEAk}e−βωk

���
���tr{AkA†kρE}

= e−βωk . (5.25)
3Note that level transitions in both system and bath have an energetic cost of ωk.
4 etABe−tA = B + t[A, B] +

t2

2!
[A, [A, B]] +

t3

3!
[A, [A, [A, B]]] + . . .
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Finally, joining (5.21) and (5.24) we have a quantum master equation derived from
the collisional model,

dρS

dt
= −i[HS , ρS ] +D(ρS ). (5.26)

Figure 5.2: Plots of the expectation values of (a) σz, (b) σx and (c) σy for both the colli-
sional model and the master equation. The insets show zoomed regions of all three plots.
The chosen values of the parameters are: ω = 1.0, g = 0.7,T = 0.5, τ = 0.01.

In order to check how precise is this approximation, we now compare the outcomes
of the collisional model with rescaled interaction and the master equation. Consider the
simple case of system (S ) and bath (E) composed of qubits. Their Hamiltonians are then,

Hχ =
ω

2
σ χ

z , with χ = S , E, (5.27)

where σχ
z are Pauli matrices of S and E. As it is readily seen, the system and the bath are

resonant. The interaction V is chosen according to (5.23),

V = g(σS
+σ

E
− + σS

−σ
E
+). (5.28)

Figure 5.3: Plots of the expectation values of (a) σz, (b) σx and (c) σy for both the colli-
sional model and the master equation. Same parameters as in Fig. 5.2, but now τ = 2.0.
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To analyze the dynamics, we choose the expectation value of the Pauli matrices {σz,
σx,σy} for the system. The expectation values are obtained by calculating the trace of
the product between each of the Pauli matrices and the state ρS . The state of the system
is given by either (5.19) or (5.26), for the collisional model and the master equation,
respectively. Fig. 5.2 shows that, when τ is small enough, the master equation provides
with good precision the time evolution of the system’s state. On the other hand, it is not
the case when τ is of the same order as ω, g. As shown in Fig. 5.3, a significant disparity
arises in the transient regime. Nevertheless, the stationary values roughly coincide in both
situations. The steady-state is diagonal with respect to σz and its entries depend on T , as
shown in (5.17).



Chapter 6

Stroboscopic two-stroke quantum heat
engines

This chapter is the most important of the dissertation, as it summarizes the original
contributions of this work. Similar content can be found in the preprint recently submitted
to arXiv.org [29], which was also recently accepted for publication in Physical Review A.

The proposed model of two-stroke QHEs is herein described. We start by the describ-
ing the individual strokes that compose the cycle, the heat and work strokes, in which the
relevant thermodynamic variables are defined. Furthermore, it is shown that, depending
on the kind of internal interaction established within the working fluid, the QHE has a uni-
versal expression for its efficiency. Finally, two applications of the model are discussed, a
two-qubit QHE, which is treated analytically, and a spin chain with N sites, that in turn is
studied numerically. For both, the influence of the parameter space on the output power
and on the number of cycles required to achieve the limit-cycle is explored.

6.1 The engine

Inspired by the SWAP engine [36–40] and collisional models [19–27], the strobo-
scopic two-stroke quantum heat engine is a model meant to treat QHEs operated in finite-
time. It’s considered to be a toy model, that is, it doesn’t take into account all the details
of the QHE, but only what is essential to understand the mechanisms behind it. This ap-
proach results in a flexible model, which can be adapted for different working fluids and
operation protocols, as well as enabling the use of quantum resources (e.g. entanglement,
coherence) [21]. For simplicity, “the system” from now on is to be taken as a synonym of
“working fluid”.

6.1.1 Heat stroke
In Fig. 6.1a, a pictorial representation of the heat stroke is presented. The system has N

subsystems or sites1, each with dimension di and local Hamiltonian Hi. During this stroke,
the subsystems do not interact with each other. At the boundaries, the corresponding sites
interact with a cold bath (C) and a hot bath (H). These baths are represented in the

1Despite the fact that the system is treated as a chain, all calculations hold for other geometries.
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Figure 6.1: The stroboscopic two-stroke quantum heat engine is modelled as having a (a)
Heat stroke (q) and a (b) Work stroke (w). In the heat stroke, the internal interactions
between the sites of the system are turned off, while the boundary sites 1 and N interact
respectively with a cold bath at temperature TC and a hot bath at temperature TH (TH >
TC). On the other hand, during the work stroke the system is disconnected from the
baths. The internal interactions are turned on, represented byVS , putting forth an unitary
evolution of the whole system. These strokes are sequentially implemented, in a cyclic
fashion, as depicted by the arrows surrounding (a) and (b).

collisional model framework. They consist of streams of identical and independently
prepared (iid) ancillas, each with local Hamiltonian Hx and in a thermal (Gibbs) state at
temperature Tx: ρx = eHx/Tx/Zx (where x = C,H). Obviously, according to the given
denomination, the temperatures are such that TC < TH. The interaction between the bath
C and subsystem S 1 is called VC, which has support only on these two parties. Likewise,
VH is the interaction between subsystem S N and bath H, which are the two parties on
which the interaction has support. Considering that the system is initialized in a random
state ρS , which isn’t necessarily a product state, the state of the system in the end of the
heat stroke is,

ρ̃S = trCH{Uq(ρCρSρH)U†q} =: Eq(ρS ), (6.1)

where Uq = e−iHqτq , the total Hamiltonian is Hq =
∑N

i=1 Hi + HC + HH + VC + VH and τq is
the time allocated for the heat stroke. As already done in Chapters 3 and 5, heat shall be
defined as minus the change in energy of the ancillas [19, 21, 110],

Qx := −tr{Hx(ρ̃x − ρx)}, with x = C,H. (6.2)

The state ρ̃x is the final state of the bath C or H after applying,

ρ̃C = trS H{Uq(ρCρSρH)U†q},
ρ̃H = trCS {Uq(ρCρSρH)U†q}.

The quantity in (6.2) is not in general the change in energy of the system, due to the
fact that there is an inherent energy cost of turning the interactions on and off, called
“on/off work” [20]. This quantity was discussed in Chapter 5 and according to energy
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conservation, it is written as,

W
on/off

C := −QC + tr{H1(ρ̃S − ρS )} = −∆VC, (6.3)
W

on/off

H := −QH + tr{HN(ρ̃S − ρS )} = −∆VH, (6.4)

where ∆Vx := tr{Vx(ρ̃CS H − ρCρSρH)}. This definition stresses the fact that part of the
energy may get stuck in the interactions. To circumvent this issue, one has to ensure strict
energy conservation, expressed by,

[VC,H1 + HC] = [VH,HN + HH] = 0. (6.5)

This condition implies that the map (6.1) is the concatenation of two thermal opera-
tions [57, 58, 77, 79] acting at the boundaries of the system. Once strict energy con-
servation is ensured, then

QC := tr{H1(ρ̃S − ρS )}, (6.6)
QH := tr{HN(ρ̃S − ρS )}, (6.7)

where, according to the adopted convention, heat is positive when it enters the system.
After the interaction, the bath ancillas are thrown away, giving room for a fresh one to
interact in the next heat stroke. Thus, any kind of measurement applied on the ancillas
does not introduce possible measurement backreaction [56].

6.1.2 Work stroke

The work stroke is depicted in Fig. 6.1b. The system is now disconnected from
the baths and the internal interaction Hamiltonian VS =

∑
i,i+1, where Vi,i+1 are next-

neighbour interactions, is turned on. The map dictating the time evolution of the system’s
state is simply given by an unitary evolution,

ρ′S = Uwρ̃S U†w =: Ew(ρ̃S ), (6.8)

where Uw = e−iHwτw , the total Hamiltonian during the work stroke is Hw =
∑N

i=1 Hi +VS

and τw is the time duration of the work stroke.
Mediated by the internal interaction, energy currents will flow through the sites, “scram-

bling” the change in energy at the boundaries, caused by the heat stroke. This in turn has
an energy cost associated with the on/off work of switchingVS . Work is then defined as,

W := −
N∑

i=1

tr{Hi(ρ′S − ρ̃S )} = tr{VS (ρ′S − ρ̃S )}, (6.9)

which is positive when there is a decrease of energy in the system; that is, when work
is extracted. This definition of work is analogous to what is done in Chapter 5. In it,
a boxcar function multiplies the internal interaction Hamiltonian and, since work is the
integral of the rate of change of the total Hamiltonian, the result of doing this calculation
is equal to (6.9).
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6.1.3 Stroboscopic dynamics
Applying sequentially the two strokes previously described gives rise to a cycle with

period τ = τq + τw. In Fig. 6.1, the cyclic operation is depicted by the arrows surrounding
the strokes. To track the state of the system after an arbitrary number of cycles, we
introduce the notation ρn

S as the state of the system after the nth cycle. This state, as well
as the intermediate state of the system – that is, after the heat stroke and before the work
stroke – ρ̃n

S , will evolve according to,

ρ̃n
S = Eq(ρn

S ), (6.10)
ρn+1

S = Ew(ρ̃n
S ) = Ew ◦ Eq(ρn

S ), (6.11)

valid for n ∈ N.
In a similar manner, the heat and work will inherit an upper index n, Qn

x and Wn.
Combining Eqs. (6.6) and (6.9), the 1st law of thermodynamics for the system reads,

∆En = Qn
C + Qn

H −W
n, (6.12)

in which ∆En := tr{(
∑

i Hi)(ρn+1
S − ρn

S )} measures how much energy has entered/left the
system. In agreement with what is known from classical thermodynamics, the energy of
the system is a state variable/function of state, enabling one to write ∆En as a difference
of average energies at consecutive strokes. However, heat and work cannot be written
likewise, as they are not functions of state.

Since it corresponds to a unitary evolution, the work stroke produces no entropy. On
the other hand, the heat stroke is intimately related to entropy production. Hence, using a
similar expression than the one presented in Chapter 5, the entropy production is

Σn = ∆S n −
Qn

C

TC
−
Qn

H

TH
> 0, (6.13)

where ∆S n := S (ρn+1
S ) − S (ρn

S ) and S (ρn
S ) = −tr{ρn

S lnρn
S } is the von Neumann entropy of

the system after n cycles. The positivity of (6.13) is obtained from writing it as a sum
of the mutual information generated between system and bath ancilla, with the relative
entropy between the final and initial states of the ancilla [52, 68][c.f. Eq. (5.15)]. Thus,
the 2nd law of thermodynamics is ensured to hold in this QHE model.

6.1.4 Limit-cycle
Owing to the dissipative dynamics of the system during the heat strokes, the system is

expected to reach a limit-cycle, characterized by the states ρ∗S and ρ̃∗S ,

ρ∗S = Ew ◦ Eq(ρ∗S ), (6.14)
ρ̃∗S = Eq(ρ∗S ). (6.15)

The state ρ∗S , which is a fixed point of the joint map Ew ◦Eq, together with its complement
ρ̃∗S , form the stroboscopic analog of a non-equilibrium steady-state (NESS). Illustrating
the evolution of the initial state ρ0

S to the limit-cycle, Fig. 6.2 shows that, once the limit-
cycle is achieved, the state of the system is constrained to the states ρ∗S and ρ̃∗S .
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Figure 6.2: Evolution of the state of the system from its initial state ρ0
S to the limit-cycle,

comprised of ρ∗S and ρ̃∗S . As it is shown, the state of the system evolves stroboscopically.

The limit-cycle implies that all functions of state are τ-periodic. Therefore, ∆E∗ =

∆S ∗ = 0, meaning that the 1st and 2nd laws of thermodynamics simplify to

W∗ = Q∗C + Q∗H, (6.16)

Σ∗ = −
Q∗C

TC
−
Q∗H

TH
, (6.17)

where the first equation indicates that the net heat flux in the system is converted into
work. The second equation contains only terms associated with the flow of entropy at the
boundaries, showing that all entropy produced by the system will flow to the environment.

Moreover, the explicit expressions for the heat and work in the limit-cycle are,

Q∗C = tr{H1(ρ̃∗S − ρ
∗
S )}, (6.18)

Q∗H = tr{HN(ρ̃∗S − ρ
∗
S )}, (6.19)

W∗ = −

N∑
i=1

tr{Hi(ρ∗S − ρ̃
∗
S )}, (6.20)

= tr{VS (ρ∗S − ρ̃
∗
S )}. (6.21)

During the heat stroke, the energies of the internal sites (i = 2, . . . ,N − 1) do not change.
In the limit-cycle, we find that the energy of the internal sites must remain the same also
during the work stroke,

tr{Hi(ρ∗S − ρ̃
∗
S )} = 0, i = 2, . . . ,N − 1. (6.22)

Therefore, in the limit-cycle, the energies of the internal subsystems become constant and
all the thermodynamic quantities are determined by the subsystems at the boundaries.
This characteristic of our QHE model is quite peculiar and non-intuitive.

6.1.5 Universal Otto efficiency
It is known that SWAP engines [36–40] always have the same Otto efficiency. Never-

theless, based on our model, we now show that this is actually more general, embracing a
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broad class of problems. In fact, we prove that if the internal interaction Hamiltonian has
the form,

VS =

N−1∑
i=1

gi,i+1(L†i Li+1 + LiL
†

i+1), (6.23)

a two-stroke QHE will present Otto efficiency, provided the {Li} are eigenoperators of
the local Hamiltonians and have support only on their respective subsystems. That is,
[Hi, Li] = −ωiLi, where the transition frequency ωi can be chosen freely for each site.
However, a constraint must be applied. There must be only one jump operator per site,
otherwise the following calculations are void.

The proof of universality of the Otto efficiency for QHEs whose internal interaction
Hamiltonians are written like (6.23), goes as follows. Looking only at the work stroke,
the time-evolution of the average of each local site Hamiltonian is given by Heisenberg’s
equation,

d〈Hi〉

dt
= iωigi−1,i〈L

†

i−1Li − Li−1L†i 〉 − iωigi,i+1〈L
†

i Li+1 − LiL
†

i+1〉. (6.24)

Which, by means of integrating in the time range [0, τw], when the QHE has already
reached the limit-cycle, gives

tr{Hi(ρ∗S − ρ̃
∗
S )} = ωi(Ji−1,i − Ji,i+1), (6.25)

with:
Ji,i+1 = igi,i+1

∫ τw

0
dt 〈L†i Li+1 − LiL

†

i+1〉.

The last expressions is, in principle, applicable only to the internal sites i = 2, . . . ,N − 1.
Nonetheless, if one defines J0,1 = JN,N+1 = 0, then the validity is extended to all sites from
1 to N. A relation between the J’s is established when Eq. (6.22) is invoked:

J1,2 = J2,3 = · · · = JN−1,N (6.26)

Using Eqs. (6.18) and (6.19), it follows that

Q∗C = ω1J1,2 = ω1JN−1,N = −
ω1

ωN
Q∗H, (6.27)

which determines that the ratio of the heat exchanged with the cold bath to the heat ex-
changed with the hot bath is proportional to the ratio of the characteristic energies of the
sites at the boundaries.

Together with the 1st law of thermodynamics (6.16), the efficiency might be written as

η :=
W∗

Q∗H
= 1 +

Q∗C

Q∗H
, (6.28)

and, by applying the heat relation expressed by (6.27), one gets

η = 1 −
ω1

ωN
, (6.29)

which is precisely the Otto efficiency [41] and our proof is finished. It is worth mentioning
that this result is a direct consequence of the specific ωi’s selected by the VS in (6.23).
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Thus, even though the local Hamiltonians Hi generally have more than one possible level
transition, the filtering of a specific frequency done byVS is enough to secure a universal
Otto efficiency. Also, the efficiency (6.29) is independent of the time allocated for the
strokes and, consequently, independent of the cycle period τ. It is an important feature for
finite-time QHEs, because optimizing power by adjusting τ will not lead to a decrease in
the efficiency.

The relation (6.27) can also be applied to the entropy production (6.17),

Σ∗ =

(
ω1

TC
−
ωN

TH

)
Q∗H

ωN
(6.30)

The positivity of the entropy production (Σ∗ > 0) implies thatQ∗H must have the same sign
as the term preceding it. Physically, it means that the difference of ω1/TC and ωN/TH (the
“gradient of ω/T”) dictates the direction in which the heat flows. It differs from the
Clausius statement, saying that the gradient of 1/T determines the heat flow (“from hot to
cold”). It is explained by the fact that in our QHE model there is work involved, while in
Clausius’ case there was only heat. It generalizes previous results, in which the difference
of occupation numbers (Bose-Einstein for bosonic chains and Fermi-Dirac for fermionic
chains) is determinant for the heat flow [20, 112].

Finally, the framework just presented is viewed as a generalization of the SWAP en-
gine [36–40]. This kind of QHE considers a system composed of solely two non-resonant
qubits, thus restricting the number of sites to N = 2 and the global Hilbert space dimen-
sion to d = 4. Furthermore, it employs only full thermalization and full SWAP strokes.
The former means that, while in contact with the baths, the qubits 1 and 2 thermalize to
TC and TH, respectively. The latter implies that the states of the qubits are swapped by the
unitary USWAP = 1

2 (1 + σ1
xσ

2
x + σ1

yσ
2
y + σ1

zσ
2
z ). Nevertheless, the proposed stroboscopic

two-stroke QHE is more versatile. It includes systems with arbitrary N, as well as dif-
ferent geometries, and arbitrary Hilbert space dimensions of the subsystems and ancillas.
Furthermore, a wide class of unitaries can be employed, enabling partial thermalization
and the study of finite-time features.

6.2 Applications and examples
All the previous results are very general and hold for a wide class of problems. Two of

them are now considered for further investigation. We start by studying the case in which
the system is made of two non-resonant qubits. In this situation, analytical solutions are
found by solving a set of difference equations for some relevant observables of the system.
Second, we treat numerically systems composed of generic XYZ chains. The analysis in
both situations is focused at quantifying how the output power and the number of cycles
needed to converge to the limit-cycle are influenced by the parameter space.

6.2.1 Partial SWAP engine
Just as the SWAP engine [36–40], we consider a system composed of two non-

resonant qubits, each with local Hamiltonian

Hi =
ωi

2
σi

z, i = 1, 2. (6.31)
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Furthermore, each bath is resonant with the subsystem it is interacting with,

HC =
ωC

2
σC

z , ωC =ω1. (6.32)

HH =
ωH

2
σH

z , ωH=ωN . (6.33)

And, since the baths are modelled as qubits, their thermal state is equal to

ρx =

(
fx 0
0 1 − fx

)
, x = C,H, (6.34)

where fx = 1/(eβxωx + 1) is the Fermi-Dirac population. For future use, we define f1 ≡ fC
and f2 ≡ fH. The interactions are all of the form (6.23), so to represent all of them
compactly, we introduce the notation

ϑµ,ν := gµ,ν(σ
µ
+σ

ν
− + σ

µ
−σ

ν
+). (6.35)

It means thatVS = ϑ1,2, VC = ϑ1,C and VH = ϑ2,H. By imposing the resonance conditions
(6.32) and (6.33), and writing the interaction of the subsystems with the baths in the form
(6.35), it is guaranteed that there is no work cost of turning on and off the interactions
with the baths. However, the non-resonance of the qubits (ω1 , ω2) implies that during
the work stroke there will be an associated work cost.

As previously stated, we shall handle this case analytically. Therefore, instead of
applying the full map (4.6), we show that a closed set of difference equations for a few
number of observables of the system is achievable. These observables are the c-number
variables,

Zn
i = 〈σn

z 〉n, i = 1, 2, (6.36)
S n = 〈σ1

+σ
2
− + σ1

−σ
2
+〉n, (6.37)

An = i〈σ1
+σ

2
− − σ

1
−σ

2
+〉n. (6.38)

where 〈. . . 〉n := tr{. . . ρn
S }. The variables Zn

i correspond to the spin component of qubits 1
and 2, and S n, An are the correlations between them. Using these c-numbers, the heat and
work are readily found,

Qn
C =

ω1

2
(Z̃n

1 − Zn
1), (6.39)

Qn
H =

ω2

2
(Z̃n

2 − Zn
2), (6.40)

Wn = −
∑
i=1,2

ωi

2
(Zn+1

i − Z̃n
i ). (6.41)

Due to the restricted Hilbert space of the system, it’s simply found that, by applying
map (6.1), the c-number variables will evolve during the heat stroke according to

Z̃n
i = (1 − λ)Zn

i + λZth
i , i = (1, 2), (6.42)

S̃ n = (1 − λ)[
√

pS n +
√

1 − pAn], (6.43)

Ãn = (1 − λ)[
√

pAn −
√

1 − pS n], (6.44)
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where Zth
i = ωi(2 fi − 1)/2 is the equilibrium spin component of qubit i (i = 1, 2) in the

temperature of the bath connected to it. Moreover, other parameters were also introduced,
p = cos2[(ω1−ω2)τq] and λ = [1−cos(2gCHτq)]/2, being gCH = g1,C = g2,H the interaction
strength for both baths. The parameter λ modulates the system-bath interactions, which
are partial SWAPs. When λ = 1, each qubit thermalizes with its respective bath (Z̃n

i =

Zth
i ). Meanwhile, the parameter p quantifies how far from resonance the qubits are and

“mixes” the variables S n, An. Moreover, if S n = An = 0, then also S̃ n = Ãn = 0, meaning
that, during the heat stroke, correlations cannot be created, only destroyed. This feature
of the heat stroke is associated with the absence of internal interaction between the qubits.

Doing the same procedure to the work stroke, which evolves according to the map
(6.8), and setting g = g1,2, one gets

Zn+1
1 = (1 − η)Z̃n

1 + ηZ̃n
2 + 2η tan(θ)S̃ n − 2ξÃn, (6.45)

Zn+1
2 = (1 − η)Z̃n

2 + ηZ̃n
1 − 2η tan(θ)S̃ n + 2ξÃn, (6.46)

S n+1 = η tan(θ)(Z̃n
1 − Z̃n

2) + (1 − 2η tan2θ)S̃ n + 2ξ tan(θ)Ãn, (6.47)

An+1 = ξ(Z̃n
1 − Z̃n

2) − 2ξ tan(θ)S̃ n + (1 − 2η sec2θ)Ãn, (6.48)

where η = (2g2/ω2
r )[1 − cos(ωrτw)], ξ = (g/ωr)sin(ωrτw) and tan(θ) = (ω1 − ω2)/2g

(not to confuse η with the efficiency). Furthermore, ωr :=
√

4g2 + (ω1 − ω2)2 is the Rabi
frequency which drives the time-evolution of the dressed states of the system. The three
parameters are related by ξ2 = η(1 − η sec2θ).

We note in Eqs. (6.45) and (6.46) that the parameter η implements a partial SWAP
onto the qubits. Differently from λ in the heat stroke, this can never be a full SWAP, that
is, we can never achieve η = 1. This is attested by the fact that, using the aforementioned
relation between the parameters, η < cos2θ. It is a consequence of the fact that the qubits
are non-resonant. If they were resonant, the parameter η would then be allowed to be
equal to 1, since ωr = 2g for resonant qubits (ω1 = ω2). Nevertheless, the QHE would
also stop working, because the lack of resonance between the qubits is what enables the
extraction of power. Like p, the parameter θ is related to the frequency mismatch of the
qubits. One difference though, is that θ is independent of the interaction time.

Interestingly, one also notes by looking at Eqs. (6.45)–(6.48) that the local populations
(Zn

i ) and correlations (S n, An) are mixed during the work stroke. This is caused by the
parameters θ and ξ in a rather intricate way. Related to the previous statement on the
resonance of the qubits, even in the case that θ = 0, that is, resonant qubits, the blending
persists, since ξ , 0.

Casting the c-number variables into a vector,

xn =


Zn

1
Zn

2
S n

An

 ,
we can write a set of vector difference equations with respect to xn, using Eqs. (6.42)–
(6.44) and Eqs. (6.45)–(6.48). The result is

x̃n = Jxn + S , (6.49)
xn+1 = Dx̃n = DJxn + DS . (6.50)
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The entries of the 4 × 4 matrices J and D, and the vector S are combinations of the set
of parameters previously presented, determined by Eqs. (6.42)–(6.44) and Eqs. (6.45)–
(6.48). The entries of the vector S are simply given by Eq. (6.42),

S = λ


2 fC − 1
2 fH − 1

0
0

 .
Furthermore, the matrices J and D are given by,

J = (1 − λ)


1 0 0 0
0 1 0 0
0 0

√
p

√
1 − p

0 0 −
√

1 − p
√

p

 ,

D =


1 − η η 2ηtan(θ) −2ξ
η 1 − η −2ηtan(θ) 2ξ

ηtan(θ) −ηtan(θ) 1 − 2ηtan2θ 2ξtan(θ)
ξ −ξ −2ξtan(θ) 1 − 2ηsec2θ

 .

Figure 6.3: Plots of the local populations (a) Zn
1 , Z̃n

1 and (b) Zn
2 , Z̃n

2 with respect to the
number n of performed cycles. The gray dashed lines represent the stationary values Z∗i ,
Z̃∗i . The values of the parameters used to obtain these plots are: λ = 0.2, p = 0.99,
TC = 0.4, TH = 0.8, ω1 = 0.75, ω2 = 1.0, g = 0.3 and times τq = τw = 1.0 fixed. The
system is initially in a product state of the qubits, each one in its own ground state.

The general solution of xn in (6.50) is equal to [113]

xn = (DJ)nx0 +

n−1∑
r=0

(DJ)n−r−1(DS ). (6.51)

The first term on the RHS of (6.51) is directly related to the transient regime, although
not the only one responsible for it. On the other hand, the second term on the RHS of
the same equation is the only one that survives in the stationary regime. We also see that
the matrix DJ is present in both terms, hence being the main object responsible for the
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dynamics of xn. The steady-state value of xn is found by imposing xn+1 = xn = x∗ in
(6.50), whose result is

x∗ = (I4 − DJ)−1DS , (6.52)

where I4 is the 4 × 4 identity matrix. The explicit expression of x∗ is quite clumsy, but
easily obtained using, for example, mathematica.

In Figs. 6.3 and 6.4, plots of the evolution of the c-number variables, for specific
values of the parameters, are presented. First, in Fig. 6.3, one finds the plots of the local
populations Zn

i and Z̃n
i . Clearly they depart from an initial value at n = 0 and converge

to steady-state values, alternating between Z∗i and Z̃∗i . Then, in Fig. 6.4, the plots of
the correlations S n, S̃ n, An and Ã∗ are shown. Since the initial state was chosen to be a
product state, there are no correlations at n = 0, which can be seen in both plots. Like
the populations, the correlations also converge to steady-state values, which constrain the
time-evolution to only two values. The bouncing back and forth between two values of
the c-number variables is a signature of the limit-cycle (Fig. 6.2). This behavior can be, at
a certain extent, viewed as an analogy of the up and down movement of an engine piston.

Figure 6.4: Plots of the correlations (a) S n, S̃ n and (b) An, Ãn with respect to the number n
of performed cycles. The gray dashed lines represent the stationary values S ∗, S̃ ∗, A∗, Ã∗.
The values of the parameters used to obtain these plots and the initial state of the system
are the same as in Fig. 6.3.

Having obtained the evolution of all the entries of xn and x̃n, the heat and work are
calculated using Eqs. (6.39)–(6.41). These quantities are plotted in Fig. 6.5. As it can be
seen, the heat and work converge to non-zero values, attested by the values put alongside
the plots in the stationary regime. The steady-state value of the work is positive, which, in
our convention, means that work is extracted and thus, the system is indeed working as a
heat engine. There is a deep contrast between the transient and stationary regimes. In the
beginning of the QHE operation, the work is quite small, while the heat exchanged with
the baths is much larger. Then, after a few cycles, the work attains a value even higher
than its steady-state value, and the heat decreases considerably. And finally, after that all
internal energies have accommodated, the system enters the limit-cycle.

Noting that the QHE takes a certain number of cycles to attain the limit-cycle, we
now proceed to quantify this number, which is proportional to the relaxation time. As
already shown, the matrix DJ dictates the dynamics of xn. Therefore, the relaxation time
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Figure 6.5: Values of (a) Qn
C, Qn

H and (b)Wn as functions of the number of cycles n. The
parameters are considered to have the same values as in Fig. 6.3. The steady-state value
of each quantity is depicted by the numbers present in the plot.

is associated with the eigenvalues of DJ. This matrix appears in powers in (6.51), which
imposes the condition that all eigenvalues of DJ must have magnitude smaller than one,
for the sake of stability. Then, large eigenvalues persist for much more time than small
ones, due to the fact that they appear in powers of n. The closer an eigenvalue is from
having magnitude equal to one, the longer it will take for the system to relax to the limit-
cycle. As a consequence, the relaxation time is determined by the largest eigenvalue of
DJ,

µ := max|eigs(DJ)|. (6.53)

The matrix DJ/(1−λ) can be verified to have an eigenvalue 1. Since all other eigenvalues
must be smaller than one, we conclude that the maximum eigenvalue is µ = 1 − λ. It
means that the heat stroke determines how long the QHE takes to attain the limit-cycle.
It would be expected from the dissipative nature of the heat stroke, that is, by exchanging
energy with an environment, the internal energies are able to relax to a certain value, as
seen in Chapter 5.

Lastly, now we deal with the output power,

P∗ =
W∗

τq + τw
, (6.54)

whose dependence on τq and τw is not only in its denominator, but also in W∗ itself.
Manipulating the previous difference equations, one finds an explicit expression forW∗,

W∗ =
2η(2 − λ)λ( fC − fH)(ω1 − ω2)

λ2 + 2(1 − λ)
{
(1 + η) −

√
p
[
1 − η(tan2 θ + sec2 θ)

]
+ 2

√
1 − p ξ tan θ

} . (6.55)

The numerator of (6.55) makes it evident when the work vanishes: (i) λ = 0, that is,
the coupling with the baths vanish; (ii) η = 0, meaning that the internal couplings of the
system go to zero; (iii) ω1 = ω2, that is, the qubits are resonant; and (iv) fH = fC, which
is equivalent to ω1/ω2 = TC/TH. Furthermore, the sign of (6.55) is determined by the
product ( fC − fH)(ω1 − ω2). Fixing the temperatures TC < TH and knowing that fx is
monotonically decreasing with respect to ωx/Tx, the product is positive if, and only if,
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fC < fH and ω1 < ω2. These two inequalities define the range for the system to work as
an engine,

TC

TH
6
ω1

ω2
6 1. (6.56)

Below the lower bound the machine works as a refrigerator (Q∗C > 0, Q∗H < 0,W∗ < 0)
and above the upper bound it operates as an oven/heat accelerator (Q∗C < 0, Q∗H > 0,
W∗ < 0) [20]. One more interesting feature about (6.55) is that, when there is full
thermalization (λ = 1), the expression reduces to

W∗ = 2η( fC − fH)(ω1 − ω2),

which turns out to be very similar to the work delivered by the SWAP engine [36–40].
The difference, though, is that SWAP engines implement full SWAPs, otherwise saying
η = 1. This limit, as discussed before, is not achievable in our model, which comports
partial SWAPs (0 < η < 1).

Finally, by plugging Eq. (6.55) into Eq. (6.54), we plot P∗ as a function of the times τq

and τw in Fig. 6.6. The result is quite curious, presenting two patterns almost symmetric
with respect to τw = 10. The lower pattern distinguishes itself by having a higher peak.
The behaviour shown in the plot of the output power is related to the oscillatory depen-
dence of λ, η and p on the interaction times τq and τw. Very important to this analysis is
the fact that, as this model of partial SWAP engine falls into the condition presented in
Section 6.1.5, its efficiency will always be equal to the Otto efficiency, regardless of the
values of τq, τw or any other parameter. It constitutes an advantage of the model, enabling
one to optimize the QHEs output power, without affecting the the efficiencies.

Figure 6.6: Plots of the output power P∗ as a function of the interaction times τq and τw.
It is presented both as a contour plot (left) and as a 3D plot (right). The plots are scaled
by 103. The parameters assume the values: ω1 = 0.75, ω2 = 1.0, TC = 0.4, TH = 0.8,
g = gCH = 0.3.

6.2.2 Generic XYZ chain
In this section we study a QHE having as working fluid a spin chain of N sites. Each

spin has a local Hamiltonian Hi = 1
2ωiσ

z
i . The baths are modelled as before, that is,
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single spins with Hamiltonian Hb = 1
2ωbσ

z
b (b = C,H) interacting sequentially with

the boundary subsystems. The baths are resonant with their respective spins (ωC = ω1,
ωH = ωN) and the system-bath interactions (1C, NH) are of the same form as (6.35).
These two factors imply that there is no energy cost of switching the interactions with
the baths, namelyWon/off = 0. Nevertheless, the internal interaction Hamiltonian of the
system assumes the generic form

VS =

N−1∑
i=1

{
Jxσ

x
iσ

x
i+1 + Jyσ

y
iσ

y
i+1 + Jzσ

z
iσ

z
i+1

}
. (6.57)

This generic interaction, combined with the size of the spin chain, add more layers of
complexity to the endeavour of solving the dynamical equations that dictate the strobo-
scopic evolution of the system. Thus, we shall treat the problem numerically, since trying
to find a set of difference equations in these more complex cases is unbearable.

The analysis of this QHE will focus on two cases: (i) the XX model (Jx = Jy = J,
Jz = 0) and (ii) the XXZ chain (Jx = Jy = J, Jz = J∆). We consider chains with size
N < 6, such that exact diagonalization can be achieved. The plots of Qn

x and Wn as
functions of n, and the plot of P∗ with respect to λ – which itself is a function of τq – for
the XX model and the XXZ chain are shown in Figs. 6.7 and 6.8, respectively.

Figure 6.7: XX model. Plots of (a) Qn
x, (b)Wn with respect to n, and (c) P∗ as a function

of λ (which is itself a function of τq). The plots (a) and (b) show the convergence of the
heat and the work toward their respective steady-state values. On the other hand, the plot
(c) depicts how the parameter λ influences the value of P∗. In all three cases, the values
are obtained for N = 3, 4, 5. The local frequencies ωi were chosen to interpolate linearly
between ω1 = 1.5 and ωN = 2.0, Jx = Jy = 0.8, Jz = 0, TC = 0.2, TH = 0.8 and τw = 0.25.

Starting with the XX model (Fig. 6.7), we note that, both Qn
x (Fig. 6.7a) and Wn

(Fig. 6.7b) present the same steady-state values, independently of the chain size. However,
the transient dynamics differs for each value of N. By changing λ, the output power P∗

(Fig. 6.7c) suffers a feeble disturbance, as well as the λ for which P∗ is maximum. These
results are explained by a symmetry property of the XX model. By changing the variables
σx → σ+ +σ− and σy → −i(σ+−σ−), it turns out thatVS is of the same form as Eq. 6.35.
Thus, for whatever size of the chain, it would be expected that similar results than N = 2
would hold, due to this symmetry of the internal interaction Hamiltonian.

On the other hand, the XXZ chain (Fig. 6.8) presents a different behaviour when
compared to the XX model. For increasing N, the heat intake from the hot bath (Qn

H) is
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slightly decreased (Fig. 6.8a). Furthermore, the extracted workWn gets lower for larger
chains (Fig. 6.8b). And finally, the output powerP∗ (Fig. 6.8c) is inversely proportional to
N, hence larger chains deliver less power. The λ for which the output power is maximum
also changes, as N increases, it’s weakly shifted to greater values.

Figure 6.8: XXZ chain. Plots of (a) Qn
x, (b)Wn with respect to n, and (c) P∗ as a function

of λ (which is itself a function of τq). The plots (a) and (b) show the convergence of the
heat and the work toward their respective steady-state values. On the other hand, the plot
(c) depicts how the parameter λ influences the value of P∗. In all three cases, the values
are obtained for N = 3, 4, 5. The local frequencies ωi were chosen to interpolate linearly
between ω1 = 1.5 and ωN = 2.0, Jx = Jy = 0.8, Jz = 0.7, TC = 0.2, TH = 0.8 and
τw = 0.25.

6.3 Continuous-time limit
Following the appropriate approximations and criteria, the stroboscopic two-stroke

QHE can be shown to be equivalent to a continuous-time QHE, whose dynamics is dic-
tated by Local Master Equations (LME)2 [20]. The proof, which relies on coarse-graining
the time scale τ, is similar to what is done in Chapter 5, but containing two baths instead
of one. Hence,

lim
τ→0

ρn+1
S − ρn

S

τ
=

dρS

dt
= −i[Hw, ρS ] +DC(ρS ) +DH(ρS ), (6.58)

where Hw =
∑

i Hi +VS and the Dx (x = C,H) are dissipators in Lindblad form consid-
ering only one resonant mode (k = 1) for the sake of simplicity,

DC(ρS ) = γ−C

[
L1ρS L†1 −

1
2

{
L†1L1, ρS

}]
+ γ+

C

[
L†1ρS L1 −

1
2

{
L1L†1, ρS

}]
,

DH(ρS ) = γ−H

[
LNρS L†N −

1
2

{
L†N LN , ρS

}]
+ γ+

H

[
L†1ρS LN −

1
2

{
LN L†N , ρS

}]
,

with γ−x := |gCH |
2 tr{AxA†xρx} and γ+

x := |gCH |
2 tr{A†xAxρx} being the decay rates modu-

lated by the baths and their eigenoperators [Hx, Ax] = −ωxAx. The system-bath coupling

2These are also known as “boundary driven master equations”.
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strength gCH is considered to be the same for both baths. Taking, as an example, the
case in which the system and the baths are composed of qubits, we have that: Li → σi

−,
L†i → σi

+ (i = 1, . . . ,N), γ−x → |gCH |
2 (1 − fx) and γ+

x → |gCH |
2 fx. Thus, one sees that the

dissipators act only locally at the boundaries, such that (6.58) is said to be a LME.
Although LMEs were previously thought to violate the 2nd law of thermodynam-

ics [112], it is shown in Ref. [20] that (6.58) fixes this issue, making the reconciliation of
LMEs and thermodynamics. This is done by studying whether local or/and global detailed
balance hold. For the system-bath interactions we have

[H1 + HC,VC] = [HN + HH,VH] = 0,

because we impose strict energy conservation. Therefore, local detailed balance holds.
However, when we look at the whole QHE, it follows that, in general,

[
∑

i

Hi +VS + HC + HH,VC + VH] = [VS ,VC + VH] , 0.

It means that global detailed balance doesn’t hold. Consequently, there is a work cost
associated with the fact that the internal interactions don’t commute with the system-bath
interactions. Therefore, if one finds that heat is flowing from the cold bath to the hot bath,
it is due to a work input and the 2nd law is saved.

From (6.58), it can be shown that the heat rate and the work rate are given by [20]

Q̇C = ω1

(
γ+

C〈L1L†1〉 − γ
−
C〈L

†

1L1〉
)
, (6.59)

Q̇H = ωN

(
γ+

H〈LN L†N〉 − γ
−
H〈L

†

N LN〉
)
, (6.60)

Ẇ = −
1
2

{
γ−C

〈
L†1F1 + F†1L1

〉
− γ+

C
〈
F1L†1 + L1F†1

〉
+ γ−H

〈
L†N FN + F†N LN

〉
− γ+

H
〈
FN L†N + LN F†N

〉}
, (6.61)

where Fi := [VS , Li], attesting that the work depends directly on the internal interaction.
For both cases of system composed of qubits and quantum harmonic oscillators, it is
found that Eqs. (6.59)–(6.61) establish three possible operation modes for the model, as
shown in Tab. 6.1. The condition required for operating in the engine mode is the same
as in Eq. (6.56). On top of that, the refrigerator and the oven/heat accelerator regimes are
consistent with what was stated below Eq. (6.56).

Operation mode Q̇C Q̇H Ẇ Conditions

Refrigerator > 0 < 0 < 0 ω1
ωN

< TC
TH

Engine < 0 > 0 > 0 TC
TH

6 ω1
ωN

6 1

Oven/Heat accelerator < 0 > 0 < 0 ω1 > ωN

Table 6.1: Different operation modes of the continuous-time limit of the stroboscopic
QHE, whose dynamics is dictated by a Local Master Equation (LME).

The continuous-time limit is analogous to when one watches a process repeated at a
rate faster than the persistence of vision 3. As a consequence, the frames arriving at one’s

3The interval of time in which an image continues to be seen by the human eye after the external source
has been turned off.
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eyes cannot been distinguished and then the movement will be perceived as being smooth.
For example, car engines are stroke-based. However, they happen so fast that we cannot
distinguish between the strokes. In this coarse-grained time scale, the car engine is seen
as a continuous-time engine. In conclusion, it is worth mentioning that the equivalence
of stroke-based QHEs and continuous-time QHEs is not always just a matter of time
scale, as it is in our case. Sometimes other considerations must be taken into account.
In Ref. [114], the authors demonstrate that if quantum coherence is erased by dephasing
from one cycle to the other, the equivalence isn’t possible.



Chapter 7

Other approaches to finite-time
quantum heat engines

7.1 Shortcut-to-adiabaticity

Energy efficiency is a very important aspect to be addressed for present and future
technologies. Its relevance lies on the fact that natural resources are finite, thus finding a
wiser way to allocate them is imperative for sustained development. Energy efficiency can
be translated to delivering more energy output for the same energy input, or decreasing the
energy input without losing energy output. Both ways of thinking about energy efficiency
are complementary and serve the same purpose.

When dealing with finite-time (quantum) heat engines, one must also keep in mind
the trade-off between efficiency and power output, since increasing the latter could mean
decreasing significantly the former. One possible alternative to tackle this issue is by
using techniques generically known as shortcuts-to-adiabaticity [34, 115, 116]. The result
of applying these methods is that the final state of evolution of a finite-time nonadiabatic
process mimics the final state of a slow adiabatic process, raising the efficiency of the
engine.

7.1.1 Concept

To get a grasp of the basic idea behind shortcuts to adiabaticity, consider a system
with n nondegenerate eigenstates, as shown in Fig. 7.1. At time t = 0 the system is in a
given state |ψ(0)〉 =

∑
n cn(0) |n(0)〉, such that the populations of its energy levels are equal

to pn(0) = |cn(0)|2. Then, the Hamiltonian of the system H0(t), which satisfies

H0(t) |n(t)〉 = En(t) |n(t)〉 , (7.1)

drives the system to a final state |ψ(t)〉 =
∑

n cn(t) |n(t)〉, with new populations pn(t) =

|cn(t)|2. In general,
pn(t) , pn(0), ∀t ∈ <>0,

which means that transitions may take place between energy levels, a situation which
evidences nonadiabaticity. The adiabatic theorem [101] then presents an approximation

52
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Figure 7.1: Time evolution of the state |ψ(t)〉 of a system in two situations: (right) Nona-
diabatic driving and (left) Transitionless driving, with φn = θn + γn.

for slow driving,

|ψ(t)〉 →
∑

n

cn(0)eiθnteiγnt |n(t)〉 =
∑

n

cn(0) |ψn(t)〉 , (7.2)

θn = −

∫ t

0
dt′En(t′), (7.3)

γn = i
∫ t

0
dt′ 〈n(t′)|ṅ(t′)〉 , (7.4)

such that the populations are constant at any time, since the states pick up only a phase
φn = θn + γn, where θn is the dynamic phase factor and γn is the geometric phase1,

pn(t) = |cn(0)eiθnteiγnt|2 = |cn(0)|2 ≡ pn(0).

What if the drive is inherently nonadiabatic, discarding the possibility of making ap-
proximations? In Ref. [115] an alternative was proposed. It starts asking what Hamilto-
nian H(t) drives exactly the result of the adiabatic theorem,

H(t) |ψn(t)〉 = i
d
dt
|ψn(t)〉 , (7.5)

ensuring that the eigenstates of H0(t) pick up only phases and the populations are un-
changed (Fig. 7.1). The unitary operator U(t) that describes the dynamics of H(t) must
fulfill

H(t)U(t) = i
d
dt

U(t). (7.6)

A possible choice of U(t) is equal to,

U(t) =
∑

n

eiθnteiγnt |n(t)〉〈n(0)| , (7.7)

what leads to the Hamiltonian,

H(t) =
∑

n

En(t) |n(t)〉〈n(t)| + i
∑

n

(|ṅ(t)〉〈n(t)| − 〈n(t)|ṅ(t)〉 |n(t)〉〈n(t)|)

=
∑

n

En(t) |n(t)〉〈n(t)| + i
∑
m,n

∑
n

|m(t)〉〈m(t)| Ḣ0(t) |n(t)〉〈n(t)|
En(t) − Em(t)

. (7.8)

1Also known as Berry phase.
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By making the identifications,

H0(t) =
∑

n

En(t) |n(t)〉〈n(t)| (7.9)

HCD(t) := i
∑
m,n

∑
n

|m(t)〉〈m(t)| Ḣ0(t) |n(t)〉〈n(t)|
En(t) − Em(t)

, (7.10)

we note that, in order to make a system with a certain nonadiabatic Hamiltonian H0(t)
preserve its populations and effectively evolve adiabatically, one has to add a Hamiltonian
HCD(t), where “CD” means “counterdiabatic” [34], for it is one of the possible shortcut
methods.

7.1.2 Example: quantum Otto heat engine
An example of application of the procedure shown above is the quantum version of

the Otto cycle (Section 2.2). In this section, we discuss in detail the studies of Ref. [34].
We consider a time-dependent quantum harmonic oscillator as the working fluid,

H0(t) =
p2

2m
+

1
2

mΩ2
t q2, (7.11)

where m is the mass term, Ωt ≡ Ω(t) is the driving frequency and p, q are the momen-
tum and position operators, respectively2. Note that when Ωt is time-dependent, some
subtleties arise in recasting Eq. (7.11) in terms of bosonic operators. This is discussed in
Appendix B.

Similar to the classical Otto cycle, four strokes are implemented: (a) isentropic expan-
sion, (b) cold isochoric, (c) isentropic compression and (d) hot isochoric. The working
fluid starts with a driving frequency Ω1 and follows, during a time τa, a certain proto-
col with final driving frequency Ω2. Afterwards, it is put in contact with a cold bath at
temperature TC during a time interval τb, without changing the driving frequency. Then,
in a time τc, the driving frequency is brought back to Ω1. And finally, the working fluid
interacts with a hot bath at temperature TH during a time τd, remaining constant the driv-
ing frequency. As it is common in the literature [104, 117], the isochoric processes are
assumed to be much faster than the isentropic ones, that is, τb, τd � τa, τc, and we shall
also set τa = τc = τ. Therefore, the time period of the cycle is equal to τcycle = 2τ.

During the isentropic processes, no heat is exchanged with the baths, and hence energy
variations are identified as work. In the beginning of these strokes, the working fluid is
thermalized with respect to the baths, so that it is in a thermal equilibrium state and its
energy becomes

E1 =
Ω1

2
coth

(
Ω1

2TH

)
, (7.12)

E2 =
Ω2

2
coth

(
Ω2

2TC

)
. (7.13)

By defining an adiabaticity parameter Γ as the ratio between the energy in the end of the
isentropic stroke and the corresponding equilibrium energy [118], the extracted work in

2As quadrature operators, they satisfy [q, p] = i.
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each stroke is written as [119],

Wa =
1
2

(Ω1 −Ω2Γa) coth
(

Ω1

2TH

)
, (7.14)

Wc =
1
2

(Ω2 −Ω1Γc) coth
(

Ω2

2TC

)
, (7.15)

such that it is positive (negative) when it increases (decreases) the energy of the working
fluid. In a similar manner, the heat exchanged during the hot and cold isochores are equal
to,

QH =
Ω1

2

[
coth

(
Ω1

2TH

)
− Γccoth

(
Ω2

2TC

)]
, (7.16)

QC =
Ω2

2

[
coth

(
Ω2

2TC

)
− Γacoth

(
Ω1

2TH

)]
, (7.17)

and they are positive (negative) for heat intake (output). The indices in Γ are simply labels
to identify whether it’s an isentropic expansion (“a”) or an isentropic compression (“c”).

Figure 7.2: Adiabaticity parameters of the isentropic expansion (Γa) and the isentropic
compression (Γc), with respect to the normalized time t/τ. Plot for Ω1 = 2.5, Ω2 = 1.3,
τ = 0.7.

Now we implement the shortcut-to-adiabaticity technique. Following the result shown
in Eq. (7.8), we must add a Hamiltonian HCD(t) that will prevent the populations of the
energy levels from changing during the isentropic strokes. A possible choice of HCD(t)
is [120],

HCD(t) = −
Ω̇t

4Ωt
(xp + px), (7.18)

and then the total Hamiltonian reads,

H(t) = H0(t) + HCD(t)

=
p2

2m
+

1
2

mΩ2
t q2 −

Ω̇t

4Ωt
(xp + px). (7.19)

It can then be shown that the adiabaticity parameter Γ becomes [121],

Γ =

(
1 −

Ω̇2
t

4Ω4
t

)− 1
2

(7.20)



56 7. OTHER APPROACHES TO FINITE-TIME QUANTUM HEAT ENGINES

Considering a frequency protocol given by [122],

Ωt = Ωi + 10(Ω f −Ωi)
( t
τ

)3

− 15(Ω f −Ωi)
( t
τ

)4

+ 6(Ω f −Ωi)
( t
τ

)5

, (7.21)

where Ωi = Ω1, Ω f = Ω2 for the isentropic expansion and vice-versa for the isentropic
compression. This in turn defines the index of Γ. In Fig. 7.2 the adiabaticity parameter
for both strokes is plotted as a function of the ratio between time (t) and the stroke’s time
duration (τ).

Having obtained the adiabaticity parameter, the next step is to calculate the extracted
power and the efficiency. First, the extracted power is found by noting that the work is the
same as in the adiabatic case, that is, Γa = Γc = 1 for t = τ. Therefore,

P =

1
2

(Ω1 −Ω2)
[
coth

(
Ω1

2TH

)
− coth

(
Ω2

2TC

)]
2τ

. (7.22)

The efficiency, on the other hand, must take into account the energy cost of implementing
the counterdiabatic Hamiltonian. This energy cost can be shown to be equal to [34],

ECD =
1
τ

∫ τ

0
dt

[
Ωa

t

Ω1
(Γa − 1)E1

]
+

1
τ

∫ τ

0
dt

[
Ωc

t

Ω2
(Γc − 1)E2

]
, (7.23)

where the upper indices on Ωt are simply to indicate what are the initial and final frequen-
cies of Eq. (7.21). Then, the efficiency is expressed by,

ηCD =
Wa +Wc

QH + ECD
, (7.24)

in which the same reasoning applied to the power holds for QH.

(a) Extracted power. (b) Efficiency.

Figure 7.3: Plots of the (a) extracted power P and the (b) efficiency ηCD, as functions of
the driving time τ. The dashed line of (b) corresponds to the quasi-static Otto efficiency,
ηO = 1 − Ω2/Ω1 = 0.48. The values of the parameters are: Ω1 = 2.5, Ω2 = 1.3, TH = 2.0,
TC = 0.5.

The extracted power Eq. (7.22) and the efficiency Eq. (7.24) are plotted with respect
to the driving time τ of each isentropic stroke in Fig. 7.3. The extracted power (Fig. 7.3a)
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clearly converges to zero for very long τ, which is the main problem of quasi-static en-
gines. Moreover, the efficiency (Fig. 7.3b) tends asymptotically to the quasi-static Otto
efficiency ηO = 1 − Ω2/Ω1 for increasing τ, as it should be expected. Finally, these plots
show that the trade-off between extracted power and efficiency still exists, but now it is not
as dramatic as before. One can choose an operation point with nonzero extracted power
and efficiency not too distant from the quasi-static value. Nevertheless, the divergent
power for vanishing τ is yet an issue to be tackled. The assumption that, for brief iso-
choric strokes, full thermalization is attained, may not be very realistic, since it depends
a lot on the system being studied.

7.2 Lindblad-Floquet approach to quantum heat engines
Another way to treat finite-time QHEs is by applying the Lindblad-Floquet frame-

work. This technique, developed in Ref. [35], combines the Lindblad dynamics generated
by a Liouvillian encompassing all strokes, and Floquet’s theory, which is suited for peri-
odically driven systems, in order to obtain the state of the working fluid in the limit-cycle.

7.2.1 Lindblad-Floquet theory
We start with a working fluid, whose Hilbert space has dimension N, undergoing

a random thermodynamic cycle, not specifying if it is Otto, Carnot, etc. This QHE is
periodic, with period τ. Differently from what is commonly done for stroke-based QHEs,
we’ll define a Liouvillian Lt that drives the whole cycle, that is, it encapsulates all the
strokes, independently of their nature. The periodicity manifests itself in the Liouvillian,
which must satisfy Lt+τ = Lt. The state of the working fluid ρt then evolves according to,

dρt

dt
= Ltρt. (7.25)

It is convenient to rewrite this expression in vectorized form, which is equivalent to the
Choi-Jamiołkowski isomorphism [123, 124]. Following the vectorization procedure (see
Appendix C), the state of the system is written as a vector of size N2 and any other
superoperator, such as Lt, becomes an N2 × N2 matrix. Eq. (7.25) is then rewritten as,

d
dt

vec(ρt) = L̂t vec(ρt), (7.26)

where vec(ρt) and L̂t are the vectorized forms of ρt and Lt, respectively.
With this on hands, now we apply Floquet’s theory. The first step is to change our

frame from Schrödinger’s to a generic rotating frame, defined by

vec(ρ′t) = Ŝt vec(ρt),

with Ŝt being a superoperator whose time period is the same as the cycle Ŝt+τ = Ŝt.
Inserting the previous equation in (7.26), we find that the state vec(ρ′t) in the rotating
frame will satisfy another master equation,

d
dt

vec(ρ′t) = L̂′t vec(ρ′t), (7.27)
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in which a new Liouvillian is introduced:

L̂′t = Ŝt L̂t Ŝ
−1
t +

dŜt

dt
Ŝ−1

t . (7.28)

Then, we want the Liouvillian L̂′t to be time-independent L̂′t → L̂
′, so that the solution

simplifies dramatically. Doing so is possible by just choosing the right Ŝt. Thus, the
solution of Eq. (7.27) is,

vec(ρ′t) = eL̂
′(t−t0) vec(ρ′t0). (7.29)

So far, so good, but this is not the actual state of the working fluid. To find it, we must
come back to Schrödinger’s picture by using the superoperator Ŝt,

vec(ρt) = Ŝt
−1

vec(ρ′t)

= Ŝt
−1

eL̂
′(t−t0) vec(ρ′t0)

= K̂t,t0 e(t−t0)L̂F (t0) vec(ρt0), (7.30)

where we defined the micromotion superoperator K̂t,t0 and the Floquet Liouvillian L̂F(t0)
as [35]:

K̂t,t0 := Ŝ−1
t Ŝt0 , (7.31)

L̂F(t0) := Ŝ−1
t0 L̂

′ Ŝt0 , (7.32)

Note that the Floquet Liouvillian is also periodic with period τ. The micromotion super-
operator satisfies K̂t0,t0 = K̂t0+nτ,t0 = 1 and, as a result, if we choose to track the state of
the working fluid after n ∈ N cycles, we get the stroboscopic evolution as

vec(ρt0+nτ) = enτL̂F (t0) vec(ρt0). (7.33)

This result tells us an interesting feature of the Floquet Liouvillian. If it has no eigenval-
ues containing a positive real component, then the limit-cycle is guaranteed to exist, since
Eq. (7.33) will always converge. Furthermore, as the Floquet Liouvillian is connected to
the time-independent Liouvillian of the generic rotating frame through a similarity trans-
formation [c.f. Eq. (7.32)], they have the same eigenvalues, which are time-independent.

After that a certain amount of time has passed, such that all terms containing eigen-
values with negative real parts vanish, the QHE will attain the limit-cycle. Assuming that
a unique nonequilibrium steady-state (NESS) exists, it corresponds to the zero eigenstate
of the Floquet Liouvillian, that is,

L̂F(t0) vec(ρF(t0)) = 0⇒ enτL̂F (t0) vec(ρF(t0)) = vec(ρF(t0)), ∀n, τ, t0.

Combining Eq. (7.30) with the zero eigenstate of the Floquet Liouvillian, we find that

vec(ρt) = K̂t,t0 vec(ρF(t0)), (7.34)

which together with the periodic property of the micromotion superoperator aforemen-
tioned, gives:

vec(ρt) ≡ vec(ρF(t)), (7.35)
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meaning that it is indeed the state of the working fluid in the limit-cycle and t is a param-
eter, rather than a time-dependency [35].

This is shortly what the Lindblad-Floquet technique consists of. In deriving the pre-
vious results, we considered the Liouvillian as given and hence swept under the rug the
problematic in obtaining it. As shown in Ref. [125], deriving the Floquet Liouvillian is
not always guaranteed to preserve complete positivity. For this reason, one must proceed
with caution when dealing with the Lindblad-Floquet framework.

7.2.2 Example: simplified quantum harmonic oscillator

Now we proceed to apply the Lindblad-Floquet framework to a working fluid com-
posed of a quantum harmonic oscillator whose Hamiltonian is time-dependent,

Ht = ωt

(
a†a +

1
2

)
, (7.36)

with a, a† being the annihilation and creation operators, respectively. For the sake of
simplicity, we didn’t take into account squeezing-like terms, such as a†a† and aa.

Considering that the working fluid is in contact with resonant3 and Gaussian preserv-
ing bosonic baths, the dissipators that appear in the Liouvillian will be,

D1(ρt) = γt(nt + 1)
(
aρta† −

1
2
{a†a, ρt}

)
, (7.37)

D2(ρt) = γtnt

(
a†ρta −

1
2
{aa†, ρt}

)
, (7.38)

where nt = 1/(eβtωt − 1) is the Bose-Einstein occupation number of the bath at inverse
temperature βt, and γt is the relaxation rate between bath and working fluid. Adding up
the unitary termUt(ρt) = −i[Ht, ρt], the Liouvillian at a time t is found to be equal to

Lt = Ut +Dt, (7.39)

with Dt being defined as the sum of the two dissipators presented in Eqs. (7.37) and
(7.38). It is worth mentioning that this particular case does not have the risk of suffering
from the complete positivity issue, since

{
[Ut,D1,2] = 0 | ∀t ∈ <

}
[35]. Furthermore, the

Liouvillian has a time period τ.
Next, we apply the aforementioned vectorization technique, leading to Lt → L̂t,

Ut → Ût and Dt → D̂t. By means of switching to a generic rotating frame, according
to (7.28), and redefining the terms, likewise done in Eqs. (7.31) and (7.32), then one gets
the Floquet Liouvillian. The technical parts of these (long) calculations are detailed in the
Appendices of Ref. [35]. The final result looks like

L̂F(t) =
ω̄

ωt
Ût + γ̄(nF(t) + 1)D̂1 + γ̄nF(t)D̂2, (7.40)

3Only the modes of the baths that satisfy ωk = ωt are deemed relevant.
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where D̂1, D̂2 are the vectorized forms of the previous dissipators and

ω̄ :=
1
τ

∫ τ

0
dtωt, (7.41)

γ̄ :=
1
τ

∫ τ

0
dt γt, (7.42)

ṅF + γtnF = γtnt. (7.43)

On top of that, by finding the zero eigenstate of the Floquet Liouvillian and using it to
carry out the calculations of the time evolution of the average number of quanta (〈a†a〉t =

tr{a†aρF(t)}), the working fluid’s energy is expressed by,

Et = ωt

(
〈a†a〉t +

1
2

)
= ωt

(
nF(t) +

1
2

)
, (7.44)

which is a simplified result, requiring only the solution of Eq. (7.43). In more general
scenarios, considering squeezing for instance, the calculations are much more intricate.
Finally, after defining a protocol for ωt, γt and βt, a thermodynamic cycle operating in
finite-time is achieved, and all the relevant thermodynamic quantities can be obtained.

Figure 7.4: Depiction of the protocol implementing the Otto cycle. The protocol is charac-
terized by (left) the working fluid’s frequency ωt, (middle) the bath’s occupation number
nt and (right) the relaxation rate γt, all as functions of the time t. The four strokes last for
a time τ/4 each one.

As an example, the Otto cycle may be implemented by the protocol shown in Fig. 7.4.
Since we are in the Floquet picture, the QHE is considered to be already in the limit-cycle.
Starting at a random time t = 0, the working fluid undergoes an isentropic expansion
from ω1 to ω2 in a linear fashion for a time τ/4. During this time, the working fluid is
disconnected from any of the baths, showed by the fact that γt = 0, which in its turn makes
the value of nt irrelevant during this stroke. Then, from τ/4 until τ/2 the working fluid
enters in contact with the cold bath, characterized by nC = 1

2coth(βCω2/2). The relaxation
rate is constant and equal to γ. The other half of the cycle is the dual of the previous two
strokes, that is, the working fluid instead of being expanded, is compressed from ω2 to ω1

and finally it enters in contact with the hot bath, identified by nH = 1
2coth(βHω1/2).

To obtain the energy of the working fluid at any time t, the quantity nF(t) is then
calculated, according to Eq. (7.44). It is done by solving Eq. (7.43), which, in this case,
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(a) Frequency−1 vs. energy diagram. (b) Cycle period vs. work/power.

Figure 7.5: Characterization of the finite-time QHE undergoing an Otto cycle, within the
Lindblad-Floquet theory. (a) Shows the diagram frequency−1 vs. energy (ω−1

t vs. Et) for
different cycle durations (τ = 100, 200, 700) and (b) is the plot of the extracted work (W)
and the power (P = W/τ). The other physical parameters are equal to: ω1 = 1.143,
ω2 = 0.857, γ = 0.04, β−1

C = 0.4, β−1
H = 0.8.

can be done separately for each stroke and the solutions are sewed together by adjusting
the integration constants. The result is

nF(t) =



eγτ/4coth(βHω1) + coth(βCω2)
2 + 2eγτ/4

, for 0 6 t < τ/4

e−γt[coth(βHω1) − coth(βCω2)]
2 + 2e−γτ/4

+
coth(βCω2)

2
, for τ/4 6 t < τ/2

coth(βHω1) + eγτ/4coth(βCω2)
2 + 2eγτ/4

, for τ/2 6 t < 3τ/4

e−γt[coth(βCω2) − coth(βHω1)]
2 + 2e−γτ/4

+
coth(βHω1)

2
, for 3τ/4 6 t < τ

(7.45)

which, together with the frequency modulation, gives us the energy Et.
In Fig. 7.5a, a frequency-1 vs. energy diagram, parameterized by t, is plotted. It shows

a remarkable similarity with the P-V diagram of the Otto cycle seen in Fig. 2.2, reinforcing
that the inverse frequency may be seen as a “volume”. Coming back to the quantum case,
three different cycle periods are presented. The cycle with the shortest period (τ = 100)
is identified with the innermost curve (green dashed line); the next curve surrounding it
(red dashed line) corresponds to a larger cycle period (τ = 200); and finally, the outermost
curve (purple line) represents the cycle with the longest time period (τ = 700).

Looking at the curves of Fig. 7.5a, we immediately see that the area inside the curves
increases, reaching a maximum area that remains the same if we continue to increase the
cycle period. What explains this saturation behavior can be learned from Fig. 7.5b. This
figure shows the extracted work and power as functions of the cycle period τ. Starting
with the extracted work, we note that it increases for longer cycle periods until a moment
in which it reaches a plateau around τ ∼ 700. This is directly linked to the saturation
which was previously seen. Hence, we are drawn to the conclusion that the area inside
the curves of aω−1

t vs. Et diagram is proportional to the work extracted from the QHE4. On

4This could be expected from the classical expression of work,W = −
∫

PdV .



62 7. OTHER APPROACHES TO FINITE-TIME QUANTUM HEAT ENGINES

the other hand, the power monotonically decreases for increasing τ, vanishing eventually
for τ→ ∞. This is in accordance with the fact that, for infinitely slow cycles, the evolution
is quasi-static and then, from what we already know, the power must be equal to zero.

Nevertheless, it may be argued that it is strange to have the maximum power for
τ → 0, since the extracted work goes to zero for vanishing τ, and obviously it would
make the power also have the same fate. A mathematical explanation of the finite value
of the power, lies on how the ratio between work and period behaves when τ→ 0,

P =
W

τ
∝

tanh(γτ/8)
τ

,

lim
τ→0

W

τ
∝
γ�τ

8�τ
= constant. (7.46)

Thus, both numerator and denominator approach the origin at the same speed. But, it
isn’t satisfactory yet, because the physical explanation is missing. In a realistic scenario,
there should be a power peak for nonzero τ. A hypothesis of why we failed to observe it
in Fig.7.5b, is that our model is too simplified, discarding completely degrees of freedom
that may affect considerably the dynamics of the working fluid. By making account of
these, a more reasonable result is obtained in Ref. [35].

Lastly, the efficiency of the finite-time QHE can also be calculated. Surprisingly, one
finds that

η =
W

QH

≡ 1 −
ω2

ω1
= ηO, (7.47)

that is, for the applied protocol and for whatever physical parameters, the efficiency is
always equal to Otto’s efficiency. This result is in agreement with the general ideas put
forth in Chapter 6, even though the scenario here is in continuous time.



Chapter 8

Conclusion

Within the context of quantum thermodynamics, this dissertation introduced an origi-
nal way of modelling finite-time quantum heat engines. It consists of alternating between
two different strokes. The first, called heat stroke, acts locally on the boundaries of the
working fluid. The baths, modelled within the collisional model approach [19–27], inter-
act with the working fluid in such a way that every energy change is associated with heat.
In this process the internal subsystems of the working fluid don’t interact. On the other
hand, the second is known as work stroke. The baths are disconnected from the bound-
aries of the working fluid, while its internal interactions are turned on. The system evolves
unitarily, thus, any energy variation during this stroke is identified with work. The cyclic
operation of these strokes leads to a stroboscopic (discrete-time) evolution of the work-
ing fluid’s state. This discretized behaviour enables the analysis of the transient regime,
which the engine goes through before reaching the limit-cycle, and also the optimization
of the output work, by manipulating the parameter space of the system. Furthermore,
for a broad class of interactions, it was shown that the engine has a universal Otto effi-
ciency. This stroboscopic two-stroke quantum heat engine [29] is a generalization of the
SWAP engine [36–40], for it encompasses partial thermalization, partial SWAP unitaries
and working fluids with arbitrary number of subsystems, each with a Hilbert space of
arbitrary dimension.

As a benchmark, the framework was used to model two specific cases. The first was
the generalization of the two-qubit SWAP engine, and the second was a spin chain of N
sites, which was considered to be either a XX chain or a XXZ chain. While the spin
chains were treated numerically, the two-qubit engine was solved analytically. In both
cases results were consistent and appointed to combinations of the parameter space that
enhanced the output power. Moreover, the system was found to admit different operation
modes beyond the engine one. These operation modes were: refrigerator and oven/heat
accelerator. Therefore, the stroboscopic two-stroke quantum heat engine (QHE), for its
relative simplicity and discretized structure, poses itself as a powerful tool to grasp the
finite-time dynamics of QHEs and optimize the power extracted from the engines. These,
in turn, are of great importance for a better understanding of thermodynamic phenom-
ena in the quantum realm and for the design of energy-efficient future technologies (e.g.
quantum computers, ultra-small engines).

To set the ground to present the stroboscopic QHE, the dissertation reviewed impor-
tant topics related to finite-time quantum thermodynamics. It started by briefly discussing
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what are cycles in a classical thermodynamics context (Chapter 2). Three cycles were pre-
sented: the Carnot cycle, the Otto cycle and the endoreversible cycle. The first two were
described within the equilibrium thermodynamics framework, while the last one was re-
lated to the Curzon-Ahlborn efficiency [3], which considers finite-time thermodynamics.
In Chapter 3 the main concepts of quantum thermodynamics were discussed. Open quan-
tum systems theory was introduced as the forefather of quantum thermodynamics, and
how to define heat, work and entropy production, within this context, was examined. As
a complement, the strong link between information theory and thermodynamics, through
the concept of entropy, was indicated. This relation was made explicit by Landauer’s
principle [16] and the Szilard engine [18], both were studied and interpreted.

After that, the two main categories of QHEs were discussed in Chapter 4. The first
kind, continuous-time QHEs [13, 88, 92], was described as operating in non-equilibrium
steady-states (NESS), where one identifies heat and work currents. Some of these engines
are said to be autonomous [95–97], that is, self-contained engines that have population
inversion between energy levels. The other type of QHEs, called stroke-based QHEs [32,
35, 38, 92], was shown to be made of sequential thermodynamic processes, in clear anal-
ogy with classical thermodynamics cycles. The strokes were modelled as quantum dy-
namical maps, which were explained in Chapter 3. These maps allow one to allocate
time intervals for each stroke, which in turn enables the possibility of studying finite-time
effects in QHEs.

Following the analysis of the different kinds of QHEs in Chapter 4, the reader was
presented with the two main chapters of the dissertation. In Chapter 5, the concept of col-
lisional models [19–27] was introduced. Then, its thermodynamic variables were defined
in the general case, as well as when the ancillas are in thermal states. The intimate relation
between collisional models and quantum master equations was shown by coarse-graining
the time scale. Moreover, in Chapter 6 the stroboscopic two-stroke QHE [29] was pre-
sented and discussed, as already mentioned in the first two paragraphs. These results are
the core of the dissertation, for their originality and their consistency with the current sci-
entific literature on QHEs. Also, the content of Chapter 6 is part of the preprint recently
submitted to arXiv.org [29], and that was also accepted for publication in Physical Review
A.

Furthermore, in Chapter 7 two other approaches to finite-time QHEs were studied.
The first was the technique known as shortcut-to-adiabaticity [34, 115, 116]. It consisted
of adding a counterdiabatic [34] term to the Hamiltonian of the working fluid of a QHE,
whose task was to inhibit transitions between energy levels during isentropic strokes for
whatever time duration. This, in turn, lead a system driven in finite-time to the same
final state as if it was quasi-statically driven. Taking into account the energetic cost of
implementing the shortcut-to-adiabaticity, the analysis of the trade-off between output
power and efficiency was done for a quantum Otto engine. The other approach was the
implementation of the Lindblad-Floquet theory to QHEs [35]. It was achieved by com-
bining the Liouvillian containing the Lindblad dynamics of the whole finite-time cycle,
with Floquet’s theory, which applies to periodically driven systems. The result was a new
generator of the dynamics, called the Floquet Liouvillian. Its zero eigenstate was the non-
equilibrium steady-state that corresponded to the limit-cycle. One then could calculate
the energy of the working fluid at any part of the limit-cycle, and as a consequence the
output power could be obtained. This framework was applied to a simplified quantum

https://ariv.org/abs/2008.07512
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harmonic oscillator (i.e. cannot be squeezed). Remarkably, the efficiency of this QHE in
the Lindblad-Floquet picture was found to be always equal to the Otto efficiency, for any
time duration of the cycle.

Finally, future work can be done using the QHE model herein presented. First, dif-
ferent kinds of internal interactions can be tested, such as long range interactions, with
the aim of comparing the output power and the efficiency, and then maybe find a class
of optimal interactions. Second, resources pertaining to quantum information theory, like
coherence and entanglement, can be readily implemented by choosing different bath an-
cillas other than “pure” thermal states. A starting point for this study could be Ref. [21].
And third, from the standpoint of experimental physics, the stroboscopic two-stroke QHE,
or any other implementation based on it, can in principle be tested in experimental setups
that are already well established. For instance, trapped ions are a good candidate, because
the electronic and motional degrees of freedom are well controlled, and each ion can be
directly addressed using photons from a laser, which in turn can mimic a thermal bath.

Overall, the stroboscopic two-stroke QHE model, for its suitability in treating finite-
time features of QHEs and its flexibility in choosing the working fluid and/or bath ancillas,
is a very promising approach to go deeper in the relation between quantum mechanics and
thermodynamics, as well as to provide a good platform for the design of future quantum
technologies.



Appendix A

Work and heat in isothermal strokes

As the name suggests, isothermal processes are those in which the working fluid stays
thermalized with the thermal bath at all times. It means that one drives the stroke very
slowly compared to the time it takes for the working fluid to thermalize.

Consider, for instance, a working fluid consisting of a quantum harmonic oscillator
(QHO), whose Hamiltonian in bosonic form is

Ht = ωt

(
a†a +

1
2

)
, (A.1)

where ωt is the time-dependent frequency of the QHO, and a, a† are the annihilation and
creation operators, respectively. The QHO is driven from ωi at t = t0 to ω f at t. If it’s
always thermalized at temperature T = β−1, its density operator can be written in Gibbs
form:

ρt =
e−βHt

Z
, (A.2)

where Z = tr
{
e−βHt

}
is the partition function. Hence, the energy of the working fluid is

equal to

Et = 〈Ht〉

= tr{Htρt}

=
1
2
ωt coth

(
ωt

2T

)
. (A.3)

Therefore, the energy difference during the process is equal to

∆E = Et − Et0

=
1
2
ωt coth

(
ωt

2T

)
−

1
2
ωt0 coth

(ωt0

2T

)
. (A.4)

The work extracted in the transformation is given by the integral,

W = −

∫ t

t0
dt′

〈
∂Ht′

∂t′

〉
= −

∫ t

t0
dt′

ω̇t′

2
coth

(
ωt′

2T

)
= −T ln

[
sinh(ωt/2T )
sinh(ωt0/2T )

]
, (A.5)
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which is written in such a way that work is positive when extracted from the system. The
heat exchanged with the thermal bath is obtained by evoking the 1st law of thermodynam-
ics,

Q = ∆E +W

=
1
2
ωt coth

(
ωt

2T

)
−

1
2
ωt0 coth

(ωt0

2T

)
− T ln

[
sinh(ωt/2T )
sinh(ωt0/2T )

]
, (A.6)

which is positive if the system absorbs heat from the bath.



Appendix B

Bosonic vs. mechanical picture

Consider the following bosonic Hamiltonian of a time-dependent quantum harmonic
oscillator (QHO),

Ht = ωt

(
a†a +

1
2

)
+
λt

2
aa +

λ∗t
2

a†a†, (B.1)

where ωt is the time-dependent frequency of the QHO, λt is a squeezing parameter, and
a, a† are the annihilation and creation operators, respectively. For time-dependent quan-
tum QHOs, the transformation between the bosonic and mechanical pictures must be done
with care. If one just uses the common transformation,

a =
1
√

2
(q + ip),

a† =
1
√

2
(q − ip),

the quadrature operators p, q become time-dependent. Thus, it becomes a rather com-
plicated Hamiltonian to be treated, since it does not commute in different times. An
alternative route is to consider the transformations

a =
1
√

2

(
√
ηq +

i
√
η

p
)
, (B.2)

a† =
1
√

2

(
√
ηq −

i
√
η

p
)
, (B.3)

with η being a random frequency scale, which determines the units of the quadrature
operators [35]. Then, by substituting Eqs. (B.2) and (B.3) in (B.1), one gets

Ht =
(ωt − λt)

2η
p2 +

η(ωt + λt)
2

q2. (B.4)

Hence, we see that it is almost a Hamiltonian of a QHO in which only the frequency is
time-dependent. To conclude the calculations, we define

η := m(ωt − λt), (B.5)

where m is the “mass” term of the QHO. Therefore, the Hamiltonian assumes its final
form,

Ht =
p2

2m
+

1
2

mΩ2
t q2, (B.6)

in which we define Ω2
t := ω2

t − λ
2
t .
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Appendix C

Vectorization

The vectorization or Choi-Jamiołkowski isomorphism [123, 124] maps a Hilbert space
H with dimH = N to another Hilbert space H ′ with dimH ′ = N2. Therefore, an outer
product transforms like

|i〉〈 j| → | j〉 ⊗ |i〉 . (C.1)

In practical terms, if applied to a matrix the procedure stacks its columns, for instance,

vec
(
a b
c d

)
=


a
c
b
d

 .
Furthermore, the analog of the “bra-ket” inner product 〈ψ|φ〉 inH ′ is given by the Hilbert-
Schmidt inner product,

tr{X†Y} = vec(X)†vec(Y). (C.2)

Another useful relation comes from vectorizing a product of three matrices XYZ,

vec(XYZ) = (Zᵀ
⊗ X)vec(Y). (C.3)

This framework may then be applied to density operators and superoperators. First,
the density operators transform according to,

vec(ρ) = vec
(∑

i, j

ρi, j |i〉〈 j|
)

=
∑

i, j

ρi, j | j〉 ⊗ |i〉 , (C.4)

whose normalization is conserved,

tr{ρ} = tr{Iρ}
= vec(I)†vec(ρ)

=

(∑
i

〈i| ⊗ 〈i|
)(∑

i′, j

ρi′, j | j〉 ⊗ |i′〉
)

=
∑

i

ρi,i

= 1, (C.5)
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where I is the identity operator.
Regarding the superoperators, a good example is the Liouvillian [c.f. Eq. (3.11)].

Starting with the unitary term [47],

vec
(
− i[H, ρ]

)
= −i

[
vec(HρI) − vec(IρH)

]
= −i

[
I ⊗ H − Hᵀ ⊗ I

]
vec(ρ)

= Ûvec(ρ). (C.6)

And then the dissipator [47],

vec[D(ρ)] =
∑

k

γk vec
(
MkρM†

k −
1
2
{M†

k Mk, ρ}
)

=
∑

k

γk

[
M∗

k ⊗ Mk −
1
2

I ⊗ M†

k Mk −
1
2

(M†

k Mk)ᵀ ⊗ I
]
vec(ρ)

= D̂ vec(ρ). (C.7)

Finally, the vectorized Liouvillian is

L̂ = Û + D̂, (C.8)

and the master equation becomes

d
dt

vec(ρ) = L̂ vec(ρ). (C.9)

The solution of this vectorized master equation is equal to

vec(ρt) = eL̂t vec(ρ0), (C.10)

thus, one clearly sees that the steady-state ρ∗ of the Liouvillian corresponds to the zero
eigenstate of the vectorized Liouvillian L̂ vec(ρ∗) = 0, such that

vec(ρt) = eL̂t vec(ρ∗)
= vec(ρ∗), ∀t ∈ <>0. (C.11)
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