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The formulation of models describing quantum versions of heat engines plays an important role in the
quest toward establishing the laws of thermodynamics in the quantum regime. Of particular importance is the
description of stroke-based engines, which can operate at finite time. In this paper we put forth a framework for
describing stroboscopic, two-stroke engines, in generic quantum chains. The framework is a generalization of
the so-called SWAP engine and is based on a collisional model, which alternates between pure heat and pure
work strokes. The transient evolution towards a limit cycle is also fully accounted for. Moreover, we show that
once the limit cycle has been reached, the energy of the internal sites of the chain no longer changes, with the
heat currents being associated exclusively to the boundary sites. Using a combination of analytical and numerical
methods, we show that this type of engine offers multiple ways of optimizing the output power, without affecting
the efficiency. Finally, we also show that there exists an entire class of models, characterized by a specific type
of interchain interaction, which always operate at Otto efficiency, irrespective of the operating conditions of the
reservoirs.
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I. INTRODUCTION

One of the cornerstones in the theoretical formulation of
quantum thermodynamics [1] is the development of quan-
tum heat engines (QHEs) containing quantum systems as the
working fluid [2–20]. The goal is to extend the notion of
thermodynamic cycles to the quantum regime, with the aim
of not only designing ultrasmall engines and optimizing them,
but also understanding, at a more fundamental level, the limits
of energy conversion in the quantum regime. As in classical
thermodynamics, QHEs may be classified as either operating
in continuous time [9–14] or being stroke based [2–8]. Con-
tinuous engines, such as thermoelectrics or masers [10,21],
operate autonomously and extract work in the form of steady
currents (e.g., chemical work in the case of thermoelectrics).
Stroke-based engines, on the other hand, are based on a series
of alternating steps that form the thermodynamic cycle. Work
is performed by changing the system Hamiltonian while heat
is exchanged by coupling the system to alternating baths.
Time is thus explicitly treated as a variable, which can be used
to optimize the output power.

The theoretical modeling of quantum heat engines, how-
ever, quickly stumbles on serious mathematical complica-
tions. The coupling to heat baths is usually done using
master equations or quantum operations, which often rely on
several approximations. And while these may only have a
mild effect on the dynamics, they may profoundly affect the
thermodynamics. The reason is ultimately related to energy
conservation; that is, in making sure that all energy sources
and sinks are appropriately taken into account and properly
identified as either heat or work. While this is usually easy in
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classical systems, in the quantum realm it becomes extremely
delicate.

In most thermodynamic cycles, work is performed while
the system is in contact with one or more baths. From a
modeling point of view, this requires the derivation of time-
dependent master equations, which can be done using, e.g.,
Floquet theory, but is generally quite involved. For this reason,
most studies have focused on the Otto cycle, where heat and
work strokes are clearly separated: During part of the dynam-
ics, the system is coupled to a bath and allowed to relax with
a fixed Hamiltonian, while in others the system is isolated
and the Hamiltonian is driven externally. Even in this case,
however, problems may arise since the act of coupling and
uncoupling the system from the baths can have an associated
work cost [12,22,23]. This is related to the size of the system-
bath interaction, when compared with the typical energy of the
system, something that can be significant in quantum systems.

The importance of controlling all the energy sources for a
consistent treatment of the thermodynamics of quantum sys-
tems is well addressed in resource theories of thermodynamics
[24–26]. In this formulation of thermodynamics, the quan-
tities are treated using tools of quantum information theory,
such as global energy-preserving unitaries, known as thermal
operations, that guarantee full control over the system and
the fulfillment of the first law of thermodynamics at all times
[24]. In this framework, continuous-time QHEs are naturally
implemented, since all energy sources are embedded into the
system and there is no need of an external agent to operate it,
which would impose a difficulty in keeping track of all energy
sources. However, when it comes to QHEs that are externally
operated through strokes, the accountability of every single
source of energy becomes a challenge, if one considers master
equations.

To shed light on this issue, it is essential to consider
models where all energy sources are properly taken into
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FIG. 1. The quantum heat engine (QHE) model is composed of two processes: (a) heat stroke (q) and (b) work stroke (w). During the
heat stroke the internal interactions of the quantum chain are turned off while the boundary subsystems 1 and N interact with a cold bath at
temperature TC and a hot bath at temperature TH , respectively. The work stroke, in its turn, consists of a unitary evolution of the chain as a
whole, by means of the interaction VS , and with the baths disconnected from the chain. The strokes are operated sequentially in a cyclic way,
as shown by the arrows around (a) and (b). The result is a stroboscopic evolution of the state of the chain, which results in a discrete-time
evolution of all thermodynamic quantities, as illustrated in (c).

account. With this in mind, we put forth in this paper a
general framework for dealing with stroke-based QHEs op-
erating with only two strokes. The framework is based on
the idea of collisional models [23,27–32], where the reser-
voirs are modeled by identical and independently prepared
(iid) units (henceforth called ancillas), which interact with the
system one at a time. The basic idea is illustrated in Fig. 1.
We consider a quantum chain with N sites, each with local
Hamiltonian Hi and interacting according to some interac-
tion Hamiltonian V , which, for concreteness, we take to be
nearest-neighbor interactions; that is VS = ∑

i Vi,i+1 (although
all results also hold for longer-ranged interactions). The chain
is also connected to two baths at each end (the generalization
to more baths is also straightforward). Each bath is composed
by ancillas with Hamiltonians HC and HH and prepared in
thermal states ρx = e−Hx/Tx /Zx (with x = C, H) at different
temperatures TC and TH . Nonthermal reservoirs can also in
principle be implemented, using for instance the results of
Ref. [32].

The engine operates in two strokes. The first is the heat
stroke (q), where the internal interaction VS is turned off and
the system is allowed to interact with C and H [Fig. 1(a)].
The thermodynamic analysis of this kind of process is by now
well established [12,22,23] and any potential work sources
stemming from turning the CSH interaction on and off, can
be properly taken into account. In the second stroke (w),
the system is completely isolated and the interaction VS is
turned on for a certain amount of time. This allows currents
to flow through the chain, which is associated with a certain
amount of work [Fig. 1(b)]. This scenario can be viewed as
a generalization of the so-called SWAP engine [5,33–36], in
which the system is composed of only two qubits and the
interactions are partial SWAPs. Here the number of sites in
the chain is arbitrary, as well as the form of the interactions.

Our construction is particularly suited for modeling finite-
time effects. The typical dynamics of heat and work is
illustrated in Fig. 1(c). As soon as the engine is turned on, all
quantities will undergo a transient (stroboscopic) dynamics.
After a sufficiently large number of cycles, however, they con-
verge to a limit cycle, where the engine’s operation becomes
periodic (the stroboscopic analog of a nonequilibrium steady
state).

The paper is organized as follows. The QHE model is
presented in Sec. II, where we lay the basic expressions for
all relevant thermodynamic quantities. In particular, we also
show that, depending on the type of interaction VS , the effi-
ciency of the QHE may have a universal value, independent of
the operating conditions. In Sec. III, the framework is then ap-
plied to two concrete examples: a two-qubit QHE (Sec. III A)
and a spin chain with N sites (Sec. III B). The former, in
particular, is treated analytically, by casting the problem as a
set of difference equations for some relevant system operators.
In both cases, we explore how the parameter space affects
the output power, as well as the number of cycles needed to
attain the limit-cycle regime. Finally, concluding remarks are
presented in Sec. IV.

II. TWO-STROKE QUANTUM HEAT ENGINE

In this section we present a detailed description of the pro-
posed two-stroke engine. We start by separately describing the
heat and work strokes, which are then sewn together to yield
the complete stroboscopic dynamics. Here and henceforth, all
quantities are expressed in units of kB = h̄ = 1.

A. Heat stroke

The heat stroke is depicted in Fig. 1(a). The working fluid
(henceforth referred to as “the system”) is composed of N
sites, each with dimension di and local Hamiltonians Hi. The
N sites are initially prepared in an arbitrary state ρS , which
need not be a product. During the heat stroke, the sites do not
interact in any way (although the state ρS may very well be
nonlocal). Each heat stroke is characterized by the interaction
with two baths, C and H , at the boundaries. The baths are
described by iid ancillas, each with local Hamiltonian Hx and
prepared in thermal states ρx = e−Hx/Tx /Zx (with x = C, H) at
different temperatures TC and TH (for concreteness, we set
TC < TH ). The interaction Hamiltonian VC of the left bath
has support only between C and subsystem S1, while VH has
support on SN and H . This interaction is characterized by the
global unitary

ρ̃S = trCH {Uq(ρC ρSρH )U †
q } := Eq(ρS ), (1)
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where Uq = e−iHqτq , τq is the duration of the stroke and Hq =∑N
i=1 Hi + HC + HH + VC + VH .
The main advantage of the collisional model approach is

the ability to properly account for all changes in energy in
both system and baths. We define heat as minus the change in
energy of the ancillas,

Qx := −tr{Hx(ρ̃x − ρx )}, x = C, H, (2)

where ρ̃x is the reduced state of C or H after the map (1). In
general, however, this will not equal the change in energy of
the system. The reason is that turning the interactions Vx on
and off will, in general, have an associated energy cost, called
the on/off work [12]. In fact, energy conservation for each
individual stroke implies that

W on/off
C := QC + tr{H1(ρ̃S − ρS )} = −�VC, (3)

W on/off
H := QH + tr{HN (ρ̃S − ρS )} = −�VH , (4)

where �Vx = tr{Vx(ρ̃CSH − ρCρSρH )}. The on/off work is
thus associated with energy that stays trapped in the interac-
tions Vx.

The condition required for the on/off work to be zero is
called strict energy conservation and reads

[VC, H1 + HC] = [VH , HN + HH ] = 0. (5)

To make the paper more self-contained, we provide a simple
proof of this in Appendix. In the language of resource theo-
ries, Eq. (5) means that the map (1) is a combination of two
thermal operations [25,37,38], one acting on site 1 and the
other on site N . When (5) is satisfied, all energy leaving the
system must enter the baths and vice versa. As a consequence,
the heat (2) may be equivalently defined as

QC := tr{H1(ρ̃S − ρS )}, QH := tr{HN (ρ̃S − ρS )}, (6)

which can now be computed solely from knowledge of the
reduced state of the system.

A popular choice of interactions are those that have the
form

VC =
∑

k

gk (L†
k Ak + LkA†

k ), (7)

where Lk is an operator acting only on subsystem 1 and Ak

are operators acting on C. A similar definition holds for the
interaction VH between H and site N . The condition (5) can be
fulfilled in this case whenever the {Lk} and {Ak} are eigenop-
erators of H1 and HC ; that is, if they satisfy [HS, Lk] = −ωkLk

and [HE , Ak] = −ωkAk , for the same set of frequencies {ωk}.
In this case one usually says that C and 1 are resonant, mean-
ing that all energy that leaves one enters the other.

We will not assume that the interaction is necessarily of the
form (7), but we will from now on assume that strict energy
conservation (5) is satisfied. As a consequence W on/off

x ≡ 0 and
therefore the change in energy of the system during the heat
stroke can unambiguously be associated to heat flowing to and
from the reservoirs. Finally, we also mention that in the end of
the heat stroke, the reservoir ancillas are discarded and never
participate again in the dynamics. This is another convenience
of collisional models: since they are subsequently discarded,
one can make any desired measurements in the ancillas,

without having to worry about a possible measurement back
action [39].

B. Work stroke

In a similar fashion, we now characterize the work stroke
[Fig. 1(b)]. The system is now isolated from the rest of the
world and its subsystems are put to interact by means of an
interaction Hamiltonian VS = ∑

i Vi,i+1, which is turned on
only during the work stroke. The system will therefore evolve
according to

ρ ′
S = Uwρ̃SU †

w = Ew(ρ̃S ), (8)

where Uw = e−iHwτw , Hw = ∑N
i=1 Hi + VS , and τw is the du-

ration of the work stroke.
During this stroke, by turning on VS , currents are allowed

to flow through the system (which will eventually flow to the
reservoirs in the next stroke). The work cost associated to this
is simply the on/off work of turning VS on and off; viz.,

W = −tr

{(∑
i

Hi

)
(ρ ′

S − ρ̃S )

}
= tr{VS (ρ ′

S − ρ̃S )}. (9)

Work is defined as positive when energy leaves the system
(i.e., work is extracted), while the heats Qx in Eq. (6) are
positive when energy enters the system.

One can also offer the following alternative justification
for Eq. (9) [12,23]. Strictly speaking, W is associated with
turning on and off the interaction VS . The system Hamiltonian
should thus be taken to be time dependent, of the form

HS (t ) =
∑

i

Hi + λ(t )VS,

where λ(t ) is a boxcar function, taking the value 1 in a window
of time τw. Focusing only on a single stroke, the work can then
be defined using the standard statistical mechanics expression

W = −
∫ ∞

−∞

〈
∂HS (t )

∂t

〉
dt .

Since the only time dependence is in the boxcar λ(t ) (whose
derivative is a pair of δ functions), one then readily finds that
W is given precisely by Eq. (9).

C. Stroboscopic dynamics

The result of sewing together the two strokes is a cycle with
period τ = τq + τw. We let ρn

S denote the state of the system
after the nth cycle. Combining Eqs. (1) and (8) one then finds
that ρn

S will evolve stroboscopically according to

ρ̃n
S = Eq

(
ρn

S

)
, (10)

ρn+1
S = Ew

(
ρ̃n

S

) = Ew ◦ Eq
(
ρn

S

)
, (11)

for n ∈ Z. The notation ρ̃n
S is used to denote the intermediate

state, in between the two strokes.
The heat and work in each stroke will be denoted by Qn

x
and Wn. They are readily computed from Eqs. (6) and (9),
respectively. The first law for the system thus becomes

�En = Qn
C + Qn

H − Wn, (12)

042217-3



OTAVIO A. D. MOLITOR AND GABRIEL T. LANDI PHYSICAL REVIEW A 102, 042217 (2020)

FIG. 2. Stroboscopic evolution of the working fluid from its ini-
tial state ρ0

S until it reaches a limit cycle of two nonequilibrium steady
states ρ∗

S and ρ̃∗
S .

where �En = tr{(∑i Hi )(ρn+1
S − ρn

S )} is the change in energy
of the system during stroke n. Since the energy is a function
of state, �En can simply be written as the difference between
the average energies at each stroke; the same, of course, is not
true for Qn

x and Wn.
Similarly, one may also write down the second law. En-

tropy is only produced during the heat stroke, so that the
second law can be written as [40]

	n = S
(
ρn+1

S

) − S
(
ρn

S

) − Qn
C

TC
− Qn

H

TH
� 0, (13)

where S(ρ) = −tr{ρlnρ} is the von Neumann entropy. The
positivity of 	n can be readily proven, for instance, by writ-
ing it in terms of the mutual information developed between
system and ancilla [41,42]. In this sense, it is also worth
mentioning that this result holds even in the presence of on/off
work in the heat stroke, provided Qx is associated with the
change in energy of the ancillas [42].

D. Limit cycle

Repeated application of Eq. (11) will eventually take the
system towards a limit cycle ρ∗

S , which is the solution of

ρ∗
S = Ew ◦ Eq(ρ∗

S ). (14)

The limit cycle is the stroboscopic analog of a nonequilibrium
steady state. Crucially, ρ∗

S is a fixed point only of the joint map
Ew ◦ Eq, not the individual ones. In the limit cycle the system
will therefore keep alternating between ρ∗

S and ρ̃∗
S = Eq(ρ∗

S ),
as depicted in Fig. 2.

In the limit cycle, the first law (12) simplifies to

W∗ = Q∗
C + Q∗

H , (15)

meaning that the total heat flux during the heat stroke is
converted into a net work at the work stroke. Similarly, the
second law (13) becomes

	∗ = −Q∗
C

TC
− Q∗

H

TH
. (16)

In the standard thermodynamic scenario, the two terms on the
right-hand side (RHS) are associated with a flow of entropy to

each side. Thus, in the limit cycle, all entropy produced in the
process flows to the environment (because the entropy of the
system itself no longer changes).

A special feature of the limit cycle in two-stroke engines is
that, as illustrated in Fig. 2, the state of the system bounces
back and forth between only two states ρ∗

S and ρ̃∗
S . The

expressions for the heat and work, Eqs. (6) and (9) thus
simplify to

Q∗
C = tr{H1(ρ̃∗

S − ρ∗
S )}, (17)

Q∗
H = tr{HN (ρ̃∗

S − ρ∗
S )}, (18)

W∗ = −tr

{(∑
i

Hi

)
(ρ∗

S − ρ̃∗
S )

}
(19)

= tr{VS (ρ∗
S − ρ̃∗

S )}. (20)

But the energy of the internal sites, i = 2, . . . , N − 1, do not
change during the heat stroke. As a consequence,

tr{Hi(ρ
∗
S − ρ̃∗

S )} = 0, i = 2, . . . , N − 1. (21)

Thus, when the system reaches the limit cycle, the energies
of all internal sites no longer change, neither in the heat
nor the work strokes. The thermodynamic output is therefore
completely determined by the changes in the internal energies
of the boundary sites. This is a rather peculiar feature.

E. Connection to other frameworks

In this section we discuss the connections between our
framework and two other scenarios that are frequently studied
in the literature. First, our framework can be viewed as a
generalization of the SWAP engine introduced in Refs. [5,33–
36]. The engine consists of two nonresonant qubits. The heat
stroke is exactly as described above, except that one assumes
full thermalization; that is, the map (1) thermalizes 1 to TC and
2 to TH . The work stroke is also defined in a similar way, but
the unitary is now taken to be a full SWAP between the two
qubits; i.e., USWAP = 1

2 (1 + σ 1
x σ 2

x + σ 1
y σ 2

y + σ 1
z σ 2

z ), where σ i
α

are Pauli matrices of the two qubits.
Compared to the SWAP engine [5,33–36], our scenario

encompasses arbitrary Hilbert spaces for systems and ancillas,
as well as arbitrary unitaries. The use of more general Hilbert
spaces allows one to explore quantum chains made up of
generic d-level sites, as well as more exotic chain geometries.
And the use of arbitrary unitaries allows one to consider only
partial thermalization and therefore study finite-time engines
and transient effects.

Next, we compare our framework to a continuous-time
scenario. If the duration of the heat and work strokes are
sufficiently small, one may in principle move to a continuous
time description by defining ρS (t ) = (ρn+1

S − ρn
S )/τ , where

τ = τq + τw and t = nτ . Provided the changes within the
strokes are small, for small τ the evolution of ρS (t ) will
in general become smooth, described in terms of a master
equation [40]. A detailed comparison, which also includes
four-stroke engines, was done in Ref. [43]. In fact, a calcula-
tion identical to the one performed in Refs. [12,22,23], shows
that the continuous-time limit of our two-stroke engine is the
so-called local master equation (LME) (also called boundary
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driven master equation), where Lindblad jump operators act
only on the end sites.

The physical interpretation of this continuous-time limit
is identical to that used in classical thermodynamics. A car
engine, for instance, is stroke based. However, each cycle lasts
for a very short period of time so that, in a coarse-grained
time scale, one can view it as operating in continuous time.
Similarly, LMEs can be viewed as the continuous-time limit
of our two-stroke engine.

F. Universal Otto efficiency

A special feature of the SWAP engine [5,33–35] is that,
despite having only two strokes, its efficiency is always given
by the Otto efficiency. It turns out that there is a broader class
of problems for which this is also true. In fact, as we now
show, this will be the case whenever the internal interaction
VS has the form

VS =
N−1∑
i=1

gi,i+1(L†
i Li+1 + L†

i+1Li ), (22)

where the Li are eigenoperators of each site Hamiltonian Hi.
That is, [Hi, Li] = −ωiLi. The transition frequency ωi may in
general be different from one site to another. However, it is
necessary for (22) to contain only one jump operator for each
site. Mixing multiple jump operators does not work. We also
notice that the local Hamiltonians Hi can still be absolutely
general, each with arbitrary dimensions and internal struc-
tures.

To prove this claim, we focus on the work stroke. Using
Heisenberg’s equation, the evolution of each local site Hamil-
tonian will be given by

d〈Hi〉
dt

= iωigi−1,i〈L†
i−1Li − L†

i Li−1〉

− iωigi,i+1〈L†
i Li+1 − L†

i+1Li〉.
Integrating over the duration τw of the work stroke, we find
that

tr{Hi(ρ
∗
S − ρ̃∗

S )} = ωi(Ji−1,i − Ji,i+1), (23)

where

Ji,i+1 = gi,i+1

∫ τw

0
dt〈L†

i Li+1 − L†
i+1Li〉.

For simplicity, we assumed the system was already in the limit
cycle. This result holds for all internal sites i = 2, . . . , N − 1.
It can also hold for the boundaries, provided we define J0,1 =
JN,N+1 = 0.

Because of the limit-cycle property (21), however, one
must have

J1,2 = J2,3 = . . . = JN−1,N . (24)

As a consequence, using the definitions of Q∗
C and Q∗

H in
Eqs. (17) and (18), one finds that

Q∗
C = ω1J1,2 = ω1JN,N−1 = − ω1

ωN
Q∗

H . (25)

On the other hand, if there was no work, from Eqs. (19) and
(21) it is clear to note that QC = −QH . Considering nonzero

work, Eq. (25) establishes a direct relation between the two
heats in the limit cycle. Because of the first law, Eq. (15), this
also fixes W∗ in terms of Q∗

H .
The efficiency is defined as

η = W∗

Q∗
H

= 1 + Q∗
C

Q∗
H

, (26)

where we also used the first law (15). Substituting (25) then
finally leads to

η = 1 − ω1

ωN
, (27)

which is the Otto efficiency [44]. The engine’s efficiency is
therefore completely determined by the transition frequencies
of the first and last sites. Note that these frequencies are
established by the jump operators Li in Eq. (22): the local
Hamiltonians Hi will in general have several transition fre-
quencies. But the interaction VS in (22) selects a specific ωi

for each site. We also call attention to the fact that (27) is
independent of the cycle duration τ . As a consequence, one
may tune τ to optimize the output power, without having to
bother about a decrease in efficiency.

Equation (25) also has an important consequence for the
second law. Substituting it in Eq. (16), one finds that

	∗ =
(

ω1

TC
− ωN

TH

)Q∗
H

ωN
. (28)

Since 	∗ � 0 by construction, it follows from this result that
Q∗

H must have the same sign as the prefactor. Thus, what
determines the direction of heat flow is not the gradient of
temperature, but the gradient of ω/T . That is, the difference
between ω1/TC and ωN/TH . This is so because there is work
involved, so that the standard Clausius statement, saying that
heat must flow from hot to cold, does not apply (since it
assumes there is no work involved). This result generalizes a
discussion in Ref. [12] about possible violations of the second
law in LMEs [45]. References [12,45] dealt with bosonic
chains (fermionic chains are mathematically equivalent). In
that case, what mattered for the heat flow direction was the
difference in the Bose-Einstein (Fermi-Dirac) occupations.
Equation (28) shows that this is more general. All it requires
is an eigenoperator-type interaction of the form (22). As an in-
teresting sanity check, we may verify what happens when the
Otto efficiency coincides with the Carnot efficiency. That is,
when the frequencies are chosen so that ω1/ωN = TC/TH . In
this case we see from Eq. (28) that 	∗ = 0, which agrees with
the idea of the Carnot cycle being reversible. In the SWAP
engine, the output power is also identically zero in this limit,
so that even though the engine operates reversibly, nothing is
extracted from it. It is unclear to us whether a similar result
should also hold for all two-stroke engines encompassed in
our framework.

III. APPLICATIONS AND EXAMPLES

We now illustrate our framework by considering two exam-
ples, one which can be solved analytically and another, which
must be handled numerically.
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A. Analytical solution of a partial SWAP engine

We begin by considering a system composed of two non-
resonant qubits, each with local Hamiltonian Hi = ωiσ

i
z/2.

The ancillas for the two baths are taken to be resonant with
their respective qubits. That is HC = ωCσC

z /2 and HH =
ωHσ H

z /2 with ωC = ω1 and ωH = ω2. The initial thermal
states ρx of the two baths are thus characterized only by
the Fermi-Dirac population, fx = (eβxωx + 1)−1. We take all
interactions to be of the form [cf. Eqs. (7) or (22)]

ϑμ,ν = gμ,ν (σμ
+σ ν

− + σ
μ
−σ ν

+). (29)

By this we mean the internal system interaction VS = ϑ12

as well as the system-bath interactions VC = ϑ1,C and VH =
ϑ2,H . The conditions that 1C and 2H are resonant then ensures
that there is no on/off work during the heat stroke. Moreover,
the fact that 1 and 2 are not resonant is precisely the source of
work during the work stroke.

Instead of working with the full map (11), it turns out
that in this case one can write down a closed system of
equations for only a handful of observables for the system
qubits 1 and 2. We define the c-number variables Zn

i = 〈σ i
z 〉n

(i = 1, 2), as well as the correlations Sn = 〈σ 1
+σ 2

− + σ 1
−σ 2

+〉n

and An = i〈σ 1
+σ 2

− − σ 1
−σ 2

+〉n [where 〈. . .〉n = tr(. . . ρn
S )]. From

these variables, the heats are computed as Qn
x = ωx(Z̃n

x −
Zn

x )/2 while the work is Wn = −∑
i=1,2 ωi(Zn+1

i − Z̃n
i )/2.

Using the map (1), a straightforward calculation shows
that during the heat stroke these variables will evolve accord-
ing to

Z̃n
i = (1 − λ)Zn

i + λZ th
i , (30)

S̃n = (1 − λ)[
√

pSn +
√

1 − pAn], (31)

Ãn = (1 − λ)[
√

pAn −
√

1 − pSn], (32)

where Z th
i = (2 fi − 1) is the equilibrium spin component of

each qubit in the temperature of its respective bath. We also
defined the parameters p = cos2[(ω1 − ω2)τq] and λ = [1 −
cos(2gτq)]/2, where g = gCH = gC,1 = gH,2 is the interaction
parameter for the system-bath interactions [Eq. (29)], which
we assume are the same for both.

These equations help to clarify the role of different pa-
rameters, as well as the relevant time scales. The system-bath
interactions 1C and 2H are nothing but partial SWAPs with
strength λ, with λ = 1 meaning full thermalization [as is clear
from Eq. (30)]. The parameter p, on the other hand, represents
a transfer from S to A, which is associated to the mismatch
ω1 − ω2 between the two qubits and is independent of gCH .
Notice also that since the system qubits do not interact during
the heat stroke, if initially Sn = An = 0, then the same will
be true of S̃n and Ãn; that is to say, the heat stroke cannot
create correlations between the two qubits, it can only destroy
them.

Similarly, during the work stroke defined by the
map (8), the variables (Z1, Z2, S, A) are found to evolve
according to

Zn+1
1 = (1 − η)Z̃n

1 + ηZ̃n
2 + 2η tan(θ )S̃n − 2ξ Ãn, (33)

Zn+1
2 = (1 − η)Z̃n

2 + ηZ̃n
1 − 2η tan(θ )S̃n + 2ξ Ãn, (34)

Sn+1 = η tan(θ )
(
Z̃n

1 − Z̃n
2

) + (1 − 2η tan2 θ )S̃n

+ 2ξ tan(θ )Ãn, (35)
An+1 = ξ

(
Z̃n

1 − Z̃n
2

) − 2ξ tan(θ )S̃n + (1 − 2η sec2 θ )Ãn,

(36)

where we introduced the auxiliary parameters η =
(2g2/ω2

r )[1 − cos(ωrτw )] (not be confused with the effi-
ciency), ξ = (g/ωr ) sin(ωrτw ) and tan(θ ) = (ω1 − ω2)/2g,
with ωr :=

√
4g2 + (ω1 − ω2)2 being the Rabi fre-

quency. These parameters are related according to
ξ 2 = η(1 − η sec2 θ ).

The parameter η plays a similar role to λ in Eqs. (30)–
(32), quantifying the strength of the internal system coupling.
Unlike λ, however, the parameter η can never implement a full
SWAP; that is, one can never have η = 1. In fact, η < cos2 θ .
This occurs because the two qubits are not resonant; if they
were, then we would have ωr = 2g and the limit η → 1 would
be reachable. The parameter θ plays a similar role to p, in
the sense that it is related to the detuning between the two
qubits, and vanishes if they are resonant. Unlike p, however,
θ is independent of the interaction time.

The work stroke, as can be seen, involves not only a partial
SWAP in the local populations Z1 and Z2, but also mixes the
populations and correlations. This mixing is related in a not so
intuitive way to both parameters ξ and θ . In fact, even in the
resonant case, where θ = 0, this mixing still remains because
ξ continues to be nonzero.

The two systems of Eqs. (30)–(32) and (33)–(36) form a
simple set of vector difference equations for the vector xn =
(Zn

1 , Zn
2 , Sn, An), which can be written as

x̃n = Jxn + S, (37)

xn+1 = Dx̃n = DJxn + DS, (38)

where the 4 × 4 matrices J and D, as well as the vector S, can
be readily read from Eqs. (30)–(36). For instance, the matrix S
is associated only with the terms λSth

i in Eq. (30) and therefore
reads S = λ diag(2 fC − 1, 2 fH − 1, 0, 0).

The general solution of this type of difference equation
reads

xn = (DJ )nx0 +
n−1∑
r=0

(DJ )n−r−1(DS). (39)

We therefore see that the bulk of the dynamics is governed by
the matrix DJ . In addition, one may also determine the steady
state by setting xn = xn+1 = x∗ in Eq. (38). As a result one
finds

x∗ = (I4 − DJ )−1DS. (40)

The full expression is somewhat cumbersome, but
can nonetheless be computed analytically using, e.g.,
Mathematica.

An illustrative example of the evolution of the xn and
x̃n is shown in Fig. 3. These plots clearly exhibit the con-
vergence towards the steady state, where the system keeps
bouncing back and forth between x∗ and x̃∗, similarly to a
piston going up and down. From the entries of xn and x̃n, one
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FIG. 3. Values of (a) Zn
1 (yellow circle), Z̃n

1 (purple square),
(b) Zn

2 (yellow circle), Z̃n
2 (purple square) (c) Sn, (yellow circle), S̃n

(purple square), and (d) An (yellow circle), Ãn (purple square), as
functions of the number of cycles n. The dashed gray lines are the sta-
tionary values of the c-number variables. These plots were obtained
for λ = 0.2, p = 0.99, TC = 0.4, TH = 0.8, ω1 = 0.75, ω2 = 1.0,
and g = 0.3. The interaction times were fixed at τq = τw = 1. The
initial state is assumed to be both qubits in the ground state.

readily computes the relevant thermodynamic variables Qx =
ωx(Z̃n

x − Zn
x )/2 and W = −∑

i=1,2 ωi(Zn+1
i − Z̃n

i )/2. The re-
sults are shown in Fig. 4. The thermodynamic variables tend
to nonzero values, as indicated by the numbers in the figure.
Since the work is positive (extraction), this corresponds to
a heat engine configuration. We see that, initially, the work
is very small, while the heat losses are significant. This, of
course, depends on the initial conditions. But they reflect
well the typical adaptation of the heat engine towards the
limit-cycle operation. This therefore serves to illustrate that
thermodynamically relevant quantities, such as the net output
work in the limit cycle, may behave in significantly different
ways, in the transient and the limit cycle.

Next we address the relaxation time, which is associated
with the number of cycles that the engine must run before
reaching the limit cycle. This is related to the eigenvalues

FIG. 4. Plots of (a) Qn
C (blue circles), Qn

H (red diamonds), and
(b) Wn (green circles) with respect to the number of cycles n. The
parameters are the same as in Fig. 3. The numbers in the plot indicate
the steady-state values for this specific configuration.

of the matrix DJ , which is the basic matrix governing the
dynamics of xn in Eq. (39). The dynamics depends on powers
of DJ . Stability thus requires that its eigenvalues lie within the
unit circle. Small eigenvalues are quickly suppressed when
taking it to the power n. Thus, the longest relaxation time
of the system will be described by the largest eigenvalue (in
magnitude) of DJ:

μ := max |eigs(DJ )|. (41)

The closer μ is to unity, the longer the system takes to relax
to the limit cycle.

From Eqs. (30)–(32), one notices that all entries in the
matrix J depend equally on 1 − λ. Hence, μ ∝ 1 − λ. It turns
out, however, that this is an exact equality. As may be ver-
ified from the clumsy, but exact, formulas for D and J , the
matrix DJ/(1 − λ) has an eigenvalue 1. And so, by stability,
all others must necessarily have magnitude below 1. Hence,
we conclude that the longest relaxation time (41) is exactly
μ = 1 − λ. That is, the relaxation is fully dictated by the heat
stroke, as one might intuitively expect.

Finally, we turn to the output power,

P∗ = W∗

τq + τw

. (42)

Our system falls under the category of Sec. II F and therefore
its efficiency is always given by the Otto formula (27). The
output power, however, is not fixed but depends sensibly on
all parameters. Using the difference equations approach de-
scribed above, it is possible to write down an explicit, and not
too cumbersome, formula for W∗:

W∗ = 2η(2 − λ)λ( fC − fH )(ω1 − ω2)

λ2 + 2(1 + η)(1 − λ) − 2
√

p(1 − λ)[1 − η(tan2 θ + sec2 θ )] + 4
√

1 − p(1 − λ)ξ tan θ
. (43)

The output power depends on the stroke times τq and τw,
which are also contained implicitly in the parameters λ, p,
and η above.

Equation (43) provides a clear illustration of the physics
behind each parameter involved in the model. First, we see
that W∗ depends on ( fC − fH )(ω1 − ω2). The Fermi function
(ex + 1)−1 is monotonically decreasing in x. Thus, if we fix

TC < TH , the output work will be positive when fc < fH and
ω1 < ω2, which establishes the operating interval for the ma-
chine to function as an engine:

TC

TH
� ω1

ω2
� 1. (44)
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FIG. 5. Optimization of the output power. The figure corresponds
to a plot of Eq. (42) (scaled by 103) as a function of the interaction
times τq and τw , of the heat and work strokes. The parameters are
similar to those of Fig. 3; namely, TC = 0.4, TH = 0.8, ω1 = 0.75,
ω2 = 1., g = gCH = 0.3.

It is also interesting to analyze some particular cases of
(43). First, for full thermalization (λ → 1), it reduces to

W∗ = 2η( fC − fH )(ω1 − ω2).

This is close to the result of the SWAP engine [5,33–36]. The
difference is that the SWAP engine assumes a unitary stroke
implementing a full SWAP, so that η = 1. In our case, we
are assuming η stems from a microscopic interaction so, as
discussed, this limit cannot be reached. Similar infinitesimal
expansions can also be performed for the other parameters.
In particular, the structure of the numerator in Eq. (43) shows
the leading order contributions of λ, η and (ω1 − ω2) will all
be linear. This, of course, is physically consistent, since the
work output is meant to vanish if (i) the internal system cou-
pling vanishes, (ii) the coupling to the baths vanish, and (iii)
the two system qubits are resonant. The latter, in particular,
occurs because in this limit the interaction becomes a thermal
operation.

Equation (43) makes it efficient to optimize the output
power by tweaking the system parameters. To illustrate this, in
Fig. 5 we plot P∗ as a function of the interaction times τq and
τw, of each stroke. The dependence on these parameters is not
trivial. Part of it is oscillatory, through their dependence on the
parameters λ, p, and η. This is clearly observed in the figure.
But, in addition, P∗ is also inversely proportional to τq + τw.
For very large τq and τw, this will cause P∗ to decreases as one
moves across the diagonal in the figure. But for intermediate
values, increases may be observed as well.

B. Numerical analysis of a generic XYZ spin chain

The results for the two-qubit engine resemble, in many
aspects, the SWAP engine [5,33–36]. The difference is that
now the engine is operated in finite time, which therefore
introduces multiple new features. The two-stroke framework
developed in this paper, however, is not restricted to this
simple scenario. To illustrate this, we now consider an engine
whose working fluid is a spin chain of N sites, while the

reservoirs are still single spins. For simplicity, we focus on
linear chains, although this is not at all a restriction. Each
spin has, as before, a local Hamiltonian Hi = 1

2ωiσ
z
i . The

system-bath interactions 1C and NH are still of the form (29),
with the ancillas resonant with their respective sites (so as
to ensure there is no on/off work). The internal interaction
Hamiltonian however, is now taken more generally to be

VS =
N−1∑
i=1

{
Jxσ

x
i σ x

i+1 + Jyσ
y
i σ

y
i+1 + Jzσ

z
i σ z

i+1

}
. (45)

The total Hamiltonian during the work stroke will thus be H =∑
i Hi + VS . We focus on small chains (N � 6), for which the

problem can be treated using exact diagonalization. Moreover,
we analyze two particular cases: (i) XX model Jx = Jy = J ,
Jz = 0 and (ii) XXZ chain, Jx = Jy = J , Jz = J�. The results
for each case are summarized in Fig. 6. Figures 6(a)–6(c)
(left column) are for the XX and Figs. 6(d)–6(f) (right) for
the XXZ. Moreover, Figs. 6(a) and 6(d) show the transient
dynamics of of Qn

C , Qn
H , while Figs. 6(b) and 6(e) show that

of Wn. Finally, Figs. 6(c) and 6(f) show the limit cycle output
power as a function of λ (which is equivalent to τq).

We start by analyzing the XX model [Figs. 6(a)–6(c)].
It can be seen that both the stationary values of heat and
work are independent of the size of the chain. The extracted
power in the limit cycle, on the other hand, is weakly affected
by N and likewise the value of λ for which the power is
maximum. These results are consistent with the fact that, by
making the changes σx → σ+ + σ− and σy → −i(σ+ − σ−),
the interaction Hamiltonian can be written in the same form
as Eq. (29) and therefore similar results to the N = 2 case
would be expected. A similarly weak dependence of the XX
model in the chain size N has also been observed in Ref. [12],
for a noninteracting bosonic chain. This, we believe, is related
to the noninteracting nature of these models. For instance, it is
known that the XX model presents ballistic transport, whereas
the XXZ does not.

Now we pass to the XXZ chain. In contrast with the XX
model, the XXZ spin chain shows a significant variation for
the heat, work, and power. In Fig. 6(d), we note that Q∗

H
decreases for increasing N and then, as a result, W∗ [Fig. 6(e)]
also gets lower when enlarging the spin chain. A notable
change in the extracted power is also observed [Fig. 6(f)].
The maximum value of P∗ with respect to λ gets lower for
increasing N and the λ for which the extracted power is
maximum is slightly shifted to the right.

IV. SUMMARY AND CONCLUSIONS

In this paper we have explored a framework for dealing
with two-stroke heat engines. The cycles are constructed by
alternating between a heat stroke, which acts locally on differ-
ent parts of a system, and a work stroke that couples together
the different sites. This corresponds to a generalization of the
SWAP engine [5,33–36]. Our approach is based on a colli-
sional model, which allows us to properly take into account
all energy changes in the system and thus completely charac-
terize heat, work, and entropy production. As we show, this
framework is particularly suited for capturing the finite-time
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FIG. 6. Operation of a N-site two-stroke engine. The curves cor-
respond to simulations for the XX [(a)–(c)] and XXZ chain [(d)–(f)]
for different chain sizes N . (a), (d) presents the relaxation of the heats
towards the limit cycle: Qn

C blue circles (N = 3), blue diamonds
(N = 4), and blue triangles (N = 5); Qn

H : red circles (N = 3), red
diamonds (N = 4), and red triangles (N = 5) and (b), (e) shows
the relaxation of the work Wn: dark green circles (N = 3), green
diamonds (N = 4), and light green triangles (N = 5). Finally, (c), (f)
presents he limit-cycle output power P∗ as a function of λ (which is
proportional to τq): red circles (N = 3), blue diamonds (N = 4), and
green triangles (N = 5). The on-site potentials ωi were chosen to
interpolate linearly between ω1 = 1.5 and ωN = 2.0. Other param-
eters were Jx = Jy = 0.8, TC = 0.2, TH = 0.8, and τw = 0.25. For
(a)–(c) we fixed Jz = 0 and for (d)–(f) Jz = 0.7.

dynamics of the system and the convergence toward a limit
cycle. In particular, we establish a broad class of models,

which present a universal Otto efficiency. As an application,
we study a finite-time generalization of the two-qubit SWAP
engine, as well as a spin chain of N sites and different types of
interactions. We show that the system may present a rich set of
behaviors, as well as operating regimes (engine, refrigerator,
etc.) depending on the choices of parameters.
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APPENDIX: STRICT ENERGY CONSERVATION
AND ON/OFF WORK

In this Appendix we show that the strict energy conserva-
tion condition (5) implies that the on/off work in Eqs. (3) and
(4) must necessarily vanish. It suffices to focus on just two
systems, 1 and 2, with Hamiltonians H1 and H2 and interacting
through an operator V satisfying strict energy conservation
[V, H1 + H2] = 0. The generalization to include both baths is
straightforward.

The fact that the global dynamics of 12 is unitary implies
that

�H1 + �H2 + �V = 0,

where �O = tr{O(UρU † − ρ)} is the change in operator O
due to the unitary evolution generated by U = e−i(H1+H2+V )t .

But if [V, H1 + H2] = 0, it follows that [U, H1 + H2] =
0, which in turn implies that (U †H1U − H1) + (U †H2U −
H2) = 0. Hence, we must also have

�H1 + �H2 = 0.

Comparing the two results we conclude that

�V = 0.

But �V is precisely the on/off work (the energy trapped in
the interaction). Whence, the on/off work vanishes for strict
energy conservation, which is what we set out to prove.
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