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Nonlinear Onsager relations for Gaussian quantum maps
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Onsager’s relations allow one to express the second law of thermodynamics in terms of the underlying
associated currents. These relations, however, are usually valid only close to equilibrium. Using a quantum phase
space formulation of the second law, we show that open bosonic Gaussian systems also obey a set of Onsager
relations, valid arbitrarily far from equilibrium. These relations, however, are found to be given by a more
complex nonlinear function, which reduces to the usual quadratic form close to equilibrium. This nonlinearity
implies that in Gaussian models far from equilibrium, there exists a fundamental asymmetry between entropy
flow from the system to the bath and vice versa. The ramifications of this for applications in driven-dissipative
quantum optical setups are also discussed.
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I. INTRODUCTION

In the context of irreversible thermodynamics, when a
system is pushed away from equilibrium it responds by de-
veloping currents (of heat, particles, etc.), which cause it to
eventually reequilibrate. The entire process can therefore be
understood as an interplay between thermodynamic forces
(affinities) fi, such as temperature gradients, and the corre-
sponding system response, in the form of currents φi from
the system to the environment. The entropy production rate,
dictating how far the system is from equilibrium, is [1]

� =
∑

i

fiφi. (1)

For instance, in a system supporting currents of energy and
particles, one would have φ1 = U̇ and φ2 = Ṅ , the rate of
change of the internal energy and particle number. The corre-
sponding affinities will then be the temperature gradient f1 =
δ(1/T ) and the chemical potential gradient f2 = δ(μ/T ).
When the affinities are small, the response tends to be linear,

φi =
∑

i

Li j f j, (2)

where the coefficients Li j form what is known as the Onsager
matrix [2]. According to Onsager’s reciprocity theorem, L
is symmetric and positive semidefinite. Within this linear
response regime, Eq. (1) becomes a quadratic form

� =
∑

i j

Li j fi f j, (3)
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whence, in irreversible thermodynamics, the linear response
is characterized by a quadratic relation between currents and
entropy production [3]. Far from equilibrium, this quadratic
form no longer holds and no general connection exists be-
tween entropy production and flux.

The results above apply to macroscopic thermodynamic
systems, but they can also be extended to the microscopic
realm, both classical (stochastic thermodynamics) and quan-
tum. Classical systems are usually modeled using either
Fokker-Planck or Pauli master equations [4–8]. This allows
one to identify generalized affinities and currents at the
stochastic level [9] such that the entropy production can still
be decomposed in the form (1) and Onsager relations (3)
continue to hold close to equilibrium. Far from equilibrium,
on the other hand, stochastic systems are found to obey
fluctuation theorems [10–13]. These are more general and
imply Onsager’s relation close to equilibrium [14].

Conversely, irreversible thermodynamics in the quantum
regime is usually studied using either quantum master equa-
tions [15–17] or nonequilibrium Green’s functions [18,19].
The latter is perhaps the case where Onsager’s relations find
most applications, especially in the fields of chemical kinetics
[20] and thermoelectrics [21]. The Onsager cross coefficients
L12 and L21 are related to the Seebeck and Peltier effects,
which are the basis for several technological applications.
They are also related to the output power when a thermo-
electric is interpreted as an autonomous quantum heat engine
[22–24].

Onsager’s relations in quantum master equations, on the
other hand, have been much less explored [25,26]. Some
simple scenarios, such as Davies maps [17,27], can actually
be converted into Pauli master equations so that the stochas-
tic thermodynamics formalism applies. More general cases,
however, can quickly run into serious difficulties, particularly
due to quantum coherent effects. For instance, in Ref. [28] the
authors have shown that even in the case where there is only
one associated flux (so that Onsager’s matrix would be 1 × 1),
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the entropy production will contain a nontrivial contribution
due to quantum coherence.1

In this paper we analyze Onsager’s relations in the context
of continuous-variable bosonic systems, where thermodynam-
ics can be constructed solely in terms of quantum phase
space [29–35]. Our main result is to show that these systems
also obey an Onsager relation. However, unlike Eq. (3), the
entropy production and flux are related by a more complicated
nonlinear function. To elucidate this, we anticipate the result
for the simplest possible scenario of a single mode relaxing to
equilibrium. In this case our Onsager relation reads

� = φ2

φ + γ
, (4)

where γ > 0 is a constant related to the underlying dynam-
ics. This result is valid arbitrarily far from equilibrium and
reduces to Eq. (3) in the linear response regime (φ � γ ). The
nonlinear structure of Eq. (4), however, implies that � is not
an even function of the flux, i.e.,

�[φ] �= �[−φ]. (5)

An even dependence of � on φ is a hallmark of classical
Onsager relations. It implies that the entropy production does
not depend on the direction of the flow, only on its magnitude.
Equation (4), however, shows that far from equilibrium this
asymmetry is fundamentally broken. In fact, one finds that

1

�[φ]
− 1

�[−φ]
= 2

φ
, (6)

a result which, as shown below, is actually general.

II. MODEL

We consider here a system of L bosonic modes character-
ized by operators R = (a1, . . . , aL ) satisfying the usual alge-
bra [ai, a†

j ] = δi j . We assume that the first moments are zero

and define the covariance matrix (CM) �i j = 1
2 〈{Ri, R†

j}〉.
Classical CMs are only restricted to be positive definite;
the Heisenberg uncertainty principle, however, imposes the
stronger (bona fide) constraint [36]

� − i

2
� � 0, (7)

where � = (−iσz )⊕L is the symplectic form for our CM (with
σz being the usual Pauli matrices).

Our focus will be on Gaussian states and Gaussian-
preserving maps [36]. This encompasses a multitude of exper-
imentally relevant situations such as optomechanics [37–39],
ultracold atoms [40], and nonlinear optics [41]. We also as-
sume a continuous-time Markovian evolution, which includes
both Lindblad and quantum Langevin dynamics. The CM in
this case evolves according to the Lyapunov equation

d�

dt
= W � + �W † + F. (8)

1The results of [28] are phrased in terms of work quantities, but can
be rephrased in terms of entropy production.

Here W = �H − 	/2 is a matrix composed of a Hamilto-
nian part �H and a dissipative part 	. We will assume,
for the sake of concreteness, that 	 has the form 	 =
diag(γ1, γ1, . . . , γL, γL ) for γi � 0.

The matrix F in Eq. (8) is known as the diffusion matrix.
In classical stochastic processes, the only restriction imposed
on F is positive semidefiniteness [42]. For quantum process,
however, one must ensure that the map is completely positive
and trace preserving (CPTP). A general Gaussian map of the
form � → X�X † + Y is CPTP provided the matrices X and
Y satisfy [43]

i

2
(X�X † − �) + Y � 0. (9)

Integrating Eq. (8) over an infinitesimal interval yields a
Gaussian map with X = 1 + W dt and Y = Fdt . Equation (9)
therefore implies that i

2 (W � + �W †) + F � 0. It is conve-
nient to parametrize

F = 1
2 (	Q + Q	). (10)

Equation (9) then implies the constraint

Q − i

2
� � 0. (11)

In words, the Lyapunov equation (8) will produce a genuine
quantum Gaussian evolution if Q represents a valid Gaussian
CM [cf. Eq. (7)]. If the Hamiltonian part of W is zero, then
the steady state of Eq. (8) will be precisely �(t → ∞) = Q.
When there are Hamiltonian terms, however, the steady state
will in general differ from Q and will often be a nonequi-
librium state. For simplicity, we will henceforth assume that
[Q, 	] = 0; this is the case, for instance, of local Lindblad
equations. Equation (10) then simplifies to F = 	Q.

III. ENTROPY PRODUCTION RATE

Gaussian systems are naturally characterized by the Rényi
entropy of order 2 or Wigner entropy, which is given by [29]

S(�) = 1
2 ln |2�|, (12)

where |�| is the determinant of �. Using the relation
d
dt ln |�| = tr(�−1 d�

dt ) together with the Lyapunov equation
(8), one finds that

dS

dt
= 1

2
tr(	Q�−1 − 	). (13)

Due to the interaction with the bath, the entropy of the system
may either decrease or increase, so dS/dt does not have a
definite sign. The part of the change in entropy which is
always non-negative is the entropy production rate, which is
given by

� = dS

dt
+ 
 � 0, (14)

where 
 is called the entropy flux rate, from the system to the
environment. As shown in [32,44,45], for general Lyapunov
equations 
 can be written as


 = 1
2 tr(	�Q−1 − 	}. (15)

Combining this with Eq. (13) then yields the entropy produc-
tion rate �. We have found that it is possible to write it in a
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particularly nice way, as

� = 1
2 tr[	(Q − �)(�−1 − Q−1)] � 0. (16)

The non-negativity of � can be made apparent by writ-
ing (Q − �)(�−1 − Q−1) = MQM†�−1, where M = 1 −
�Q−1, which is manifestly positive definite and therefore so
is the trace. The entropy production (16) serves a natural
quantifier of how far the system is from equilibrium, in the
sense that it clearly measures the distance between the CM �

and the bath-imposed CM Q.

IV. NONLINEAR ONSAGER RELATIONS

We now show how Onsager’s relations emerge in our treat-
ment, in the form of a nonlinear expression valid arbitrarily
far from equilibrium. The matrix nature of Eqs. (15) and (16)
naturally suggests that we define a flow matrix

ϒ = 	1/2�Q−1	1/2 − 	 (17)

and a production matrix

� = 	1/2(Q − �)(�−1 − Q−1)	1/2. (18)

Equations (15) and (16) are then written as


 = 1
2 tr(ϒ), � = 1

2 tr(�). (19)

The two matrices ϒ and � are actually related to each other.
Using standard matrix algebra, one finds2

� = ϒ 	−1ϒ(	 + ϒ)−1	. (20)

This is the matrix version of the generalized Onsager relation.
It implies that the entropy production can be written solely as

� = 1
2 tr{ϒ	−1ϒ(	 + ϒ)−1	}, (21)

which is a function only of the flow matrix ϒ and the damping
rate 	. This is the main result of this paper: a nonlinear
Onsager relation valid arbitrarily far from equilibrium. The
linear response regime is recovered when 	 + ϒ 	 	, in
which case Eq. (21) simplifies to

� = 1
2 tr(	−1ϒ2), (22)

which is the traditional quadratic Onsager relation.
The physics behind Eq. (21) can be made more transparent

by considering the particular case where 	 = γ I is propor-
tional to the identity matrix (of dimension 2L). This is true for
a single mode or for multiple modes with identical damping
rates. In this case we get

� = 1

2
tr

(
ϒ2

γ I + ϒ

)
. (23)

Let us further assume that the target state Q of the Lyapunov
equation (8) is a thermal state of the form Q = (n̄ + 1

2 )I .
If all modes initially start in a thermal state with the same
occupation, then the entire evolution of the covariance matrix
will be trivially given by �(t ) = θt I , where θt = 〈a†

i ai〉 +

2When 	 is not full rank, 	−1 is to be interpreted as the Moore-
Penrose generalized inverse [44].

1
2 (independent of i). The dynamics of θt is given by the
Lyapunov equation (8) and reads

dθt

dt
= γ

((
n̄ + 1

2

) − θt
)
, (24)

which is in the form of the so-called law of cooling. The flow
matrix in this case simplifies to

ϒ = γ

(
θt

n̄ + 1
2

− 1

)
I = 


L
I, (25)

whence the entropy production becomes

�[
] = L
(
/L)2

γ + 
/L
, (26)

which is Eq. (4) with a flow per mode φ = 
/L.
As already touched upon in the Introduction, the funda-

mentally different feature of the nonlinear Onsager relation
is the asymmetry with respect to positive or negative entropy
flows. The inverse of the production matrix (18) has the form

�−1 = ϒ−1	ϒ−1 + ϒ−1, (27)

whence one readily finds

�[ϒ]−1 − �[−ϒ]−1 = 2ϒ−1, (28)

which is the matrix version of (6). It shows how the parity
of �[ϒ] is broken far from equilibrium. Note also how this
asymmetry depends only on the flow matrix ϒ and not on 	.

V. APPLICATIONS

A. Optical parametric oscillator

As a first application, we consider an optical parametric
oscillator described by the Hamiltonian

H = − iχ

2
(a†2 − a2) (29)

and subject to a heat bath at occupation n̄. The matrices W and
F in Eq. (8) in this case read

W = −
(

γ /2 χ

χ γ /2

)
, F = γ

(
n̄ + 1

2

)
I2. (30)

Thus, the matrix 	 is simply proportional to the identity 	 =
γ I2. The production and flow matrices will thus be related by
Eq. (20), which now simplifies to

� = ϒ2

γ + ϒ
, (31)

where we used the fact that ϒ and γ + ϒ commute to write
this more cleanly (the identity matrix I2 was also omitted).
The matrix �−1 is thus

�[ϒ]−1 = γ + ϒ

ϒ2
, (32)

from which one may now readily verify the symmetry relation
(28).

Next we focus on the steady state, which is a solution of
W �ss + �ssW † = −F . It reads

�ss = n̄ + 1/2

γ 2 − 4χ2

(
γ 2 −2γχ

−2γχ γ 2

)
. (33)
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The steady state exists provided 4χ2 < γ 2; above this thresh-
old the problem becomes unstable and �(t ) diverges. The
steady-state flow matrix (17) is given by

ϒss = 2γχ

γ 2 − 4χ2

(
2χ −γ

−γ 2χ

)
. (34)

It vanishes when either γ = 0 (meaning we uncouple the
system from the bath) or χ = 0 (in which case the system
relaxes towards thermal equilibrium). Remarkably, note that
ϒ (and hence the steady-state entropy flux) is completely
independent of the bath temperature n̄. The production matrix
� can be computed from (18) or, more simply, from (31). In
either case, the result is

�ss = 4γχ

γ 2 − 4χ2

(
χ −2χ2/γ

−2χ2/γ χ

)
. (35)

Finally, using Eq. (19), one then finds that, in the steady state,

�ss = 
ss = 4γχ2

γ 2 − 4χ2
. (36)

The entropy production differs from zero due to a competition
between the damping rate γ , which tries to push the system
towards the vacuum, and the interaction χ , which tends to
squeeze the mode.

B. Detuned squeezed bath

As another application, consider a single mode subject to
a squeezed bath. The Hamiltonian is taken to be H = ωa†a
and the damping matrix is once again 	 = γ I2. The diffusion
matrix F , on the other hand, has the form F = 	Qt , with

Qt =
(

N + 1
2 Me−2iωpt

M∗e2iωpt N + 1
2

)
. (37)

Here N + 1
2 = (n̄ + 1

2 ) cosh 2r and M = eiθ (n̄ + 1
2 ) sinh 2r

are related to the thermal occupation n̄ and the squeezing pa-
rameter z = reiθ . The peculiar feature of the diffusion matrix
(37) for the squeezed bath is the explicit time dependence,
with frequency ωp.

Due to this time dependence, the Lyapunov equation (8)
will never reach a steady state. Notwithstanding, the rotating
frame CM P�P†, where P = diag(eiωpt , e−iωpt ), will obey a
time-independent Lyapunov equation and will thus reach a
unique steady state. In the long-time limit, we get

�ss =
(

N + 1
2 M̃e−2iωpt

M̃∗e2iωpt N + 1
2

)
, (38)

which is close to the bath-imposed CM Qt in Eq. (37), with
one fundamental difference: The squeezing parameter M is
modified to

M̃ = γ

γ + 2i�
M, (39)

where � = ωp − ω is the detuning between the system fre-
quency ω and the bath-imposed frequency ωp. The squeezing
is therefore altered (reduced in magnitude and rotated) due to
the presence of the detuning.

The flow matrix (17) in this case becomes

ϒss = γ |M|2
n̄ + 1/22

⎛
⎝ 1 − η e−2iωpt N+ 1

2
M∗ (η − 1)

e2iωpt N+ 1
2

M (η∗ − 1) 1 − η∗

⎞
⎠,

(40)

where η = γ /(γ + 2i�). The production matrix � is still
given by Eq. (31). We therefore see that both ϒ and � will
be nonzero provided (i) there is a finite squeezing in the
bath M �= 0 and (ii) there is a finite detuning η �= 1. The
presence of the detuning is therefore essential for maintaining
the nonequilibrium steady state.

Taking the trace of this expression yields the entropy flux
(19),


ss = 4γ�2

γ 2 + 4�2
sinh2(2r). (41)

Even though �t remains time dependent, even in the long-
time limit, the entropy (12) becomes time independent, so
dS/dt = 0. As a consequence, Eq. (41) also represents the
entropy production rate in the steady state. We therefore see
that, due to the detuning, the system is continuously producing
some entropy �ss, all of which flows to the bath (
ss).

C. Two-mode squeezing interaction and local baths

Finally, we consider two bosonic modes interacting with
the Hamiltonian

H = − iχ

2
(a†b† − ab). (42)

We assume that both modes are connected to local environ-
ments at the same occupation n̄, but with different damping
rates γa and γb. The Lyapunov equation (8) in this case is
only stable provided χ2 < γaγb (notice how this implies that a
stable solution can only be reached when both γa,b �= 0). The
flow matrix (17) in the steady state can written as

ϒss = 2χγaγb

(γa + γb)(γaγb − χ2)

×

⎛
⎜⎝

χ 0 0 −√
γaγb

0 χ −√
γaγb 0

0 −√
γaγb χ 0

−√
γaγb 0 0 χ.

⎞
⎟⎠.

Interestingly, we see that it is independent of the bath tem-
perature n̄. When γa �= γb, the production matrix must be
computed from the general expression (20). Conversely, for
γa = γb = γ , one may employ the simpler form (31). Finally,
the corresponding entropy flux or production rate in the steady
state will then be

�ss = 
ss = 4γaγbχ
2

(γa + γb)(γaγb − χ2)
, (43)

which relies exclusively on the two-mode squeezing interac-
tion χ , being zero only if χ = 0 (note that we cannot set
γa,b = 0, without also setting χ = 0, since this would lead to
a unstable dynamics).
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VI. CONCLUSION

Onsager’s relation represents one of the most relevant
results in the framework of nonequilibrium thermodynamics.
However, they are usually restricted to linear response and
thus are valid only close to equilibrium. No such relation
holds in general for systems far from equilibrium. Similarly,
there is also no general relation extending Onsager’s relation
to the quantum regime. In this paper we have shown that
for Gaussian bosonic maps in particular it is possible to
derive an Onsager relation which is valid arbitrarily far from
equilibrium. This relation takes a matrix form and has a more
complicated nonlinear structure which reduces to the usual
quadratic form of Onsager’s original formula in the limit of
linear response.

Such a nonlinear dependence emphasizes an asymme-
try of out-of-equilibrium processes, concerning the flow of

entropy from the system to the bath and vice versa. In the
usual Onsager formulation, since the entropy production is
quadratic, it depends only on the magnitude of the flow and
not on its direction. Our results, however, show how far from
equilibrium this is no longer true. Although restricted to the
specific context of Gaussian states and Gaussian preserving
maps, this provides an example of fundamentally different
features which may emerge as systems are driven far from
equilibrium.

ACKNOWLEDGMENTS

G.T.L. acknowledges support from the São Paulo Re-
search Foundation through Grants No. 2018/12813-0, No.
2017/50304-7, and No. 2017/07973-5.

[1] H. B. Callen, Thermodynamics and an Introduction to Thermo-
statistics, 2nd ed. (Wiley, New York, 1985).

[2] L. Onsager, Phys. Rev. 37, 405 (1931).
[3] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynam-

ics, 1st ed. (North-Holland, Amsterdam, 1961).
[4] N. G. van Kampen, Stochastic Processes in Physics and Chem-

istry (North-Holland, Amsterdam, 2007).
[5] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[6] T. Tomé and M. J. de Oliveira, Phys. Rev. E 82, 021120

(2010).
[7] C. Van den Broeck and M. Esposito, Phys. Rev. E 82, 011144

(2010).
[8] U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).
[9] M. Esposito and C. Van den Broeck, Phys. Rev. E 82, 011143

(2010).
[10] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev. Lett.

71, 2401 (1993); D. J. Evans and D. J. Searles, Phys. Rev. E 50,
1645 (1994).

[11] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74, 2694
(1995); J. Stat. Phys. 80, 931 (1995).

[12] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997); Phys. Rev. E 56,
5018 (1997).

[13] G. E. Crooks, J. Stat. Phys. 90, 1481 (1998); Phys. Rev. E 61,
2361 (2000).

[14] D. Andrieux and P. Gaspard, J. Chem. Phys. 121, 6167
(2004).

[15] H. Spohn, J. Math. Phys. 19, 1227 (1978).
[16] H. P. Breuer, Phys. Rev. A 68, 032105 (2003).
[17] H. P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, New York, 2007).
[18] G. Stefanucci and R. van Leeuwen, Non-Equilibrium Many-

Body Theory of Quantum Systems (Cambridge University Press,
Cambridge, 2013).

[19] K. Yamamoto and N. Hatano, Phys. Rev. E 92, 042165
(2015).

[20] M. Grmela, J. Phys. Commun. 2, 032001 (2018).
[21] L. E. Bell, Science 321, 1457 (2008).
[22] G. Benenti, G. Casati, K. Saito, and R. S. Whitney, Phys. Rep.

694, 1 (2017).

[23] M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann,
S. Fahlvik, C. Thelander, M. Leijnse, and H. Linke, Nat.
Nanotechnol. 13, 920 (2018).

[24] C. Chiaracane, M. T. Mitchison, A. Purkayastha, G. Haack, and
J. Goold, Phys. Rev. Res. 2, 013093 (2020).

[25] K. Lendi and A. J. Van Wonderen, J. Phys. A: Math. Gen. 34,
1285 (2001).

[26] P. H. Guimarães, G. T. Landi, and M. J. de Oliveira, Phys. Rev.
E 94, 032139 (2016).

[27] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and
Application, Lecture Notes in Physics, Vol. 717 (Springer,
Berlin, 2007).

[28] H. J. D. Miller, M. Scandi, J. Anders, and M. Perarnau-Llobet,
Phys. Rev. Lett. 123, 230603 (2019).

[29] G. Adesso, D. Girolami, and A. Serafini, Phys. Rev. Lett. 109,
190502 (2012).

[30] S. Deffner, Europhys. Lett. 103, 30001 (2013).
[31] S. Pigeon, L. Fusco, A. Xuereb, G. De Chiara, and M.

Paternostro, New J. Phys. 18, 013009 (2015).
[32] J. P. Santos, G. T. Landi, and M. Paternostro, Phys. Rev. Lett.

118, 220601 (2017).
[33] M. Brunelli, L. Fusco, R. Landig, W. Wieczorek, J. Hoelscher-

Obermaier, G. Landi, F. L. Semião, A. Ferraro, N. Kiesel, T.
Donner, G. De Chiara, and M. Paternostro, Phys. Rev. Lett. 121,
160604 (2018).

[34] N. Friis and M. Huber, Quantum 2, 61 (2018).
[35] C. Macchiavello, A. Riccardi, and M. F. Sacchi, Phys. Rev. A

101, 062326 (2020).
[36] A. Serafini, Quantum Continuous Variables (CRC, Boca Raton,

2017).
[37] M. Paternostro, S. Gigan, M. S. Kim, F. Blaser, H. R. Böhm,

and M. Aspelmeyer, New J. Phys. 8, 107 (2006).
[38] M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner,

J. Eisert, and M. Aspelmeyer, Phys. Rev. Lett. 99, 250401
(2007).

[39] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.
Phys. 86, 1391 (2014).

[40] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature
(London) 464, 1301 (2010).

033090-5

https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1103/PhysRevE.82.021120
https://doi.org/10.1103/PhysRevE.82.011144
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevLett.71.2401
https://doi.org/10.1103/PhysRevE.50.1645
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1007/BF02179860
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevE.56.5018
https://doi.org/10.1023/A:1023208217925
https://doi.org/10.1103/PhysRevE.61.2361
https://doi.org/10.1063/1.1782391
https://doi.org/10.1063/1.523789
https://doi.org/10.1103/PhysRevA.68.032105
https://doi.org/10.1103/PhysRevE.92.042165
https://doi.org/10.1088/2399-6528/aab642
https://doi.org/10.1126/science.1158899
https://doi.org/10.1016/j.physrep.2017.05.008
https://doi.org/10.1038/s41565-018-0200-5
https://doi.org/10.1103/PhysRevResearch.2.013093
https://doi.org/10.1088/0305-4470/34/7/305
https://doi.org/10.1103/PhysRevE.94.032139
https://doi.org/10.1103/PhysRevLett.123.230603
https://doi.org/10.1103/PhysRevLett.109.190502
https://doi.org/10.1209/0295-5075/103/30001
https://doi.org/10.1088/1367-2630/18/1/013009
https://doi.org/10.1103/PhysRevLett.118.220601
https://doi.org/10.1103/PhysRevLett.121.160604
https://doi.org/10.22331/q-2018-04-23-61
https://doi.org/10.1103/PhysRevA.101.062326
https://doi.org/10.1088/1367-2630/8/6/107
https://doi.org/10.1103/PhysRevLett.99.250401
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1038/nature09009


DOMINGOS S. P. SALAZAR AND GABRIEL T. LANDI PHYSICAL REVIEW RESEARCH 2, 033090 (2020)

[41] F. A. S. Barbosa, A. S. Coelho, L. F. Muñoz-Martínez, L. Ortiz-
Gutiérrez, A. S. Villar, P. Nussenzveig, and M. Martinelli, Phys.
Rev. Lett. 121, 073601 (2018).

[42] J. P. Hespanha, Linear Systems Theory (Princeton University
Press, Princeton, 2009).

[43] G. Lindblad, J. Phys. A: Math. Gen. 33, 5059 (2000).
[44] G. T. Landi, T. Tomé, and M. J. de Oliveira, J. Phys. A: Math.

Theor. 46, 395001 (2013).
[45] W. T. B. Malouf, J. P. Santos, L. A. Correa, M. Paternostro, and

G. T. Landi, Phys. Rev. A 99, 052104 (2019).

033090-6

https://doi.org/10.1103/PhysRevLett.121.073601
https://doi.org/10.1088/0305-4470/33/28/310
https://doi.org/10.1088/1751-8113/46/39/395001
https://doi.org/10.1103/PhysRevA.99.052104

