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Quantum coherence and criticality in irreversible work
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The irreversible work during a driving protocol constitutes one of the most widely studied measures in
nonequilibrium thermodynamics, as it constitutes a proxy for entropy production. In quantum systems, it has
been shown that the irreversible work has an additional, genuinely quantum mechanical contribution, due to
coherence produced by the driving protocol. The goal of this paper is to explore this contribution in systems
that undergo a quantum phase transition. Substantial effort has been dedicated in recent years to understanding
the role of quantum criticality in work protocols. However, practically nothing is known about how coherence
contributes to it. To shed light on this issue, we study the entropy production in infinitesimal quenches of
the one-dimensional XY model. We find that coherence plays a significant role in the entropy production and
can even account for most of it in certain situations. Moreover, at low temperatures, the coherence presents a
finite cusp at the critical point, whereas the entropy production diverges logarithmically. For high temperatures,
however, the coherence presents a kink at the critical point indicating the quantum phase transition that occurs
only at T = 0. Alternatively, if the quench is performed in the anisotropy parameter, then we find that there are
situations where all of the entropy produced is due to quantum coherences.

DOI: 10.1103/PhysRevResearch.2.033279

I. INTRODUCTION

Driving a system out of equilibrium is always accompanied
by a finite production of entropy. The typical scenario is that
shown in Fig. 1. A system with Hamiltonian H (g), depending
on an externally tunable parameter g, is initially prepared in
thermal equilibrium at a temperature T , so that its density
matrix is given by ρ(g0) = e−βH (g0 )/Z (g0), where β = 1/T
and Z (g0) is the partition function. At t = 0 the system is
driven out of equilibrium by changing g according to some
work protocol g(t ) that lasts for a total time τ . If the dynamics
can be considered unitary, then the state of the system after
the drive will be

ρ ′ = Uρ(g0)U †, (1)

where U = T e−i
∫ τ

0 H (g(t ))dt is the time-evolution operator
(with T standing for the time-ordering operator). This state
is generally far from the corresponding equilibrium state
ρ(gτ ); the difference between them can be quantified by the
irreversible work [1–3],

Wirr = 〈W 〉 − �F, (2)
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where 〈W 〉 = tr {H (gτ )ρ ′ − H (g0)ρ(g0)} is the average work
performed in the process and �F = −T ln Z (gτ )/Z (g0) is
the change in equilibrium free energy. Equation (2) can also
be written solely in terms of information theoretic quantities
(called the nonequilibrium lag), as [4–8]

�Sirr = βWirr = S(ρ ′||ρ(gτ )), (3)

where S(ρ||σ ) = tr(ρ ln ρ − ρ ln σ ) is the quantum relative
entropy. It thus measures the entropic distance between the
final state ρ ′ and the associated equilibrium state ρ(gτ ) that
the system does not tend to since the process is out of
equilibrium (Fig. 1). Since S(ρ ′||ρ(gτ )) � 0 by construction,
this shows quite clearly why �Sirr or Wirr can be used to
quantify the nonequilibrium nature of the process [1,3,9].

Strictly speaking, since the dynamics is unitary, no entropy
is produced in the map Eq. (1). The nonequilibrium lag Eq. (3)
is nonetheless a proxy for the entropy production. The reason
is that, if after the protocol the system is once again coupled
to a bath, it will relax from ρ ′ to ρ(gτ ), a process whose
entropy production is precisely �Sirr in Eq. (3) [10–12]. For
this reason, even though the process Eq. (1) is unitary, one
commonly associates �Sirr with its entropy production [13].

This typical work-protocol scenario has been the subject of
countless studies, both theoretical [1–7,14–86] as well as ex-
perimental [8,87–97] However, although Eq. (3) is formulated
for quantum systems, many aspects of it are often classical.
The issue of what are the genuinely quantum features of
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FIG. 1. Irreversible work and entropy production. A system with
Hamiltonian H (g) is initially prepared in equilibrium at a tempera-
ture β = 1/T , with g = g0. The system is then pushed out of equilib-
rium by means of a work protocol g(t ), which lasts for a total duration
τ . This generates a unitary U which pushes the system away from
equilibrium to a state ρ ′ = Uρ(g0 )U †. The nonequilibrium nature of
the process can be quantified by the irreversible work Wirr [Eq. (2)] or,
what is equivalent, the entropy production/nonequilibrium lag �Sirr

in Eq. (3). This quantity, however, can be split as in Eq. (4) into a
contribution D [Eq. (5)] related to changes in the population and a
contribution C related to quantum coherence [Eq. (6)].

such a process, despite still being the subject of debate,
is ultimately related to the notion of quantum coherence.
The thermodynamic processes involved in the map Eq. (1)
highlight the energy basis as a preferred basis (in the sense of
Ref. [98]). Coherence in the energy basis therefore represents
the key feature distinguishing classical and quantum processes
[12,99]. As the system is driven by the work protocol g(t ), the
eigenbases of H (g(t )) at different times are not necessarily
compatible, a feature which has no classical counterpart [63].

Several results have recently appeared, which highlight
the nontrivial role of coherence in irreversible thermo-
dynamics. For instance, Refs. [100,101] considered qua-
sistatic drives and showed how the standard fluctuation-
dissipation theorem is modified to include a term related
to [H (g(t )), dH (g(t ))/dt], thus reflecting the basis incom-
patibility during the drive. In Ref. [12] some of us have
shown that during relaxation to equilibrium, the presence of
initial coherences contributes an additional term to the entropy
production. A similar effect also occurs for unitary drives and
the nonequilibrium lag, as shown in Ref. [61]. In this case,
Eq. (3) may quite generally be decomposed as

�Sirr = D(ρ ′) + C(ρ ′). (4)

The first term quantifies the contribution from changes in the
population of the system and reads

D(ρ ′) = S(�τ [ρ ′]||ρ(gτ )), (5)

where �τ [ρ ′] is the completely dephased state, obtained from
ρ ′ by eliminating its off-diagonal terms in the eigenbasis of
H (gτ ). The second term in Eq. (4), however, is the relative
entropy of coherence, given by

C(ρ ′) = S(ρ ′||�τ [ρ ′]) = Sv (�τ [ρ ′]) − Sv (ρ ′), (6)

where Sv (σ ) = − Tr[σ ln σ ] is the von Neumann entropy. It
therefore quantifies the difference between ρ ′ and the de-
phased state �τ [ρ ′]. This term therefore measures the con-
tribution to the nonequilibrium lag stemming solely from the

quantum coherences generated by the driving protocol. Since
both terms are individually nonnegative by construction, this
shows how coherence increases the entropy produced in the
process.

In this work we will be interested in the relative contri-
butions of the two terms in Eq. (4) in the specific case of
quantum critical systems undergoing infinitesimal quenches.
That is, when the control parameter changes instantaneously
from g0 → gτ = g0 + δg, where δg � g0. As shown in
Refs. [63,74,102,103], the nonequilibrium lag simplifies con-
siderably in this case, since one removes the generally compli-
cated dependence on the exact form of the work protocol gτ .
Notwithstanding, the problem still retains several interesting
features, particularly for quantum critical systems, as beauti-
fully shown in Refs. [74,104]. This has led to a large number
of studies on the critical properties of �Sirr in several models
[82,105–112]. A proposal to measure it experimentally in
ultracold atoms was also given in Ref. [113].

None of the studies above, however, dealt with the relative
contribution from populations and coherences [Eq. (4)]. How
relevant C(ρ ′) is, therefore, remains unknown, even for the
simplest critical models. It is the goal of this paper to fill in
this gap and carry out a detailed study of the contribution
from quantum coherence to the nonequilibrium lag in critical
infinitesimal quenches. To accomplish this, we focus on the
one-dimensional XY spin chain [114]. The advantage of this
model is that by tuning the anisotropy parameter one may tune
the relative contribution of C(ρ ′) when going from the XX to
the transverse field Ising model. We show that for intermediate
and high temperatures, both terms in Eq. (4) contribute simi-
larly to �Sirr. At low temperatures, however, C(ρ ′) becomes
sub-dominant. And while D(ρ ′) diverges logarithmically at
the critical point [82,104], C(ρ ′) presents a cusp.

II. BASIC SETUP

The Hamiltonian of the ferromagnetic XY model may be
written as

H (g, γ ) = −
N∑

j=1

(
1 + γ

2
σ x

j σ
x
j+1 + 1 − γ

2
σ

y
j σ

y
j+1 + gσ z

j

)
,

(7)
where σ a

j (a = x, y, z) are Pauli spin operators, N is the
total number of spins, γ ∈ [0, 1] is the anisotropy parameter
of the spin interaction and g is the applied magnetic field.
We assume N even, with periodic boundary conditions. This
model presents a paramagnetic phase when |g| > 1 and a
ferromagnetic phase for |g| < 1, with critical points at g∗ =
±1. Special cases occur when one makes γ = 0, to get the
XX chain, and γ = 1, to get the Ising model.

The Hamiltonian Eq. (7) is diagonalized by introducing the
Jordan-Wigner transformation [115], that maps the spin chain
onto an equivalent system of spinless fermions,

σ x
j = (ĉ†

j + ĉ j )
∏
i< j

(1 − 2ĉ†
i ĉi ),

σ
y
j = ı(ĉ†

j − ĉ j )
∏
i< j

(1 − 2ĉ†
i ĉi ), σ z

j = 1 − 2ĉ†
j ĉ j,

(8)
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where ĉ†
j and ĉ j are canonical creation and annihilation

fermionic operators. After this, one finds that the Hamilto-
nian Eq. (7) may be broken into two parts belonging to the
orthogonal subspaces of positive and negative parity—i.e.,
subspaces of states with even or odd number of c-particles
(or up spins), respectively. Each part can be independently
diagonalized by a Fourier transform followed by a Bogoli-
ubov transformation [116]. However, they differ only by
boundary terms which become negligible in the thermody-
namic limit (N → ∞). Hence, all calculations may therefore
be performed considering only the positive parity subspace.
We therefore consider here that, after diagonalization, we
simply have

H (g, γ ) =
∑
k∈K+

εk (g, γ )(2η
†
kηk − 1), (9)

where K+ = {k = ±(2n + 1)π/N ; n = 0, 1, 2, ..., N/2 −
1}. The dispersion relation εk (g, γ ) is given by

εk (g, γ ) =
√

[g − cos(k)]2 + γ 2 sin2(k), (10a)

and the canonical fermionic operators {ηk}, which depend on
g and γ , are given by

ηk = cos(θk/2)ĉk + sin(θk/2)ĉ†
−k, (10b)

where

(sin θk, cos θk ) =
(

γ sin(k)

εk (g, γ )
,

g − cos(k)

εk (g, γ )

)
, (10c)

and

ĉ j = e−ıπ/4

√
N

∑
k∈K+

ĉkeık j . (10d)

For the special case γ = 0, a Bogoliubov transformation is
not necessary since the Hamiltonian Hγ=0 becomes diagonal
after the Fourier transformation (10d), and is given by

Hγ=0(g) =
∑
k∈K+

(g − cos k)(2ĉ†
k ĉk − 1). (11)

Our goal is to compute the entropic quantities appearing in
Eqs. (5) and (6) for a quantum quench protocol. We initially
consider the system to have an anisotropy parameter γ0,
transverse field g0 and to be in equilibrium with a thermal
reservoir at inverse temperature β. The initial state of the spin
chain is therefore the thermal state ρ(0) = e−βH (0)/Z (0), with

H (0) = H (g0, γ0) and partition function Z (0) = Tr[e−βH (0)].
Thus, can be further decomposed as

ρ(0) =
⊗
k∈K+
k>0

ρ0
±k, (12a)

ρ0
±k = 1

Z2
k (0)

1∑
n±k=0

e2βε0
k (1−nk−n−k )|n−knk〉〈n−knk|, (12b)

where |n−knk〉 and ε0
k = εk (g0, γ0) are the eigenstates and

eigenenergies of H (0) and Zk (0) = 2 cosh (βε0
k ). The initial

von Neumann entropy of this state is thus given by

Sv (ρ(0)) =
∑
k∈K+
k>0

Sv

(
ρ0

± k

) = 2
∑
k∈K+
k>0

[
ln Zk (0) − βε0

k tanh
(
βε0

k

)]
.

(13)
At t = 0 the system is decoupled from the thermal reser-

voir and undergoes a sudden quench, where the field is in-
stantaneously changed to gτ and/or the anisotropy to γτ . The
Hamiltonian therefore changes from H (g0, γ0) to H (gτ , γτ ).
Moreover, since we are considering a sudden quench, the state
of the system does not change, so that ρ ′ = ρ(0). However,
since in general [H (g0, γ0), H (gτ , γτ )] �= 0, the state ρ ′ will
no longer be diagonal in the eigenbasis of H (gτ , γτ ). To
express ρ ′ in the new basis we first note that the post quench
fermionic operators {η̃k} are related to the pre-quench opera-
tors {ηk} according to [74]

η̃k = ηk cos(�k/2) + η
†
−k sin(�k/2), (14)

where �k = θ̃k − θk is the difference between the post- and
pre-quench Bogoliubov angles Eq. (10c) and can be written
as

sin �k = sin k

ετ
k ε0

k

[γτ (g0 − cos k) − γ0(gτ − cos k)], (15)

with ετ
k = εk (gτ , γτ ). As a consequence the pre- and post-

quench eigenstates will be related by

|0−k0k〉 = cos(�k/2)|0̃−k 0̃k〉 − sin(�k/2)|1̃−k 1̃k〉,
|1−k1k〉 = sin(�k/2)|0̃−k 0̃k〉 + cos(�k/2)|1̃−k 1̃k〉, (16)

|0−k1k〉 = |0̃−k 1̃k〉, |1−k0k〉 = |1̃−k 0̃k〉.

Using this in Eq. (12) we then find

ρ ′ =
⊗
k∈K+
k>0

ρ̃±k,

ρ̃±k = 1

Z2
k (0)

{|0̃−k 0̃k〉〈0̃−k 0̃k|
[

cosh
(
2βε0

k

) + sinh
(
2βε0

k

)
cos �k

] + |1̃−k 1̃k〉〈1̃−k 1̃k|
[

cosh
(
2βε0

k

) − sinh
(
2βε0

k

)
cos �k

]

+ |0̃−k 1̃k〉〈0̃−k 1̃k| + |1̃−k 0̃k〉〈1̃−k 0̃k| − (|0̃−k 0̃k〉〈1̃−k 1̃k| + |1̃−k 1̃k〉〈0̃−k 0̃k|
)

sinh
(
2βε0

k

)
sin(�k )

}
. (17)
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We now use this to compute the relative entropy of coherence in Eq. (6). The state �τ [ρ ′] is obtained by taking only the diagonal
entries of Eq. (17). As a consequence, one readily finds that

Sv (�τ [ρ ′]) =
∑
k∈K+
k>0

{
2 ln Zk (0) − 1

2
tanh

(
βε0

k

)
cos(�k ) ln

[
1 + tanh

(
2βε0

k

)
cos(�k )

1 − tanh
(
2βε0

k

)
cos(�k )

]
− cosh

(
2βε0

k

)
4 cosh2

(
βε0

k

)

× ln
[
1 + sinh2

(
2βε0

k

)
sin2(�k )

]}
, (18)

Eq. (6) then follows from subtracting Eq. (13) from Eq. (18). We focus on the thermodynamic limit (N → ∞), where all k-sums
may be converted into integrals. Moreover, we study the relative entropy of coherence per particle as C(ρ ′) = C(ρ ′)/N . In the
limit N → ∞ one then finds

C(ρ ′) =
∫ π

0

dk

2π

{
1

2
tanh

(
βε0

k

)[
ln

[
1 + tanh

(
2βε0

k

)
1 − tanh

(
2βε0

k

)
]

− cos(�k ) ln

[
1 + tanh

(
2βε0

k

)
cos(�k )

1 − tanh
(
2βε0

k

)
cos(�k )

]]
− cosh

(
2βε0

k

)
4 cosh2

(
βε0

k

)

× ln
[
1 + sinh2 (

2βε0
k

)
sin2(�k )

]}
. (19)

A similar calculation was done for the nonequilibrium lag �Sirr = �Sirr/N in Ref. [82], which found

�Sirr =
∫ π

0

dk

2π
2

{
ln

[
cosh

(
βετ

k

)
cosh

(
βε0

k

)
]

+ β
(
ε0

k − ετ
k cos(�k )

)
tanh

(
βε0

k

)}
. (20)

This result for the nonequilibrium lag can also be derived directly from the general expression of the characteristic function of
work for arbitrary protocols in the XY model computed in Ref. [85]. From Eqs. (19) and (20), D(ρ ′) in Eq. (5) can be readily
computed using Eq. (4). Focusing again on the contribution per particle,D(ρ ′) = D(ρ ′)/N , one then finds

D(ρ ′) =
∫ π

0

dk

2π

{
2 ln

[
cosh

(
βετ

k

)
cosh

(
βε0

k

)
]

− 1

2
tanh

(
βε0

k

)
cos(�k )

[
ln

[
1 + tanh

(
2βετ

k

)
1 − tanh

(
2βετ

k

)
]

− ln

[
1 + tanh

(
2βε0

k

)
cos(�k )

1 − tanh
(
2βε0

k

)
cos(�k )

]]

+ cosh
(
2βε0

k

)
4 cosh2

(
βε0

k

) ln
[
1 + sinh2 (

2βε0
k

)
sin2(�k )

]}
. (21)

As a sanity check, in the case of an XX chain (γ0 = γτ = 0) the quench does not affect the eigenbasis so �k = 0. Hence,
C(ρ ′) = 0, and all contributions to the nonequilibrium lag stems from the changes in populations.

III. HIGH- AND LOW-TEMPERATURE LIMITS

Since these results are somewhat complicated, we now
proceed to separately analyze some limiting cases. As a
consistency check, in all numerical analyses presented in this
section, the integrals in Eqs. (19)–(21) were compared with
exact numerics; i.e., obtained from discrete summations over
the set K+ [cf. Eq. (18)] for sufficiently large N .

A. High-temperature limit

For small β (high temperatures), the expressions for C(ρ ′),
D(ρ ′) and �Sirr simplify dramatically to

C(ρ ′) = β2
∫ π

0

dk

2π

(
ε0

k

)2
sin2 �k, (22a)

D(ρ ′) = β2
∫ π

0

dk

2π

(
ετ

k − ε0
k cos �k

)2
, (22b)

�Sirr = β2
∫ π

0

dk

2π

[(
ετ

k

)2 − 2ετ
k ε0

k cos �k + (
ε0

k

)2]
, (22c)

showing that, to leading order, all quantities scale with the
same order in β. Note also that these expressions do not
assume the quench is infinitesimal. Only that the protocol is
a sudden quench is assumed. Next, let us specialize to the
case of an infinitesimal quench in g. That is, we set gτ =

g0 + δg, δg � 1 and γτ = γ0. In this case we get sin �k �
−δgγ0 sin k/(ε0

k )2 so that Eqs. (22a)–(22c) simplify to

C(ρ ′) = β2δg2
∫ π

0

dk

2π
γ 2

0
sin2 k(
ε0

k

)2 , (23a)

D(ρ ′) = β2δg2
∫ π

0

dk

2π

(g0 − cos k)2

(
ε0

k

)2 , (23b)

�Sirr = 1

2
β2δg2. (23c)

From Eq. (23a) it is clear that for this type of quench,
the coherence term is maximal for the Ising model (γ0 = 1),
decreasing monotonically with γ0 until it vanishes in the
XX case (γ0 = 0). In particular, for γ0 = 1, the integral in
Eq. (23a) may be evaluated analytically, to give

C(ρ ′)|γ0=1 =
⎧⎨
⎩

β2δg2

4 for |g0| � 1,

β2δg2

4g2
0

for |g0| > 1.
(24)

This result is quite interesting. First, comparing with
Eq. (23c), we see that when |g0| � 1, half of all the nonequi-
librium lag is due to quantum coherence. This is somewhat
counterintuitive since this is the high-temperature limit, where
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FIG. 2. High-temperature behavior of (a) C(ρ ′)/β2 and
(b) D(ρ ′)/β2 as functions of g0, computed using Eqs. (19) and (21)
for quenches in g with amplitude |gτ − g0| = 0.01 and fixed γ0 = 1.
Different curves correspond to different values of β. The curves in
(a) approach Eq. (24) for high temperatures. Both quantities present
a kink at the critical point.

one would expect quantum coherent effects to play a marginal
role.

Second, and perhaps even more impressive, we see that
Eq. (24) behaves differently in the two phases. And while
being continuous, it presents a kink at the critical point. This
behavior is plotted in Fig. 2(a). Results for D(ρ ′)/β2 in the
same range of parameters are presented in Fig. 2(b). The
high-temperature behavior of the coherence term therefore
reflects the nature of the quantum phase transition (which
occurs at zero temperature). We are unable to provide an
intuitive justification for this behavior. And to the best of our
knowledge, we are unaware of any other high-temperature
quantities which present nonanalyticities at a quantum critical
point. Of course, whether this behavior is experimentally as-
sessable is a complicated question, which has to be addressed
in a case-by-case basis. In general C(ρ ′) is not directly related
to an observable, so that measuring it experimentally will in
general be highly nontrivial (requiring full state tomography).
However, D(ρ ′) also presents similar signatures and, in prin-
ciple, is much more easily measurable since it depends only
on measurements in the energy basis.

We can similarly perform a quench in the anisotropy
parameter, keeping gτ = g0 and setting γτ = γ0 + δγ . In this
case we get sin �k � δγ (g0 − cos k) sin k/(ε0

k )2. Eqs. (22a)-
(22c) then simplify to

C(ρ ′) = β2δγ 2
∫ π

0

dk

2π

(g0 − cos k)2 sin2 k(
ε0

k

)2 , (25a)

D(ρ ′) = β2δγ 2
∫ π

0

dk

2π
γ 2

0
sin4 k(
ε0

k

)2 , (25b)

�Sirr = 1

4
β2δγ 2. (25c)

What is interesting to note in this case is that if we initially
have an XX chain, γ0 = 0, the population mismatch due

to the small quench in the anisotropy parameter vanishes,
D(ρ ′)|γ0=0 = 0, and all entropy production is due to coher-
ence, independently of the value of the applied field g0.

The above results show that there is an interplay between
C and D for high temperatures, as we go from the XX to
the Ising model and as we change from a quench in the field
to a quench in the anisotropy. For a quench in the field, the
coherence contribution to the entropy production vanishes in
an XX chain and increases as we go up to the Ising model,
where it reaches a maximum, contributing to half the total
production of entropy. For a quench in the anisotropy, in
contrast, it is D that vanishes in a initial XX chain, with all
entropy production becoming a consequence of the generation
of coherence in the quench protocol. As γ0 is increased, C
steadily decreases, reaching a minimum for the Ising model.

B. Low-temperature limit

For large β, Eqs. (19)–(21) can be approximated by

C(ρ ′) =
∫ π

0

dk

2π
[−pk ln pk − (1 − pk ) ln(1 − pk )], (26a)

D(ρ ′) = 4β

∫ π

0

dk

2π
ετ

k pk − C(ρ ′), (26b)

�Sirr = 4β

∫ π

0

dk

2π
ετ

k pk, (26c)

where pk = sin2 (�k/2). Quite interestingly, the integrand in
Eq. (26a) is seen to be nothing but the binary Shannon entropy
associated with the two-point distribution (pk, 1 − pk ) (for
each k). The physical interpretation of pk can be understood
from Eq. (16), which shows that pk = sin2 (�k/2) is nothing
but the probability of the unoccupied (occupied) prequench
modes ±k to become occupied (unoccupied) after the quench.
With this picture in mind, the nonequilibrium lag Eq. (26c) is
seen to result solely from this change in occupation, whereas
the coherence reflects the entropy associated with this occu-
pation probability.

A notable thing about Eq. (26a), is that it does not depend
on β, unlikeD(ρ ′) and �Sirr. This means that, as the temper-
ature is decreased, the relative contribution of C(ρ ′) to �Sirr

becomes increasingly less important.
We start our analysis of Eqs. (26a)–(26c) by considering

quenches in g, with γ0 = 1 (Ising). The results are shown in
Fig. 3, where we plot C(ρ ′) and D(ρ ′)/β. Clearly, as β →
∞ the latter becomes dominant. As a consequence �Sirr �
D(ρ ′). This is a consequence of the fact that, in this case,
changes in the Hamiltonian lead to a significant production
of excitations, thus causing the contribution from populations
to become dominant. Indeed, in this limit the nonequilibrium
lag is known to be proportional to the magnetic susceptibility
χ = −∂2F/∂g2

0 (where F is the equilibrium free energy),
according to the relation [63,102]

�Sirr = βδg2χ. (27)

As a consequence, �Sirr/βδg2 diverges logarithmically
around the critical points |g0| = 1 [104,105,107]. This diver-
gence is due solely to the changes in populations.

The coherence in Fig. 3(a), however, does not diverge,
which we emphasize by including a plot of β → ∞ in
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FIG. 3. Low-temperature behavior of (a) C(ρ ′) and (b) D(ρ ′)/β
for several β as functions of g0, computed using Eqs. (19) and (21)
for quenches in g with amplitude |gτ − g0| = 0.01 and fixed γ0 = 1.
The curves in (a) approach Eq. (26a) in the limit T = 1

β
→ 0.

Fig. 3(a)—the solid circle curve. Instead, C(ρ ′) shows a cusp
at the critical point. In fact, Eq. (26a) is bounded from above
by 1

2 ln 2, with this maximum value occurring only for pk =
1/2 for all k’s. From our numerical analysis we also find that
the height of the cusp at g0 = 1 approaches the line δg/4, at
T = 0. This can be verified analytically by noting that

C(ρ ′[T = 0, g0 = 1]) =
∫ 2

0

dk

2π
Fk + O(δg2 ln δg2),

Fk = −1 − fk

2
ln

1 − fk

2
− 1 + fk

2
ln

1 + fk

2
,

(28)

and where fk = k(1 + δg/2)/
√

δg2 + (1 + δg)k2 coincides
with cos �k[g0 = 1] = 1 − 2pk for small k. In the interval
2 < k < π , we have for the integrand in Eq. (26a), Ik =
−pk ln pk − (1 − pk ) ln(1 − pk ) = O(δg2 ln δg2), when δg �
1. Moreover, when 0 < k < 2, Ik − Fk is a monotonically
increasing function of k, with Fk=2 = 0. Finally, the integral
of Fk/2π in 0 < k < 2 gives δg/4 + O(δg2 ln δg2). At the
critical point, in the limit δg → 0, pk → 0 for all k �= 0, while
pk=0 = 1/2. Furthermore, for the derivative of C(ρ ′) with

FIG. 4. C(ρ ′) vs. g0 for T = 0 and quenches in g of magnitude
|gτ − g0| = 0.01. (a) Close to the Ising case, γ0 = 0.9 and (b) close
to the XX case, γ = 0.2. The curves show how the cusp of C(ρ ′)
becomes more asymmetric as γ0 is reduced.

FIG. 5. Low-temperature behavior of (a) C(ρ ′) and (b) D(ρ ′)/β
for several β as functions of γ0, computed using Eqs. (19) and (21)
for quenches in γ with amplitude |γτ − γ0| = 0.01 and fixed g0 = 0.

respect to g0 (−gτ ) we find that, when δg → 0, it approaches
1/4 at g0 (gτ ) = 1, while it goes to zero elsewhere.

The shape of the cusp in C(ρ ′) depends on the value of γ0.
This is presented in Fig. 4, where we plot C(ρ ′) for β → ∞
for different values of γ0. As can be seen, it changes from a
very symmetric form for larger values of γ0 to an increasingly
asymmetric format as γ0 decreases.

We also studied the case of quenches in the anisotropy,
with fixed field. In this context, the coherence decreases with
increasing γ0 and has its maximal value for a vanishing field,
see Fig. 5.

C. Ratio C(ρ′ )/�Sirr

Next we combine the high- and low-temperature re-
sults and perform an analysis of the relative contribution
C(ρ ′)/�Sirr. Results for quenches in g, with γ0 = 1 and
several values of β are shown in Fig. 6. In the case of high
temperatures, e.g., β = 0.1—empty circle curve in the center,

FIG. 6. Ratio C/�Sirr vs. g0 for several β and quenches in g
with magnitude |gτ − g0| = 0.01, with fixed γ0 = 1. For β = 0.1
the ratio approaches the limit in Eq. (24). A notable feature is
the presence of an optimal temperature β ≈ 2, in which almost all
entropy production is due to the generation of coherence.
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FIG. 7. C(ρ ′)/�Sirr as a function of γ0 for a series of quenches
in the anisotropy parameter with amplitude |γτ − γ0| = 0.01, for
several β, at g0 = 1. It shows that, for small β and γ0 = 0, all entropy
production is due to the generation of coherence for this type of
quench.

this fraction approaches 1/2, which is the limit predicted
by Eq. (24). Similarly, for low temperatures, the ratio tends
to zero, as discussed in Sec. III B. The notable features of
Fig. 6, however, is for intermediate temperatures, where the
results are not at all intuitive. First, there exists an “optimal”
temperature, around β ≈ 2, for which the ratio approaches
unity, so that almost all entropy produced stems from coher-
ence. This happens because as the dependence of D(ρ ′) on
β changes from β2, in the high-temperature limit, to a linear
dependence on β in the low-temperature limit, there is a range
of temperatures in which the coherence generation for a given
quench increases more rapidly than the population imbalance.
Second, for large β, even though the ratio is generally small,
there is nonetheless a substantial increase in the vicinity of the
critical point. This is a consequence of the sharp peak in the
coherence in this region, as shown in Fig. 3. However, since
the coherence saturates for increasing β while the entropy
production always increases, this peak in the fraction C/�Sirr

approaches zero as the temperature tends to zero.
A similar analysis for quenches in the anisotropy parameter

is shown in Fig. 7. The curve for β = 0.1 (empty square line)
show how the ratio approaches unity as γ0 → 0, as previously
discussed in Sec. III A. Notably, for intermediate values of
β, between β = 5 (up triangle curve) to β = 10 (diamond
curve), in the critical point, the coherence accounts for a large
part of the production of entropy, between 25% and 80%, for
any value of the initial anisotropy. Again for large β, this ratio
approaches zero.

IV. CONCLUSION

We investigated the genuinely quantum-mechanical con-
tribution of the generation of coherence to the production

of entropy for quenches in the transverse field and in the
anisotropy parameter of an XY model. We showed that the
generation of coherence is intimately related to the rotation in
the basis that diagonalizes the system’s Hamiltonian when the
quench protocol is performed.

For large temperatures (small β = 1/T ), we showed that
there is an interplay between the coherent and incoherent
contributions. For small quenches in the transverse field, the
coherence increases steadily with the anisotropy parameter,
reaching a maximum for the Ising model. For small quenches
in the anisotropy, instead, we found that the coherence is the
sole responsible for the entropy production if the systems
starts in an XX chain. As the initial anisotropy is increased,
the coherence decreases and reaches a minimum in the Ising
model. Moreover, we showed that even in this limit of temper-
atures the nature of the quantum phase transition of the system
(which occurs at T = 0) is reflected in the coherence, which
presents a kink at the critical point.

For small temperatures, we found a saturation in the contri-
bution from coherence. This results from the fact that in such
cases any change in the Hamiltonian leads to excitations on
the system, which forcibly makes the production of entropy to
be associated with the changes in population on the system.
We also showed that the behavior of the coherence around
the critical point, for quenches in the field, does not present a
discontinuity, but rather a cusp. Notwithstanding, the entropy
production still diverges, which is solely due to the changes in
populations.

Concerning the generality of our results, they are based
upon the assumptions of an initial thermal state that is in-
stantaneously quenched, and on that the eigenbases of the
initial and final Hamiltonians are related by a Bogoliubov
transformation, i.e., Eq. (14), and we expect them to hold
whenever such assumptions can be made for other systems.

Finally, we analyzed the relative contribution of coherence
to the total entropy production. For quenches in the transverse
field in the Ising model, we showed that for small β this
fraction approaches 1/2 in the ferromagnetic region. We also
found that at certain temperatures the coherence can account
for almost all the entropy production. For quenches in the
anisotropy, the ratio of coherence to the production of en-
tropy remains large even for intermediate β, for any initial
anisotropy.
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