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At this time of life, one has already been wounded many times by love; it no
longer evolves solely in accordance with its own unknown and inevitable laws,
before our astonished and passive heart. We come to its aid, we distort it with
memory, with suggestion.

— Marcel Proust, Swann’s Way
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To my parents...
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Abstract

One dimensional quasiperiodic systems have been a vibrant topic of theorical research for
physicists and mathematicians alike, owing to their highly non-trivial localization prop-
erties and the fractal nature of their energy spectrum. The most paradigmatic of such
systems, the Aubry-André-Harper (AAH) model, is well known for suffering a localiza-
tion transition when the potential strength is increased, in which its eigenstates go from
extend to localized, similarly to Anderson phase transition which occurs in disordered
three-dimensional systems. The localization of the eigenstates has dramatic effects in
the transport regime of the system. In this dissertation, we used numerical simulations
to study the transport properties of boundary-driven fermionic quantum chains subject to
two choices for the on-site potential: the aforementioned AAH model and the Fibonacci
model. The transport regime is classified via the scaling of the particle current with the
system size in the non-equilibrium steady state (NESS), which we calculate numerically.
Our main focus was the interplay between the quasiperiodic potential and dephasing
noise. We showed that even though dephasing always leads to diffusive behaviour, the
transport properties of the system are still visibly affected by localization properties of
the eigenstates when the coupling to dephasing is small. This influence is reflected in the
scaling of the diffusion constant with the coupling. In particular, we showed that, in the
localized phase of the AAH model and in the subdifusive phase of the Fibonacci model,
dephasing noise may actually lead to an enhanced transport, that is, a larger value of the
current compared to the zero dephasing case.

Keywords: Quasiperiodic potentials; Quantum transport; Boundary-driven chains; Open
quantum systems; Anderson localization;
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Resumo

Sistemas quasiperiódicos unidimensionais tem sido um extenso objeto de pesquisa, tanto
para físicos quanto para matemáticos. Esse interesse é movido, principalmente, pelas in-
teressantes propriedades de localização desses sistemas e a natureza fractal dos espectros
de energia. O mais paradigmático desses sistemas é o modelo de Aubry-André-Harper
(AAH), que é bem conhecido por apresentar um transição de localização quando a força
do potencial é aumentada, em que seus autoestados vão de delocalizados para localiza-
dos. As propriedades de localização dos autoestados provocam consequências dramáticas
no regime de transporte do sistema. Nesta dissertação, utilizamos simulações numéricas
para estudar as propriedades de transporte de cadeias fermiônicas acopladas a banhos tér-
micos nas extremidades, sujeitas a duas escolhas de potenciais quasiperiódicos: o modelo
AAH e o modelo de Fibonacci. O regime de transporte é classificado verificando-se a
dependência da corrente de partícula com o tamanho do sistema no estado estacionário
de não-equilíbrio (NESS), que calculamos numericamente. O trabalho focou-se princi-
palmente na ação interação entre os potenciais quasiperiódicos e dephasing. Mostramos
que apesar da ação do ruído de dephasing sempre induzir um comportamente difusivo, as
propriedades de transporte do sistema ainda são visivelmente afetadas pelas propriedades
de localização dos autoestados. Essa influência é refletida na dependência da constante
de difusão com a constante de acoplamente com os banhos de dephasing. Em particular,
mostramos que, na fase localizada do modelo AAH e na fase subdifusiva do modelo de
Fibonacci, a ação do ruído de dephasing pode levar a um aumento do transporte, isto é,
um valor de corrente maior em comparação com o caso sem dephasing.

Keywords: Potenciais quasiperiódicos; Transporte quântico; Cadeias quânticas fora do
equilíbrio; Sistemas quânticos abertos; Localização de Anderson;
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Chapter 1

Introduction

When a metal bar is put in contact with two baths at different temperatures, one at each

end, a heat current J will start to flow, dictated by Fourier’s law,

J = −κ∇T, (1.1)

where ∇T is the temperature gradient and κ is the thermal conductivity. Eventually, the

systems settles in a steady-state, in which the temperature profile stops changing. The

system, however, is not in equilibrium: each point has a different temperature and there

is still a non-zero heat current, as ilustrated in Fig. 1.1. For this reason, the final state of

the system is called a non-equilibrium steady state (NESS).

T1 T2
J 6= 0

Figure 1.1: Representation of a metal bar in the NESS.

For the simple case where the system is isotropic in the y and z direction, the final

temperature profile will be a linear interpolation between T1 and T2, so the heat current in

the NESS will be given by

J =
κ(T2 − T1)

L
∼ 1

L
, (1.2)

where L is the size of the bar. Therefore, the current scales inversely proportional with

the system size. This type of scaling is known as diffusive scaling.

1



Chapter 1. Introduction

Surprisingly, despite the simplicity of this example, taught even in elementary physics

courses, it hides a challenging open problem in theoretical physics. Fourier’s law is a

phenomenological equation. It turns out that deriving it from microscopic principles is an

extremely difficult task, and no satisfatory derivation exist to this date. The first candidate

that comes to mind is a chain of harmonic oscillators coupled to to heat baths at its bound-

aries. However, it is known that this model fails to exhibit a diffusive behaviour. In the

famous 1967 paper by Rieder, Lebowitz and Lieb [1], they showed that when a classical

harmonic lattice is coupled to baths at its boundaries at temperatures T1 and TL, the heat

current in NESS is proportional to the temperature difference TL − T1, rather than to the

gradient (TL − T1)/L. Therefore, the current in the NESS is independent of the system

size:

J ∼ L0, (1.3)

which charaterizes a ballistic scaling. Moreover, much to their surprise, they found that

the temperature profile away from the boundaries is almost constant, instead of being

a linear interpolation from T1 to TL. Their discovery has sparkled the interest in heat

transport trougth harmonic chains, both quantum and classical, which remains an active

topic of research ever since.

In this dissertation, we will focus on the quantum version of this problem. We will

consider one-dimensional quantum chains, of spins or fermions, coupled to baths at each

end, the so called boundary-driven chains, as illustrated in Fig. 1.2.

Figure 1.2: A quantum chain coupled to two reservoirs at each end.

In the quantum realm, non-iteracting chains, either bosonic of fermionic, also have a

natural tendency to be ballistic, at least without any extra ingredients. This is, however,

not always the case. The most notable counter-example is that of a chain subject to dis-

order. In the seminal paper by Anderson [2], he showed that when a tight-binding chain

is subject to a sufficiently strong disorder, i.e., a random potential, the transport is com-

pletely halted. Therefore, if a disordred chain is coupled to heat baths at its boundaries,

2



Chapter 1. Introduction

the current in the NESS will be identically zero in the thermodynamic limit.

The absence of transport with disorder is closely associated with the localization prop-

erties of the eigenstates of the system. Without any on-site potential, the energy eigen-

states are simple plane waves, which are extented trough all the sites of the chain. In the

presence of disorder, however, all the energy eigenstates become exponentially localized,

which effectively cause the system to behave as an insulator. This phenomemon is known

as Anderson localization, and lies at the core of condesed-matter physics. Later, it was

shown that for one and two-dimensional systems the localization always happens, even

for arbitrarily small disorder. In three dimensions, however, the situation is different. For

weak disorder, extended eigenvectors can exist, but they all become localized when the

disorder strength is increased. Therefore, for some critical value of disorder strength the

system undergoes a localization transition, going from extended to localized. This is the

so called metal-insultator transition (MIT).

Despite this counter-example, the notion that non-interacting chains are ballistic is still

widespread. The topic of this dissertation truly contradicts this belief. The main models

we studied are boundary-driven chains subject to a very interesting class of potentials

called quasiperiodic. The fractal nature of the spectrum of these models has dramatic

consequences on their localization properties. The quasiperiodic potentials are generated

by completely deterministic functions, but, surprisingly, are able to exhibit different types

of transport regime even in one-dimension.

The main framework we will use to address these different transport properties is by

analyzing the scaling of the particle current with the system size in NESS. In general, this

scale follows

J ∼ 1

Lν
, (1.4)

where ν is constant called transport coefficient. The transport regime is then classified

depending on the value of ν.

In this dissertation, we considered two of the most paradigmatic quasiperiodic sys-

tems: the Aubry-André-Harper (AAH) [3, 4] and the Fibonacci model [5–8]. The AAH

model is known to undergo a critical localization transition when the potential strength

3



Chapter 1. Introduction

is increased, even in a one-dimensional chain. Below the critical value, all the energy

eigenstates are delocalized, while above this value they all become exponentially local-

ized. This transition is clearly reflected in the non-equilibrium transport properties of the

system: at the localized region, the transport is ballistic, while above the critical value the

current decays exponentially with the system size. At critical point, the eigenstates are

neither delocalized nor localized, but some intermediate between the two, and the trans-

port is either diffusive or very close to diffusive, depending on some other parameters [9,

10].

The Fibonacci model displays even more interesting transport properties. The po-

tential of this model is constructed from a peculiar binary sequence known as Fibonacci

word, firsly introduced by Leonardo Fibonacci in his studies of the population dynamics

of rabbits. The key feature of this model is that it can be tuned to any transport regime,

depending on the value of the potential strength. When the potential is increased, the

transport regime goes continuosly from ballistic to subdiffusive, and in the infinite limit

the eigenstates become localized. This behaviour is illustrated in Fig. 1.3. As shown in

the plot, the transport coefficient ν increases smoothly with the potential strength.

0.0

0.5

1.0

1.5

Potential strength

subdiffusive
superdiffusive

ballistic

diffusive

Figure 1.3: Dependence of the transport coefficient ν with the potential strength in the
Fibonacci model. This curve was computed numerically, as will be explained in Chapter
7.

These unusual properties of the AAH and the Fibonacci model have been known since

the 1980s [8]. However, and surprisingly, these results are not widespread known by the

quantum transport community, and the notion that non-interacting chains should be bal-

listic remains present. One of the factors that reignited the interest in these models is their

potential realization in ultracold atoms experiments [11–14]. Experimental realizations

4



Chapter 1. Introduction

of the Anderson model have also been reported [15]. These experiments have been made

possible due to the major experimental advances in optical lattices and atom trapping.

When interactions are taken into account, it is indeed possible to obtain a diffusive

regime. However, they often render the problem intractable. For this reason, as we briefly

mentioned, there exist some extra “ingredients” that can be used to enforce diffusion in

non-interacting chains, classical or quantum. One of the first sucessful attempts is the

use of self-consistent baths [16], also known as Büttiker probes [17]. In this approach,

each site is coupled to an extra bath, which is specially constructed such that it does not

exchange heat or energy with the system. The sole purpose of these baths is to emu-

late non-harmonic interactions whilst being mathematically treatable. The self-consistent

baths correctly lead to diffusion, but they are rather artificial tools, lacking any precise

physical interpretation.

A second, more phenomelogical approach, is the use of dephasing noise. The presence

of dephasing always renders the transport diffusive, for any non-zero coupling. Nonethe-

less, in the weak coupling regime there is still some detectable influence of the Hamil-

tonian on the transport regime. In Ref. [18], the authours studied the interplay between

disorder and dephasing in a XXZ chain. As was discussed there, the disordered XXZ has

a subdiffusive phase for a certain choice of parameters. Surprisingly, by analyzing the

scaling of the diffusion constant, which is the analogous to the conductivity in Fourier’s

law, they showed that the presence of dephasing can actually increase the current in this

subdiffusive phase. They refer to this phenomenon as dephasing-enhanced transport.

Both models we studied also have subdiffusive phases. The AAH model is diffusive

in the critical point, and so is the Fibonacci model when the potential strength is strong.

Therefore, it is only natural to apply the same framework developed in Ref. [18] to study

the interplay between dephasing and the quasiperiodic potential strength. Similarly, we

have also found that dephasing can actually increase the value of the current in the sub-

diffusive phase of both models. This is the main result of this dissertation, and is being

prepared for a publication.

This dissertation is structured as follows:

• In chapter 2, we present the main Hamiltonian used throughout this work, and dis-

cuss its diagonalization procedure. We also discuss the phenomemon of Anderson

5



Chapter 1. Introduction

localization.

• In chapter 3, we present the AAH and the Fibonacci models in detail, and discuss

their ground state localization properties.

• In chapter 4, we study the transport propeties of both models in a closed system

scenario, by measuring the spreading of the wavefunction in a unitary dynamics.

• In chapter 5, we give a brief introduction to open quantum systems and provide

some insightful examples.

• In chapter 6, we then present the main model of this work, the boundary-driven

chains. We will show that in the NESS the covariance matrix of the fermionic

operators satisfies a Lyapunov Equation, and discuss its numerical solutions. We

also present the Mathematica code we used in our simulations.

• In chapter 7, we study the non-equilibrium transport of boundary-driven chains, by

measuring the scaling of the particle current with the system size.

• Finally, in chapter 8, we present the main original contributions of this work, the

interplay between dephasing and the quasiperiodic potentials. We show that de-

phasing can actually lead to an increased transport in the subdiffusive phase.

All the numerical calculations performed in this dissertation were made using efficient

functions written in Mathematica. The code is still being adjusted, and will be made

freely available when finished. Throughout the text, we also provide explicit snippets

for functions that we have developed and which, we believe, may be of use to other

researchers studying similar topics.

6



Chapter 2

Free fermions in a chain

In the first section of this chapter, we will present the one-dimensional fermionic tight-

binding Hamiltonian. Then, in section 2.2 we will show how it is related to the XX spin

chain via the Jordan-Wigner transformation [19]. We will then describe the diagonaliza-

tion procedure and provide an example. In the last section, we will discuss Anderson

localization phenomenon. The discussion is then concluded in chapter 3, where we con-

sider quasi-periodic models, which will be the main focus of this dissertation.

2.1 The tight-binding Hamiltonian

We consider a chain with L fermionic modes with open boundary conditions, subject to a

site-dependent potential. In the language of second quantization, the Hamiltonian is given

by

H = −J
L−1∑
i=1

(
c†ici+1 + c†i+1ci

)
+

L∑
i=1

Vic
†
ici, (2.1)

where c†i and ci are the fermionic creation and annihilation operators for site i = 1, . . . , L

which follow the standard fermionic anticommutation rules;

{
ci, c

†
j

}
= δij and

{
ci, cj

}
=
{
c†i , c

†
j

}
= 0, (2.2)

The parameter t is the hopping term and Vi is the on-site potential for site i. Throughout

7



Chapter 2. Free fermions in a chain

this work, we will choose J = 1, fixing the energy scale. In this dissertation we will

explore the broad variety of effects that emerge from different choices for the on-site

potentials Vi.

The Hamiltonian in Eq. (2.1) is paradigmatic in condensed-matter physics, where it

is used as an approximate model to describe the dynamics of electrons in a lattice of

atoms. In the so called tight-binding approximation [20], each electron is typically bound

to an atom’s core, thus its position can only assume the discrete values corresponding

to the lattice sites. In the case of (2.1), these positions would correspond the sites in a

one-dimensional chain. However, there is always a non-zero probability that the electron

tunnels to a neighboring site. In the language of second quantization, this hopping move-

ment corresponds to the term c†i+1ci, which creates a particle in site i + 1 and destroys

a particle in site i with amplitude J . The hermitian conjugate c†ici+1 is responsible for

the hopping in the opposite direction. Fig. 2.1 depicts a schematic representation of this

model.

c†i+1ci

Figure 2.1: Schematic representation of the tight-biding model, Eq. (2.1). The model
is described in a one-dimensional lattice, with L sites. Each site has a different on-site
energy and particles can hop from one site to another with a tunneling rate J . The term
c†i+ici creates a particle in site i+ 1 and destroys a particle in site i.

Notice that the Hamiltonian (2.1) preserves the total number of particles. This can be

seen by defining the total number operator,

N =
L∑
i=1

c†ici, (2.3)

and verifying that it commutes withH,

[H,N ] = 0. (2.4)

8



Chapter 2. Free fermions in a chain

Intuitively, each term of the form c†icj commutes withN because it destroys a particle

in site j and creates a particle in site i, thus preserving the total number of particles. Since

N commutes with the Hamiltonian, the expected value 〈N〉 is constant during a unitary

time evolution. For this reason, if the initial state has a single particle, it will continue to

have so during the whole evolution.

2.2 Equivalence to the XX chain

The tight-binding model (2.1) turns out to be mathematically equivalent to a chain of spin

1/2 particles. This provides a dual interpretation to the model. In this section we describe

how to construct this mapping. For the remainder of the dissertation, we will focus on

the fermionic representation for convenience. However, we stress here that, through this

mapping, all results can also be reinterpreted in the language of spin chains.

The Hamiltonian for a XX spin chain is given by

H = −2J
L−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1

)
+

1

2

L∑
i

Viσ
z
i , (2.5)

where Vi is the magnetic field and and the operators σx,y,zi are the Pauli matrices,

σxi =

(
0 1
1 0

)
, σyi =

(
0 −i
i 0

)
and σzi =

(
1 0
0 −1

)
. (2.6)

This system is called XX model because it is isotropic, that is, the coupling terms in

directions X and Y have the same coefficient. By defining the Pauli rasing and lowering

operators σ±i = 1
2
(σxi ± iσ

y
i ), Eq. 2.5 can be written in the more convenient form

H = −J
L−1∑
i=1

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1

)
+

1

2

L∑
i

Viσ
z
i . (2.7)

This Hamiltonian can be written in terms of fermionic operators using the Jordan-

Wigner transformation, defined as

ci =

[
i−1⊗
k=1

(−σzk)

]
σ−i . (2.8)

9



Chapter 2. Free fermions in a chain

Under this transformation, the XX spin chain is mapped into the tight-binding Hamilto-

nian of Eq. (2.1). Additional details about the transformation (2.8) are given in Appendix

A. We also remark that, provided on considers only open-boundary conditions, none of

the usual difficulties concerning the parity of the operators arise.

It is important to remark that when the fermionic tight-binding model is obtained via a

Jordan-Wigner transformation, the underlying physical system is still a spin chain. There-

fore, the fermionic excitations do not correspond to actual particles, but to excitations in

the spin chain. In fact, the transformation naturally maps fermionic excitations into states

with spin up, that is

c†i |0〉 = | ↓, ↓, . . . , ↑y
ith site

, . . . , ↓, ↓〉. (2.9)

The vacuum state |0〉, in particular, corresponds to a state with all the spins down. With

this correspondence in mind, both models are completely equivalent. Throughout this

dissertation, we will remain exclusively in the fermionic formulation, but the all the results

hold for the XX spin chain as well.

As a consequence of (2.8), the total number of fermionic particles can be related to

the average magnetization in the spin chain, the magnetization is defined as

m =
1

L

L∑
i=1

〈σzi 〉 . (2.10)

From (2.8), the operator σzi is related to the fermionic operators according to

σzi = c†ici − 1. (2.11)

Using this mapping in (2.10) results in

m =
2 〈N〉
L
− 1. (2.12)

Therefore, the magnezation in the spin chain is also preserved during any unitary time

evolution.

10



Chapter 2. Free fermions in a chain

2.3 Diagonalization

Generic quadratic Hamiltonians of the form (2.1) can always be diagonalized exactly.

This is one of the major advantages of free fermion models. The Hamiltonian can be

written in the more general form

H =
∑
ij

Hijc
†
icj, (2.13)

where H is a hermitian tridiagonal L× L matrix given by

H =


V1 −1
−1 V2 −1

−1
. . . . . .
. . . . . . −1
−1 VL

. (2.14)

As we now discuss, the full Hamiltonian H can be diagonalized by simply diagonal-

izing the L× L matrix H . The eigendecompositon of H can be written as

H = SES†, (2.15)

where E = diag(ε1, ..., εL) is a diagonal matrix containing the eigenvalues and and S

is a unitary matrix (SS† = 1) whose columns are the corresponding eigenvectors. This

equation can be written elementwise as

Hij =
∑
k

SikεkS
∗
jk. (2.16)

By inserting this expression in Eq. (2.13), we obtain

H =
∑
ij

Hijc
†
icj

=
∑
ij

∑
k

SijεkS
∗
jkc
†
icj

=
∑
k

εk

(∑
i

Sikc
†
i

)(∑
j

S∗jkcj

)
.

(2.17)

11
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This motivates the definition of a new set of operators,

b†k =
∑
i

Sikc
†
i and bk =

∑
j

S∗jkcj, (2.18)

which we shall refer to as “energy modes”. One may verify that, since S is unitary, the bk

also satisfy (2.2) and thus represent a valid set of fermionic operators. In terms of these

new operators the Hamiltonian is diagonal,

H =
∑
k

εkb
†
kbk. (2.19)

The eingenvalues of the full second-quantized Hamiltonian H can now be deduced

from the the fact that each bk represents an independent fermionic operator, so that b†kbk

can have eigenvalues nk = 0, 1. The set of quantum numbers characterizing the eigenval-

ues ofH is thus given by {nk}, the set of all occupation numbers of the bk operators. The

corresponding eigenvalues are

En1,...,nL =
∑
k

εknk, , nk = 0, 1 (2.20)

where nk =
〈
b†kbk

〉
is the fermionic occupation number of energy mode k. The corre-

sponding eigenstates can be written as

|En1,...,nL〉 =
L∏
k=1

(
b†k

)nk
|0〉 . (2.21)

If the total number of fermions is not fixed, the Hamiltonian (2.1) acts on the entire

Fock space, which is 2L-dimensional. This means that H has 2L eingenvalue/eigenstate

pairs, corresponding to all the possible combinations of n1, ..., nL. Throughout this dis-

sertation, however, we shall always consider the single-particle case, that is, when there

is only a single particle hopping through the lattice.

When this restriction to single particle states is made, the natural basis is the set

{|1〉 , ..., |L〉}, where |i〉 is the state in which the particle is in site i, that is,

|i〉 = c†i |0〉 . (2.22)

12
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Any single-particle state can thus be expanded as

|ψ〉 =
L∑
i=1

ψi |i〉 , (2.23)

where the coefficients ψi constitute the wave function in position space.

Furthermore, since in this case at most one nk is different from zero in Eq. (2.20), the

eigenvalues of the system are simply ε1, ..., εL, the same as those of the L× L matrix H .

The corresponding eigenstates are

|φk〉 = b†k |0〉 , (2.24)

which can be written as an expansion in the basis {|i〉} using the transformations in

Eq. (2.18), resulting in

|φk〉 =
L∑
i=1

Sik |i〉 . (2.25)

From this equation, it is possible to see that the eigenstates of the system match the eigen-

vectors of H , given by the columns of S. In fact, the single-particle Hamiltonian is often

writen as

H = −
L∑
i=1

(
|i〉〈i+ 1|+ |i+ 1〉〈i|

)
+ λ

L∑
i=1

Vi |i〉〈i| . (2.26)

Within the context of free fermions, the single-particle and the second quantized Hamil-

tonians are thus in one-to-one correspondence.

2.4 Constant on-site potential

As and illustratrive example, we shall first consider the tight-bindig model with constant

potential V , that is,

Vi = V, i = 1, . . . , L (2.27)

13
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For this model exclusively, we will consider both open and periodic boundary conditions

(PBC). This is also the only model we will be able to solve analytically. For the other

potentials, numerical diagonalization procedures will be used.

Periodic boundary conditions

When periodic boundary conditions are considered, the single-particle Hamiltonian H

has the form

H =


V −1 −1
−1 V −1

−1
. . . . . .
. . . . . . −1

−1 −1 V

 , (2.28)

where the only difference with respect to (2.14) is the presence of the two “-1”’s at the

corners. The eigenvalue equation H |φ〉 = ε |φ〉 now be written as a recursion relation for

each coefficient φn of the eigenvectors:

− (φn−1 + φn+1) + V φn = εφn, n = 1, . . . , L, (2.29)

with ψL+1 = ψ1. This can be solved by introducing the plane wave ansatz,

φkn =
1√
L
eikn. (2.30)

where k are quantum numbers to be determined. Periodic boundary conditions imply that

eikL = 1. Hence, the allowed values of k are

k =
2πl

L
, l ∈ Z. (2.31)

Each eigenvalue/eigenvector pair is labeled by one value of k. Since H is L × L, one

requires only L distinct values of k. There is, therefore, an arbitrariness in the choice of

interval. Usually, k is taken inside the interval [−π, π], known as the first Brillouin zone.

Thus, the allowed values for l are
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L

2
< l ≤ L

2
. (2.32)

The eigenvalues can be obtained by plugging the ansatz in Eq. (2.29), which results in

− 1√
L
eikn
(
eik + e−ik − V

)
=

εk√
L
eikn. (2.33)

This shows that (2.30) can indeed be a valid eigenstate of H , provided that the corre-

sponding eigenvalue reads

εk = V − 2 cos k, (2.34)

which is the well-known dispersion relation of the tight-binding model. The correspond-

ing eigenstates are

|φk〉 =
1√
L

L∑
n=1

eikn |n〉 (2.35)

The ground state, in particular, corresponds to k = 0, and is given by

|φgs〉 =
1√
L

L∑
n=1

|n〉 . (2.36)

Notice that all eigenstates completely delocalized, that is, the wave function is uniformly

distributed along the chain,

|φkn|2 =
1

L
, n = 1, . . . , L. (2.37)

Open boundary conditions

For open boundary conditions, Eq. (2.29) continues to hold, provided that we impose

ψ0 = ψL+1 = 0. The ansatz (2.30) still solves this equation, with the eigenvalues also

given by εk = V − 2 cos k [Eq. (2.34).] However, it is incompatible with the open bound-

ary conitions. This can be amended by introducing the new ansatz
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φkn = Aeikn +Beikn, (2.38)

where A and B are constants. By inserting this ansatz in Eq. (2.29), we obtain

−
(
Aeikn +Be−ikn

)(
eik + e−ik − V

)
= εk

(
Aeikn +Be−ikn

)
. (2.39)

This shows that (2.38) also solves Eq. (2.29) with the same dispersion relation as in

Eq. (2.34). The condition φ0 = 0 now imposes that B = −A. Thus,

φkn = 2iA sin(kn). (2.40)

Finally, setting ψL+1 = 0 then implies that sin(k(L+ 1)) = 0, or

k =
πl

L+ 1
, l = 1, . . . , L. (2.41)

Note that the allowed values of k are slightly different in comparison with (2.32). The

constant A is obtained by imposing the normalization of the wave function:

L∑
n=1

∣∣φkn∣∣2 = 4|A|2
L∑
n=1

sin(kn) = 1, (2.42)

which yields

|A| =

√
1

2(L+ 1)
. (2.43)

The complex phase of the normalization constant is arbitrary, thus the final form of the

eigenstates can be written as

|φk〉 =

√
2

L+ 1

L∑
n=1

sin(kn) |n〉 , k = 1, . . . , L. (2.44)

The ground state, which corresponds to k = 1, is given by

|φgs〉 =
L∑
n=1

sin(n) |n〉 . (2.45)
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Fig. 2.2 shows the ground state for a lattice with L = 100. Notice how the state is

delocalized, with the wave function spread trough all the sites. This will be contrasted

in the next section, where we will discuss the Anderson localization phenomenon. We

notice that this model is the discrete analalogous of a particle in an infinite square well,

and the eigenstates obtained in the continuous case are very similiar to (2.44), but with a

different normalization factor.

200 400 600 800 1000

0.0000

0.0005

0.0010

0.0015

0.0020

Figure 2.2: Ground state of the tight-binding model with constant potential for L = 1000.
The y axis shows the coefficients in the expansion |φgs〉 =

∑
i φi |i〉.

2.5 Anderson localization

In the seminal work published by P.W. Anderson [2] in 1958, he showed that when a tight-

binding lattice is subject to a strong enough disorder, that is, a random on-site potential

Vi, all the eigenstates of the system become exponentially localized. As a consequence,

the wave function ceases to propagate in a unitary dynamics, thus effectively turning the

system into an insulator. This phenomenon is known as Anderson localization. Ander-

son’s work is widely regarded as a corner-stone in condesed-matter physics and is one of

the reasons he was awarded a Nobel prize in 1977.

In his original work, Anderson was motivated by the study of nuclear spin diffusion

and conduction of electrons. In the following decades, however, the concept of Ander-

son localization has been applied into a wide variety of fields, even outside solid state

Physics, such as photonics [21], mesoscopic Physics [22], acoustic waves [23] and elec-
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tron transport in DNA molecules [24]. The localization phenomenon has also been a topic

of intense experimental research. It has, for example, been observed in ultracold atoms

experiments [15].

In the last decade, significant breakthroughs have been made in the field of ultra-

cold atoms, thus creating exciting possibilities for experimental simulation of many-body

systems. These advances have led to a revival of the interest in disordered systems and

localization properties. A particular active topic of research is the study of many-body

localization (MBL), a different localization phenemon which occurs in interacting many-

body systems [25, 26].

We consider here the one-dimensional version of the Anderson the model. The Hamil-

tonian of the system is given by Eq. (2.1), and the on-site potentials Vi are chosen as inde-

pendent and identically distributed random variables sampled from a uniform distribution

in the range
[
−W

2
, W

2

]
. The parameter W , which is the width of the distribution, controls

the strength of the disorder.

The eigenstates of the model can be found numerically using the exact diagonalization

procedure described in section 2.3. Fig. 2.3 shows the ground state for one realization of

the model for W = 0.5 in a lattice with 1000 sites. Notice that almost all the probability

in concentrated near one site, which is the called to localization center, as opposed to the

zero disorder case shown in Fig. 2.2. The particular site in which the wave function is

localized is random, depending on the particular realization of the disordered potential.

200 400 600 800 1000

0.00
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0.06
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0.12

Figure 2.3: Ground state in one realization of the Anderson model, with W = 0.5 and
L = 1000.
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Not only the ground state is localized, but also all the eigenstates. Fig. 2.4 shows the

first 10 eigenstates of the same realization of the disorder used in Fig. 2.3, with disorder

W = 0.5. Notice that each eigenstate is localized in some particular site.

Figure 2.4: First ten excited states of the Anderson model, with W = 0.5 and L = 1000.
The index k labels the different eigenvalues.

The localization for all eigenstates can be visualized simultaneously by plotting the

matrix of coefficients |φki |2, where φki are the expansion coefficients of the kth eigenstate,

|φk〉 =
L∑
i=1

φki |i〉 . (2.46)

This corresponds to the matrix S, as defined in Eq. (2.15), but with all elements squared.

Fig. 2.5 shows a comparison between zero disorder and W = 0.5 for a lattice with L =

100. Each column of the matrix corresponds to an eigenvector, and each row corresponds

to a site in the lattice.

In Anderson’s original paper, it is shown that if the disorder is sufficiently strong,

all eigenstates become localized, regardless of the dimension of the system. It was later

found that for one and two-dimensional systems the localization occurs for any disorder,

no matter how small [27, 28]. We give here a brief sketch of the proof. The recursive

relation (2.29) can be written in matrix notation as

(
φn+1

φn

)
= Tn

(
φn
φn−1

)
, 2 < n < L, (2.47)
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Figure 2.5: Matrix of coefficients |φki |2 for zero disorder (a) and for W = 0.5 (b), for a
lattice with L = 100. In both plots, each column corresponds to an eigenvector k, and the
rows corresponds to a site i. The brigthness at position i, k is related to the magnitude of
|φki |2

where Tn, called transfer matrix, is defined by

Tn =

(
E − Vn −1

1 0

)
. (2.48)

Notice that Tn is a random matrix, because one of its elements is the random variable

E − Vn. By iterating Eq. (2.47) n times, we obtain

(
φn+1

φn

)
=

n∏
i=1

Ti

(
φ1

φ0

)
, (2.49)

where φ0 = 0 due to the open boundary conditions. This equation permits to calculate the

behavior of the wave function |φn| for large values of n based on the statistical properties

of the product of random matrices
∏n

i=1 Ti. Using the Furstenberg theorem [29], one may

show that for L→∞ the solutions have the form

|φn| ∼ exp

(
−|n− n0|

ξ

)
, n� 1, (2.50)

where n0 is the localization center and ξ is the localization length. Thus, for W > 0, all

the eigenstates are localized.

20



Chapter 2. Free fermions in a chain

If the dimension is three or higher, delocalized eigenstates can exist for weak disorder.

Therefore, there exists a value critical disorder strength above which the system undergoes

a phase transition, the so called metal-insulator transition (MIT), and all the eigenstates

become localized [30, 31].
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Chapter 3

Quasiperiodic Potentials

In this chapter we will review the localization properties of two of the most well-known

quasiperiodic systems, the Aubry-André-Harper model and the Fibonacci model. We will

then discuss how to numerically characterize the localization of a state using the Inverse

Participation Ratio.

3.1 Aubry-André-Harper model

The most paradigmatic example of a quasiperiodic system is the Aubry-André-Haper

(AAH) model [3, 4]. The Hamiltonian is the same as in Eq. 2.1, with the on-site potential

given by

Vi = 2λ cos(2πbi+ θ), i = 1, . . . , L, (3.1)

where λ is the potential the potential strength, b is a constant and θ is an arbitrary global

phase. This potential is called quasiperiodic due to the fact that, when b is an irrational

number, the function (3.1) never repeats itself along the lattice, as illustrated in Fig. 3.1.

The AAH Hamiltonian can nowadays be realized in ultracold atoms experiments [11–

14]. The most common setup consists in using a bichromatic lattice, where two lasers

with incommensurate wavelengths are superimposed [32]. A pedagogical introduction

can be found in [33].

As discussed in section 2.5, disordered one-dimensional systems are always localized,
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Figure 3.1: The function 2 cos(2πϕi), where ϕ = 1
2
(1 +

√
5). The function never repeats

itself for integer i.

while in three dimensions they exhibit a metal-insulator transition. The AAH potential,

however, gives rise to very interesting localization properties, even in one dimensonal

chains, provided that b belongs to the class of Diophantine numbers. An irrational number

is said to be Diophantine if there exists C > 0 and r ≥ 2 such that for any rational p/q,

with q > 0, one has

∣∣∣∣b− p

q

∣∣∣∣ > C

qr
. (3.2)

When this condition is met, the model is known to go through a localization transition at

the critical value λc = 1 [34]. For λ < 1, all the eigenstates are extended, while for λ > 1

all the eigenstates are localized. The localization length, as defined in Eq. (2.50), is given

by ξ = 1/ log(λ) [3]. A common choice for b in the literature, which we adopt troughout

this dissertation, is the golden mean ϕ = 1
2
(1 +

√
5).

The localization transition is depicted in Fig. 3.2, which shows the probabilities |φi|2

for differents value of λ for a lattice with L = 100. As can be seen, for λ < 1 the wave

function is extended through all the sites, while for λ = 1.2 it is extremely localized at

some particular site, called the localization center. The position of this center changes

with the value of θ. Notice that the vertical scale in each plot is different, as the maximum

value of the probability is much smaller in the delocalized phase. At the critical value

λ = 1.0, the overall shape of the wave function is very similar to the localized one, except
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that it exhibits some small “fringes”. As we shall discuss in section 3.2, the localization

length at λ = 1 scales differently with the system size, compared to λ > 1: the wave

function is neither extended nor localized, but critical, in a sense that shall be precisely

defined in the next section.
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Figure 3.2: Ground-state eigenvector of the AAH model for (a) λ = 0.5, (b) λ = 0.9, (c)
λ = 1.0 and (d) λ = 1.2.

The AAH also has the distinctive feature of being self-dual under a certain transforma-

tion, closely related to a discrete Fourier transform. Consider the first-quantized version

of the Hamiltonian,

H = −
L∑
n=1

(
|n〉〈n+ 1|+ |n+ 1〉〈n|

)
+ λ

L∑
n=1

2 cos(2πbn) |n〉〈n| , (3.3)

where we assumed, for simplicty, periodic boundary conditions. We then define the fol-

lowing transformation:

|k〉 =
L∑
n=1

e2πibkn |n〉 . (3.4)
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This mapping is very similar to the discrete Fourier transform, but with an extra factor of

b in the denominator. The states |k〉 satisfy an orthogonality condition,

〈k′|k〉 =
∑
n

e2πib(k−k′)n = δk,k′ . (3.5)

Then, applying this transformation to Eq. (3.3), one obtains

H ′ = −λ
L∑
n=1

(
|k〉〈k + 1|+ |k + 1〉〈k|

)
+

L∑
n=1

2 cos(2πbk) |k〉〈k| , (3.6)

which has the same structure of Eq. (3.3), except that the roles of the tunneling rate J and

the strength of the potential λ are reversed. Notice that this self duality property holds for

any value of b, not only when it is Diophantine.

This self-duality property determines the precise critical point of the localization tran-

sition, as shown in the original paper by Aubry and André [3]. If a state written in the

{|n〉} basis is localized, then it must be extended in the basis {|k〉}, according to the

transformation (3.4). Thus, if the eigenstates of H are localized, then the eigenstates of

H ′ are extended. The converse is also true. Therefore, if a localization transition occurs,

it must be at λ = 1, which is the only parameter for which the transformation mapsH into

itself. Notice, however, that this property does not imply that there must be a localization

transition; it simply determines the critical value should it occur.

3.2 Inverse Participation Ratio (IPR)

The localization of a state can be numerically quantified trough the Inverse Participation

Ratio (IPR). Given a state |ψ〉 =
∑

n ψn |n〉, its IPR is defined as

IPR(ψ) =
L∑
n=1

|ψn|4. (3.7)

The maximum value of the IPR corresponds to a state infinitely localized at some site n0,

which can be written as |ψ〉 =
∑

n δn,n0 |n〉, yielding
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IPR(ψ) =
L∑
i=1

|δn,n0|4 = 1. (3.8)

The smallest valued is achived when the state is completely delocalized, such as the plane

waves (2.35). In this case, the IPR is given by

IPR(ψ) =
L∑
i=1

1

L2
=

1

L
, (3.9)

which vanishes in the limit L→∞. Therefore, the IPR is a number ranging from 1/L to

1. The more localized the state is, the closer it is to 1.

The IPR is also closely related to the localization length. For localized states, which

decay exponentially, as in Eq. (2.50), these quantities are inversely proportinal and hence

IPR ∼ ξ−1. Although this relation does not hold in general, the two quantities are still

related, and the IPR is frequentely used in the literature as proxy for the localization

length.

The IPR can be used to probe the localization in the AAH model. The transition can

be clearly visualized in Fig. 3.3, which shows the IPR averaged over all eigenstates as a

function of λ for different values of L. Notice that the transition becomes increasingly

sharper as L→∞.
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Figure 3.3: Inverse Participation Ratio (IPR) averaged of all eingestates of the AAH
model, as a function of λ for different values of L and θ = 0.
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The localized and delocalized phases can also be characterized through the scaling

of the IPR with the system size L. For the extended eigenstates, the IPR scales as IPR

∼ L−1, whereas in the localized phase it remains constant withL, IPR∼ L0. At criticality,

the IPR exhibits an anomalous scaling, IPR ∼ L−τ , where the coefficient τ depends

on the fractal dimension of the states. Fig. 3.4 shows the scaling of the IPR with the

system size L for multiple values of λ. Notice that, at criticality, the IPR scales with a

different coefficient compared to the localized state. For this reason, the states at λ = 1

are classified as critical, rather than localized or delocalized.

10 50 100 500 1000

0.001

0.010

0.100

1

Figure 3.4: Scaling of the IPR as a function of L in the AAH model, for different values
of λ.

3.3 Fibonacci model

The second quasiperiodic system we studied in this dissertation is the Fibonacci model,

which is again described by the tight-binding Hamiltonian [Eq. (2.1)]. The on-site po-

tential of this model is constructed from a peculiar sequence of As and B symbols called

Fibonacci word. Starting from the strings S1 = A and S2 = AB, each Fibonacci word is

defined as the concatenation of the two previous ones,

Sn+1 = Sn + Sn−1, n > 2, (3.10)

where the operation + is to be understood as concatenation of strings. Sucessive applica-
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tion of this rule generate the sequence of Fibonacci words:

S1 = A,

S2 = AB,

S3 = ABA,

S4 = ABAAB

...

(3.11)

Notice that, by construction, each word is a prefix of the following one, and also the

lengths of the words form the sequence of Fibonacci numbers, that is, |Sn| = Fn, where

Fn is the nth Fibonacci number. In the limit n → ∞, one may show that the Fibonacci

words converge to a unique sequence

S∞ = ABAABABAABAABABA . . . , (3.12)

which we shall refer simpy as the Fibonacci sequence. This sequence has a simple closed-

form expression [35, 36]

S∞,i =

{
A if b(i+ 1)/ϕc = bi/ϕc ,
B otherwise, (3.13)

where b · c is the floor function. The Fibonacci on-site potential is then constructed by

associating each element of the sequence with a position in the lattice and replacing the

letters A with some value VA and the letters B with a value VB, as ilustrated in Fig. 3.5.

VB
VA VA VA VA VAVB VB

VA

Figure 3.5: Schematic representation of the construction of the Fibonacci potential. Each
element in the sequence is associated with a site in the quantum chain. The letter A is
replaced by a value VA and the letter B by a value VB. In this disertation, we choose
VA = λ and VB = 0.

In this dissertation we will chose the values VA = λ and VB = 0, where λ is a real

parameter. The difference b(i+ 1)/ϕc − bi/ϕc is either 0 or 1, therefore, using Eq. 3.13,

we can write
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Vi = λ

([
i+ 1

ϕ

]
−
[
i

ϕ

])
. (3.14)

This is the expression we used in our numerical simulations to construct the Hamiltonian.

In this definition of the on-site potential, the first element of the Fibonacci potential

is associated with the first site in the chain. This, however, is not really a restriction.

For a system with L sites, any subsequence of length L can be used. When numerical

simulations are perfomed, the computed quantities can be averaged over these different

realizations of the potential, which in general produces smoother curves. A natural ques-

tion is, then, how many subsequences of length L exist. If the sequence were completely

random, there would be an infinite number of subsequences of a given length. In the

Fibonacci sequence, however, there are only L + 1 subsequences of length L, which oc-

cur with the same rate along the infinite sequence. For example, when L = 2, only the

subsequences AA, AB, BA can be found: the configuration BB never occurs.

All the subsequences off the Fibonacci word can be constructed using the algorithm

described in Ref. [36]. In this dissertation, we mostly used the single sample version,

defined in Eq. 3.14, except when explicity mentioned otherwise. All the samples of the

potential yield the same qualitative behaviour, although the transport coefficients might

differ slightly. A more careful discussion of these differences is done in Ref. [10].

The Fibonacci sequence can also be constructed using a myriad of alternative proce-

dures, which we now briefly discuss for completeness. For example, one might use the

substitution rule

{
A→ AB,
B → A.

(3.15)

Starting from the string “A”, at each application of the rule, each letter A is replaced by

AB and each letter B is replaced by A, generating the same sequence as before. This rule

is also frequently written in matrix notation,

(
A
B

)
→
(

1 1
1 0

)(
A
B

)
, (3.16)

where the sum in the matrix product is to be understood as string concatenation. Many
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properties of the system can be derived from the eigenvectors and eigenvalues of this

matrix, which is called the substitution or inflation matrix. Notice that at each iteration of

the rule the total number of A’s in the sequence is given by the length of the preceding

word, which is a Fibonacci number, that is

NA
n = NA

n−1 +NB
n−1 = |Sn−1| = Fn−1, n > 1. (3.17)

Similarly, the total number of B’s equals the number of A’s in the preceding word, which

per the equation above is also a Fibonacci number,

NB
n = NA

n−1 = Fn−2, n > 1. (3.18)

Therefore, the ratio of A’s and B’s in the sequence equals the ratio between two con-

secutive Fibonacci numbers, which famously converges to the golden mean in the limit

n→∞,

lim
n→∞

NA
n

NB
n

= lim
n→∞

Fn
Fn+1

= ϕ. (3.19)

This fact shows that the sequence cannot be periodic, sinced otherwise the ratio between

the two letters would have to be a rational number

There is also another interesting way of constructing the Fibonacci word, based on a

geometrical interpretation, as illustrated in Fig. 3.6. First, a line with slope 1/φ is drawn

in a unit grid, starting from the origin. The Fibonacci sequence can then be read off

by trasnversing this line and checking the intersections with the grid. When a vertical

grid line is crossed, the letter A is attached to the sequence, while an intersection with

a horizontal grid line corresponds to the letter B. Sequences constructed this way are

known as “cutting sequences”. Threfore, the Fibonacci word is chracterized by a cutting

sequence of the line with slope 1/φ.

All the eigenstates of the Fibonacci model are critical, similarly to the AAH at λ = 1.

This means that IPR exhibits an anomalous scaling of the form

IPR ∼ L−τ(λ). (3.20)
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Figure 3.6: Construction of the Fibonacci chain by cutting a sequence of the line with
slope 1/φ. When the line with slope 1/φ crosses a vertical grid line, the letter A attached
to the sequence, while an intersection with a horizontal grid line corresponds to a letter
B.

The coefficient τ(λ) can be explicitly computed, and it is related to the fractal dimension

of the eigenstates. In Fig. 3.7, we show the scaling of the IPR for different values of λ,

averaged over all eigenstates. In Fig. 3.7 (a), on the left, the sistem sizes used are Fi-

bonacci numbers. Curiosly, when every other Fibonacci number is skipped, the resulting

curve is virtually a straight line. We suspect that this is related to the fractal and number

theoritical properties of the eigenstates.

10 50 100 500 1000

5.× 10
-4

0.001

0.005

0.010

0.050

0.100

0.500

10 50 100 500 1000

5.× 10
-4

0.001

0.005

0.010

0.050

0.100

0.500

Figure 3.7: (a) Scaling of the IPR with L in the Fibonacci model for different values of λ,
where values of L are Fbonacci numbers. (b) Scaling of the IPR with L in the Fibonacci
model, skipping every other Fibonacci number.

Notice that the value of τ decreases with λ, which is shown in Fig. 3.8 (a). Moreover,

for a fixed value of L, the mean IPR of the eigenstates increases continuosly with λ, which

means that the eigenstates become more localized. This is already an indicative that the

transport regime of the Fibonacci model varies continuosly with λ, as we mentioned in
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the introduction.
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Figure 3.8: (a) Dependence of the coefficient τ with λ, defined in Eq. (3.20), in the
Fibonacci model. (b) IPR averaged over all the eigenstates of the Fibonacci number with
respect to λ. In each curve, the value of L is fixed.
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Coherent transport

In this chapter, we will study the transport properties of the systems in a closed system

scenario. We will do so by computing the time evolution of the mean squared displace-

ment of the wave function. This, perhaps, is one the simplest frameworks one may con-

ceive to probe the transport regime, but it already reveals all the surprising features of the

quasiperiodic chains. In section 4.1, we will discuss the equation of motion of the system

and provide an effcient Mathematica code used in our numerical simulatons. Then, in

section 4.2, we will the describe the framework we used to classify the transport. In the

following sections, we will present the unitary transport properties of the quasiperiodic

systems.

4.1 Unitary time evolution

When the system is isolated, its time evolution is dictated by the Scrhödinger equation,

∂

∂t
|ψ(t)〉 = −iH |ψ(t)〉 , (4.1)

where we fixed ~ = 1. In this chapter, we will always choose an initial state completely

localized at some site n0:

|ψ(t)〉 =
∑
n

δn,n0 |n〉 , (4.2)

which is a single particle state. As discussed in chapter 2, the number of particles is
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conserved during an unitary evolution. Therefore, all the subsequent states will have a

single particle, and can thus be expanded as

|ψ(t)〉 =
∑
n

ψn(t) |n〉 . (4.3)

We will now derive an equation of motion for the coefficients ψn. After a substution

of this expansion in Eq. 4.1, one obtains

∂

∂t
|ψ(t)〉 = −i

∑
m

∑
ij

Hijc
†
icjψm(t) |m〉 . (4.4)

The differential equations for the coefficients ψn are then obtained by contracting on the

left with 〈n| and using the fact that 〈n|c†icj|m〉 = δinδjm, which results in

∂

∂t
ψn(t) = −i

∑
nm

Hnmψm(t). (4.5)

Therefore, as expected, when the many-body system is restricted to single-particle states,

its time evolution is equivalent to that of the L level system, dictated by the L×L matrix

H .

Defining the vector of coefficients ψ = (ψ1, ..., ψL), Eq. (4.5) can be written matri-

cially as

∂

∂t
ψ(t) = −iHψ(t), (4.6)

which has the formal solution ψ(t) = e−iHtψ(0). Using the decomposition H = SES†,

the time evolution operator can be computed as

e−iHt = Se−iEtS†, (4.7)

where e−iEt = diag(e−iε1t, . . . , e−iεLt).

A typical method for numerically integrating Eq. (4.5) is to compute the time propa-

gator U(τ) = e−iHτ , where τ is a fixed time step, and then succesevely obtain the state at

each step by the recursive relation
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ψ(tk+1) = U(τ)ψ(tk) (4.8)

where tk = kτ . Despite the fact that Eq. (4.8), this procudere has some major flaws.

Firstly, numerical errors accumulate at each matrix multiplication. Secondly, the time

steps tk are evenly spaced in the linear scale. However, the classification of the transport

regime will require the simulation of the system for very large times, and thus all the

curves obtained will be displayed in logarithmic scale. Therefore, if the the time steps are

linearly spaced, the small time region becomes very clogged with data points, while the

long time region becomes sparse. For this reason, it is convenient to choose time steps tn

that are evenly spaced in the logarithmic scale. To do so, we simply Eq. (4.7) to compute

the wave function for any tn,

ψ(tn) = Se−iEtnS†ψ(0). (4.9)

In this procedure, the matrix H has to be diagonalized a single time. At eatch time

step, only the matrix exponential e−Etn is computed. The matrix E is diagonal, therefore

this is equivalent to exponentiating L complex numbers, which can be done very effi-

ciently. Moreover, since the initial state is fixed, one matrix multiplication can be avoided

at each time step by previously defining φ = S†ψ(0), which results in

ψ(tn) = Se−iEtnφ. (4.10)

In Mathematica, this procedure can be made even more efficient by exploting the

language’s vectorization features. Instead of using a loop to compute each time step, all

the operations can be done simultaneously using matrix notation. Consider a matrix T

defined by

Tij = e−iεitj . (4.11)

This matrix can be found efficiently in Mathematica by computing the outer product of

the vectors (ε1, . . . , εL) and (t1, . . . , tL) and exponentiating each element. At each time

step tn, the coefficients ψi(tn) are then given by
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ψi(tj) = STijφi, (4.12)

which can be written matricially as

Ψ = S(φ ∗ T ), (4.13)

where the notation(φ ∗ T ) means that each column of T is multiplied elementwise by φ

and Ψ is a matrix containing the wavefunctions at all times on its columns:

Ψ =


ψ1(t1) . . . ψ1(tN)
ψ2(t2) . . . ψ2(tN)

...
...

ψL(t2) . . . ψL(tN)

. (4.14)

In our simulations, this procedure was implemented using the following Mathematica

code:

{Λ, S} = Eigensystem[ℋ];
S = S;
 = Outer[Exp[-ⅈ #1 #2] &, Λ, trange];
ϕ = S.ψ0;
Ψ = S.(ϕ*);

Since all the operations are vectorized, with no loop written explicity, all the opera-

tions are delegated by Mathematica to its internal linear algebra implementations, with

virtually no overhead, and are thus performed very efficiently.

4.2 Classification of the transport regime

Consider the classical example of a particle performing a random walk in a 1D lattice

The particle starts at the position x = 0, and at each time step ∆t, moves one unit to the

right or to the left, with equal probability. After N time steps, corresponding to the time

t = N∆t, the variance of its position is given by
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〈
(∆x)2

〉
= Dt2, (4.15)

where D = 1/∆t. Therefore, the standard deviation of x is proportinal to t. This be-

haviour is typically known as diffusion. We will import this ideia to quantum mechanics

and build a simple framework to probe the transport properties of our systems. This ap-

proach has been used several times in literature.

We will always assume that the particle is initally localized at the central site of the

chain, n0, thus

ψn(0) = δn,n0 . (4.16)

Using the floor function, n0 can be written as n0 =
⌊
L+1

2

⌋
. After t > 0, the system is left

to evolve unitarily, so its wavefunction starts to spread trough the chain, as illustrated in

Fig. 4.1.

t

Figure 4.1: Pictorial illustration of the spreading of the wavefunction in a unitary dynam-
ics starting from the central site.

The spreading of the wave function can be quantified via the root mean square devia-

tion (RMSD) with respect to the central site, defined by

√
(∆x)2 =

√√√√ L∑
n=1

(n− n0)2|ψn|2. (4.17)

The scaling of the RMSD with time is not necessarily diffusive, as in Eq. 4.15. In general,

it follows
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√
(∆x)2 ∼ tα, (4.18)

where α is a positive constant, which we call transport coefficient. The transport regime

of the system is then classified depending on the value of α. If α = 1, the transport is

classified as ballistic, and if α = 1/2 it is diffusive. Other values of α correspond to

anomalous transport, which can be further classified in subdiffusive, for α < 1/2, and

superdifffusive, for 1 < α < 1/2. The extreme case of α = 0 corresponds to the absence

of transport, which happens for localized systems. These classifications are summarized

in table 4.1.

Table 4.1: Classification of the coherent transport regime using the value of α.

Transport regime Transport coefficient

Localized α = 0

Ballistic α = 1

Diffusive α =
1

2

Subdiffusive α <
1

2

The procure to extract the coefficient α is illustrated in Fig. 4.2. We start by plotting√
(∆x)2 versus t in logarithm scale. In the short scale range, the system behaves aprox-

imetely ballistic. After a finite time, the wavefunction reaches the borther of the system,

and
√

(∆x)2) starts to oscillate. For this reason, one must identify an intermediate where

the scaling (4.18) is obeyed. In Fig. 4.2, this region is highlighted in blue. After restricting

the data points to this region, we simply fit a linear regression of the form

log
(√

(∆x)2
)

= α log t+ C. (4.19)

The value of the intercept C is irrelevant for our purposes.
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Figure 4.2: Illustration of the procedure used to computed the coefficient α in Eq. (4.18).
This particular example corresponds to the Fibonacci model for L = 2001 and λ = 4.0,
averaged over 50 configurations of the Fibonacci word. In this example, the transport is
subdiffusive, with α = 0.46.

4.3 Transport properties with zero potential

As a first example, consider the case the case in which the on-site potential is constant or,

without loss of generality, identically zero. In this case, the system will correspond simply

to a standard free fermion hopping on a regular lattice. As we stressed in the introduction,

it is widely known that this model is ballistic. This can be verified in Fig. 4.3, in which

we show the scaling of the RMSD in a unitary time evolution. As can be seen, for a finite

times, the RMSD scales perfectly proportional to t0.5, until the wave function reaches the

border of the system.

Using Eq. 4.1, the time evolution of the RMSD can also be explicitly computed, both

for periodic and open boundary conditions. However, these calculations are somewhat

lengthy and divert from the focus of this dissertation, we will focus instead only on the

analogy with a quantum free particle.

Assume, for simplicty, that the system is very large, and thus the boundary conditions

can be ignored. In this case, the tight-binding chain is the lattice (discrete) analog of

simple free particle. The Hamiltonian of a free particle moving in one dimension is

H =
p2

2m
, (4.20)
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Figure 4.3: Scaling of the RMSD with Vi = 0 for all i, for a chain with L = 2001, starting
from a state perfectly localized in the center site.

where p is the momentum operator. Using the Heisenberg equations of motion, one may

readily show that

〈x〉t = 〈x〉0 +
〈p〉0
2m

t. (4.21)

Therefore, the particle moves ballisticaly through space.

4.4 Transport properties of the AAH model

The localization transition of the AAH model is clearly reflected in its transport properties,

as can be seen in Fig. 4.4, which shows the scaling of the RMSD with t for differen values

of λ. For λ < 1, when all the eigenstates of the system are extended, the transport is

ballistic. When λ > 1, which corresponds to the localized region, there is almost no

spreading of the wave function, and the RMSD quickly reaches a plateau. At the critical

value λ = 1, the transport is very close to diffusive, but the particular value of α depends

on the phase θ. When the RMSD is averaged over θ, which is the case shown in Fig. 4.4,

the transport is perfectly diffusive.

In Fig. 4.4 (b), we show a comparison between this averaged case and a potential

that is symmetrical with respect to the central site, corresponding to θ = b(L + 1)/2c.
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Figure 4.4: (Left) Scaling of the RMSD with time in the AAH model for a lattice with
L = 2001, starting with an initial state perfectly localized at the central site. All the
values were averaged over 100 values of θ, evenly spaced betweeen 0 and π. (Right)
The blue curve shows the scaling of the RMSD in the AAH potential averaged of θ. The
orange curve shows the scaling for the AAH potential that is chosen to be symmetrical
with respect to the central site. In both curves L = 2001 and the initial state is perfectly
localized at the central site.

In the symmetrical case, the transport is slightly subdiffusive at the critical point, with

α = 0.476. The same coefficient has been previously reported in [10].

The localization transition of the AAH model is also illustraded in Fig. 4.5, which

shows the dependence of the coefficient α with λ, computed for a chain with L = 2001.

For λ < 1, the transport is ballistic, so α = 1.0, while for λ > 1 the transport is ab-

sent, thus α = 0. In this figure, the transition is not sharp because the coefficients were

computed for a system with finite size. Similarly to what happens with the IPR, shown in

Fig. 3.4, the transition gets sharper as L increases, and only becomes discontinuous in the

thermodynamic limit.

4.5 Transport properties of the Fibonacci model

As we mentioned in the introduction, the most striking feature of the Fibonacci model is

its ability to exhibit any kind of transport regime, depending on the value of λ. This can be

seen in Fig. 4.6, which shows the dependence of the coefficient α with λ, for a chain with

L = 2001. Starting from ballistic transport, at λ = 0, corresponding to zero potential, the

coefficient α decreases continuosly as λ is increased. The diffusive regime is achieved at

aproximetely λ ≈ 3. When λ is below this value, the transport is subdiffusive, and when it
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Figure 4.5: Fitted coefficient α as a function of λ in the AAH model for a lattice with
L = 2001, with the initial state perfectly localized at the central site.

is above the transport is superdiffusive. Even though this property of the Fibonacci model

is known since the 1980s [8], we still find it quite remarkable, as it directly confronts the

idea that free fermion chains should be ballistic.

Fig. 4.7 shows the scaling of RMSD for increasing values of λ. As can be seen,

the slope of each curve decreases with increasing λ. For λ = 2.0, for example, the

transport is superdiffusive, while for λ = 4.0 it is subdiffusive. This curve was generated

by performing an average over 50 realizations of the Fibonacci word, which results in a

smooth scaling for the RMSD. Notwithstanding, the transport coefficients agree with the

single sample case [10].
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DIFFUSIVE TRANSPORT

Figure 4.6: Dependence of the coefficient α with λ. The coefficient decreases contin-
uously when λ is increased. The dashed curved indicates diffusive transport, α = 0.5,
which occurs for λ ≈ 3.
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Figure 4.7: Scaling of the RMSD in the Fibonacci model for increasing values of λ, for a
chain with L = 2001, starting from a state localized at the central site. In this particular
plot, all the curves were averaged over 50 samples of the Fibonacci potential.
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Open quantum systems

In nature, no system can exist in perfect isolation, whether it is classical or quantum.

The notion of “closed system” is only an idealization, as there is always some kind of

interaction with the environment. It is frequent that these interactions can be neglected,

but many physical phenomena, such as the sponteneous emission of photons, can only

be explained when they are taken into account. In this chapter, we shall briefly explain

the framework to describe the evolution of an open quantum system, which we will later

apply to boundary-driven spin chains.

5.1 The Lindblad master equation

When a system is isolated, its time evolution is dictated by the Von Neumann’s equation,

dρ

dt
= −i[H, ρ], (5.1)

where ρ is the system’s density matrix. However, when the system is put in contact with

an environment and its thus subject to dissipation, this equation is no longer valid. The

dynamics of an open system will therefore not be unitary. Notwithstanding, it must still

be physical. That is, it must take density matrices into density matrices. Maps of this

form are called Completely Positive and Trace Preserving (CPTP). We will not enter into

the details of the basic mathematical structure of CPTP maps, which can be found e.g.

in [37, 38]. Instead, we will focus on the specific case of time-local (Markovian) master
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equations, which form a subset of CPTP maps. The basic intuition is to augment Eq. (5.1)

with an additional term, D(ρ), describing the contact with the reservoir; i.e.,

dρ

dt
= −i[H, ρ] +D(ρ). (5.2)

As shown in [39, 40], there exist a generic structure for D(ρ), which ensures that the

dynamics is always CPTP. Namely, when it has the form

D(ρ) =
∑
k

LkρL
†
k −

1

2
{L†kLk, ρ}, (5.3)

where {Lk} is an arbitrary set of operators acting on the system, called jump operators.

To make the notation simpler, it its convenient to define

D[L] = LρL† − 1

2

{
L†L, ρ

}
, (5.4)

thus D(ρ) =
∑

kD[Lk].

The specific structure of the Lk depends not only on the system, but also on the type

of process being modeled. The simplest example is the contact with a standard thermal

bath. However, in the quantum domain, other types of evolution are also possible, such as

the so-called dephasing dynamics, which does not affect populations, but only suppresses

coherences. Often, the form of D(ρ) is obtained from a microscopic derivation, starting

from a global model of system plus environment. Here we shall not pursuit this path, as it

would deviate significantly from the scope of this dissertation. Instead, for the remainder

of this chapter, we will discuss, through examples, the basic types of dissipation mech-

anisms which will be employed in chapters 6 and 8 to model transport in quasiperiodic

chains.

5.2 Single spin-1/2 coupled to a bath

In this first example, we will discuss the dynamics of a single spin coupled to a thermal

reservoir. Not only this will serve as an illustrative example of the master equation (5.2),

but also the same type of baths will be used later in the context of spin chains. The
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Figure 5.1: Schematic representation of a single spin coupled to a bath at temperature
T . The constant Ω is the energy difference between the two energy levels and γ is the
coupling strength to the bath.

Hamiltonian of the system is given by

H =
Ω

2
σz, (5.5)

where Ω is the energy difference between the two levels. The system is put in contact

with a bath with inverse temperature β = 1/T , as illustrated in Fig. 5.1. The usual master

equation used to describe the dynamics in this scenario is given by

dρ

dt
= −iΩ

2
[σz, ρ] + γ(1− f)D[σ−](ρ) + γfD[σ+](ρ), (5.6)

where D[L] are Lindblad dissipators operators of the form (5.4), γ > 0 is the coupling to

the bath and f is the Fermi-Dirac distribution, related to the inverse temperature by

f =
1

eβΩ + 1
. (5.7)

The dissipator in Eq. (5.6) is the in the Lindblad form [(5.4)] and thus generates a valid

CPTP dynamics.

Since the system is 2×2, the simplest way to solve Eq. 5.6 is to write down the differ-

ential equations for each component of the density matrix. The matrix ρ is Hermitian and

has trace one, thus it can be parametrized as

ρ =

(
p q
q∗ 1− p

)
, (5.8)

where p is the population of the excited state q is the coherence. The equations for p and

q are obtained by inserting this parametrization in Eq. (5.6) and computing the commuta-

tors, which results in
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ṗ = γ(f − p),
q̇ = −

(
iΩ + γ

2

)
q.

(5.9)

The solution to these equations are

p(t) = p(0)e−γt + f(1− e−γt),

q(t) = e−(iΩ+ γ
2 )q(0).

(5.10)

In the limit t→∞, the system relaxes to its steady-state, given by

ρ∗ = lim
t→∞

ρ =

(
f 0
0 1− f

)
. (5.11)

This corresponds to the equilibrium state,

ρeq =
e−βH

Z
=

1

eβΩ + 1
|0〉〈0|+ eβΩ

eβΩ + 1
|1〉〈1| , (5.12)

where Z = Tr
{
e−βH

}
. Therefore, Eq. 5.6 correctly leads the system into a thermal state

with inverse temperature β. The constant γ determines the relaxation rate.

The solutions (5.10) shows that the relaxation of the system towards equilibrium can

be split into two parts. First, there is the change in populations, from the initial value p(0),

to the final value f , imposed by the bath. In parallel, however, the system also loses its

quantum coherence q, which eventually vanishes in equilibrium. The dynamics of p and

q are shown in Fig. 5.2.

The master equation (5.6) can be interpreted as a competition between the two the

terms in the dissipator. The term D[σ+] tries to push the spin up, wich corresponds to

the excited state, whereas D[σ−] tries to force the spin down. The final density matrix

(5.11) thus reflects a compromise between the two, with the population of the excited sate

determined by:

f =
〈
σ+σ−

〉
eq . (5.13)

Eq. (5.6) is also frequently introduced in the literature with a different parametrization,

given by
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Figure 5.2: (a) Time evolution of the populations p(t) and 1−p(t), starting from p(0) = 1.
(b) Time evolution of the real and imaginary parts of the coherence q(0), starting from
q(0) = 1. The paratemeters used in both plots are Ω = 5.0, f = 0.2 and γ = 1.0

D(ρ) = γ

(
1 + µ

2

)
D[σ−](ρ) + γ

(
1− µ

2

)
D[σ+](ρ), (5.14)

In this case, the sateady-state is

ρ∗ =

(
1 + µ

2

)
|0〉〈0|+

(
1− µ

2

)
|1〉〈1| , (5.15)

thus µ corresponds to the magnetization in the equilibrium state:

µ = 〈σz〉eq (5.16)

We notice that the two parametrizations are completely equivalent, with the parameters µ

and f related via

f =
1 + µ

2
. (5.17)

5.3 Dephasing noise

We will now consider the same Hamiltonian from Eq. 5.5, but coupled to a different type

dissipator, called dephasing noise:
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D(ρ) =
Γ

2
D[σz] =

Γ

2
(σzρσz − ρ). (5.18)

The master equation then is then given by

dρ

dt
= −iΩ

2
[σz, ρ] +

Γ

2
(σzρσz − ρ). (5.19)

Using the same paramatization for ρ as in the example before, the equations for the com-

ponents are

ṗ = 0,
q̇ = −(Γ + iΩ)q.

(5.20)

From the first equation, it is possible to see that the dephasing bath does not affect the

populations, but only the coherences. The solution for q is given by

q(t) = e−(Γ+iΩ)tq(0) (5.21)

In the long time limit, the non-diagonal elements vanish

ρ∗ = lim
t→∞

ρ =

(
p(0) 0

0 1− p(0)

)
(5.22)

The dephasing bath preserves the initial populations of the spin, affecting only the off-

diagonals.

5.4 Time evolution of expected values

In many situations, it may be more useful to compute the expected value of some operator

instead looking of looking to the full density matrix. Given some observableO, under the

master equation (5.2) its expected value evolves according to

d〈O〉
dt

= Tr

{
Odρ

dt

}
= i 〈[H,O]〉+ Tr{OD(ρ)}, (5.23)

where the cyclic property of the trace was used in the unitary term. The dissipative part
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gets a contribution from each of the Lindblad jump operators,

Tr{OD(ρ)} =
∑
k

Tr

{
O
(
LkρL

†
k −

1

2

{
L†kLk, ρ

})}
. (5.24)

Using the cyclic property of the trace, each term in the sum can be written more conve-

niently as

Tr

{
O
(
LρL† − 1

2

{
L†L, ρ

})}
=

〈
L†OL− 1

2

{
L†L,O

}〉
. (5.25)

The expression in this expected value has a similar structure to the Lindblad dissipa-

tors [(5.4)], except the it acts on an observable O instead of the density matrix, and the

position of L and L† are exchanged in the first tem. This motivates the definition of a new

superoperator, called the adjoint dissipator, defined as

D̄[L](O) = L†OL− 1

2

{
L†L,O

}
, (5.26)

which can also be written in the more symmetrical form

D̄[L](O) =
1

2
L†[O, L] +

1

2

[
L†,O

]
L. (5.27)

Using this definition, the time evolution of 〈O〉 can be compactly written as

d〈O〉
dt

= i 〈[H,O]〉+
∑
k

〈
D̄[Lk](O)

〉
. (5.28)

5.5 Single fermionic mode

To finish this section, we consider now a single fermionic, with the Hamiltonian given by

H = Ω c†c (5.29)

When this system is coupled to a bath with inverse themperature β, the usual master

equation is given
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dρ

dt
= −i[H, ρ] + γ(1− f)D[c](ρ) + γfD[c†](ρ), (5.30)

where f is the fermionic occupation number of the bath, given by f = (eβΩ + 1)−1. This

equation is entirely equivalent to the single spin-1/2 case [Eq. (5.6)], which in fact is a

consequence of the Jordan-Wigner transformation (Appendix A). Notwithstanding, we

have found it useful to redo the same calculations in this Fermionic language, as this will

help gain intuition when we consider a full fermionic chain.

Using Eq. (5.28), the time evolution of
〈
c†c
〉

can be written as

d
〈
c†c
〉

dt
= i
〈[
H, c†c

]〉
+ γ(1− f)

〈
D̄[c](c†c)

〉
+
〈
γfD̄[c†](c†c)

〉
. (5.31)

The first adjoint dissipator is given by

D̄[c](c†c) =
1

2
c†
[
c†c, c

]
+

1

2

[
c†, c†c

]
c = −c†c, (5.32)

while the second term is

D̄[c†](c†c) =
1

2
c
[
c†c, c†

]
+

1

2

[
c, c†c

]
c† = cc† = 1− c†c, (5.33)

where we used the anticommutation rule for fermions,
{
c, c†

}
= 1. Plugging these results

together in Eq. (5.31), we obtain

d
〈
c†c
〉

dt
= −γ(1− f)

〈
c†c
〉

+ γf
(
1−

〈
c†c
〉)

= γ(f −
〈
c†c
〉
).

(5.34)

The solution to this equation is given by

〈
c†c
〉
t

=
〈
c†c
〉

0
e−γt + f(1− e−γt). (5.35)

Thus, the number of fermions in the mode relaxes exponentially to f with a rate γ. In the

spin formulation,
〈
c†c
〉

corresponds to the population of the excited state, p(t), which, by

Eq. 5.10, exactly matches this expression.
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Boundary-driven quantum chains

In this chapter, we will describe the boundary-diven quantum chain model, which was the

approach we used in this dissertatation to the study transport in an open-quantum system

scenario. In section 6.2, we will compute the time evolution of the covariance matrix, and

show it satisfies a Lyapunov equation in the steady-state. Then, in section 6.3, we will

discuss the numerical solution to the Lyapunov equation and provide the Mathematica

code to do so. Finally, in section 6.4, we will derive an expression for the particle current,

the main observable we used to classify the transport regime. The actual results will be

discussed in the next chapter.

6.1 Boundary-driven chains

In this section, we will finally describe the so-called boundary driven quantum chains, our

main model of interest. In order to study transport in an open-quantum system scenario,

we considered a quantum chain coupled to reservoirs at each boundary, as illustrated in

Fig. 6.1.

T1

γ
TL

γ

Figure 6.1: Schematic representation of a boundary-driven spin chain.

The Hamiltonian of the chain is the same as in (2.1), which we rewrite here for con-

venience:
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H = −
L−1∑
i=1

(
c†ici+1 + c†i+1ci

)
+ λ

L∑
i

Vic
†
ici =

∑
ij

Hijc
†
icj, (6.1)

or, in the spin chain framework,

H = −
L−1∑
i=1

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1

)
+

1

2

L∑
i

Viσ
z
i . (6.2)

The effect of the baths can be modeled using different approachs. For example, one

might use the non-equilibrium Green’s function (NEGF) formalism. In this dissertation,

we chose instead to model the system via a Lindblad master equation contaning two

dissipators, one for each boundary:

dρ

dt
= −i[H, ρ] +D1(ρ) +DL(ρ). (6.3)

In this approach, the system is called a boundary-driven chain.

There is still a choice regarding the exact form of the dissipators Di. We adopted to

work here with the rather straightforward approach of local master equations (LMEs),

which consists in using exactly the same dissipator of the single spin case, as in Eq. (5.6),

but acting on the sites at the boundaries:

Di(ρ) = γi(1− fi)D[σ+
i ] + γifiD[σ−i ], i = 1, L. (6.4)

As in the unitary case, we will work mainly in the fermionic picture, with the following

dissipators1

Di(ρ) = γ(1− f)D[c] + γfD[c†], i = 1, L. (6.5)

This choice for the dissipators is phenomenological. As we mentioned in the previous

chapter, the structure of the jump operators {Li} depend not only on the type of the baths,

but also on the system itself. Therefore, the dissipators (6.5) do not model thermal baths,

but some different kind of environment, which still generate a valid physical dynamics

1Under the Jordan-Wigner transformation, the mapping between (6.4) and (6.5) is not exact, since an
extra string term is attached. Nonetheless, the time evolution of the CM is exactly the same.
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but is simply not thermal in the standard sense. In this case, the parameters f1 and fL lack

a precise interpretation, as opposed to the single spin case [(5.13)]. For this reason, we

shall not try to directly related them with temperature. Instead, we will simply interpret

fL − f1 as the bias of the boundary drive.

The alternative choice for the dissipatorsDi is to use the so-called global master equa-

tions (GMEs) [37]. In this approach, the dissipators are obtained from a microscopic

derivation, starting from the joint Hamiltonian of the system and bath, and performing a

series of approximations to trace out the latter. In Ref. [41], for example, this approach

was used for a boundary-driven bosonic chain. The jump operators {Li} obtained in this

procedure are non-local, acting on all the sites of chain, desping the bath being coupled

only at the boundary.

6.2 Lyapunov equation

In this section, we will study the time evolution of the system under the master equa-

tion (6.3). Instead of looking at the full density matrix, which is a 2L × 2L matrix, we

characterize the system via the L× L covariance matrix (CM), defined as

Cij =
〈
c†jci

〉
, (6.6)

which is a much more easily treatable than the full density matrix. The CM is defined

as
〈
c†jci

〉
rather than

〈
c†icj

〉
for convenience, as this will later result in cleaner matrix

equations. We notice that this definition of the CM is not the most general, since it does

not take into account the first moments 〈ci〉 and the correlators
〈
c†jc
†
i

〉
. However, for

boundary-driven chains these vanish the steady-state, hence the definition (6.6) suffices

for our purposes.

The equation of motion ofC can be computed from the master equation via Eq. (5.28).

We will consider here a slight more general problem, where every site is coupled to a bath,

not only the boundaries. By Eq. (5.28), the time evolution of
〈
c†ncm

〉
is

d
〈
c†ncm

〉
dt

= i
〈[
H, c†ncm

]〉
+

L∑
i=1

Tr
{
c†ncmDi

}
. (6.7)
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Each term of the sum in the last term is given by

Tr
{
c†ncmDi

}
= γi(1− fi)D̄[ci](c

†
ncm) + γifiD̄[c†i ](c

†
ncm) (6.8)

where D̄i has the form (5.27), fn is the Fermi-Dirac distribution of the nth bath and γn

the coupling constant, for n = 1, . . . , L. In the computation of the equation of motion the

following commutator identities will be useful:

[
c†icj, cn

]
= −δincj,[

c†icj, c
†
n

]
= δjnc

†
i .

(6.9)

Due to the linearity of the master equation, the coherent and the dissipative contribu-

tions to equation of motion of C can be computed separetely. The unitary part is given by

the first commutator in Eq. (6.7):

[
H, c†ncm

]
=
[
H, c†n

]
cm + c†n[H, cm]

=
∑
ij

{
Hij

[
c†icj, c

†
n

]
cm +Hijc

†
n

[
c†icj, cm

]}
=
∑
ij

(
δjnHijc

†
icm − δimHijc

†
ncj

)
=
∑
i

Hinc
†
icm −

∑
j

Hmjc
†
ncj

(6.10)

Notice that, if the system was not coupled to the baths, this would correspond simply

to the Heisenberg equations of motion oforf c†ncm. The dissipative contribution to the

evolution comes from the adjoint dissipators D̄[ci](c
†
ncm) and D̄[c†i ](c

†
ncm). The first one

is computed as follows:

D̄[ci](c
†
ncm) =

1

2
c†i
[
c†ncm, ci

]
+

1

2

[
c†i , c

†
ncm

]
ci

= −1

2
δinc

†
icm −

1

2
δimc

†
nci

= −1

2
δinc

†
ncm −

1

2
δimc

†
ncm

= −1

2
(δin + δim)c†ncm.

(6.11)

From second to the third line, we used the property of the Kronecker delta that δijFjk =

55



Chapter 6. Boundary-driven quantum chains

δijFik, ensuring that the result is proportial to c†ncm. The second adjoint dissipator is

computed analogously:

D̄[c†i ](c
†
ncm) =

1

2
ci

[
c†ncm, c

†
i

]
+

1

2

[
ci, c

†
ncm
]
c†i

=
1

2
δimcic

†
n +

1

2
δincmc

†
i

=
1

2
δimcmc

†
n +

1

2
δincmc

†
n

=
1

2
(δin + δim)cmc

†
n.

(6.12)

Plugging these two results in Eq. (6.8) yields

Tr
{
c†ncmDi

}
= γi(1− fi)

[
−1

2
(δin + δim)c†ncm

]
+ γifi

[
1

2
(δin + δim)cmc

†
n

]
= −γi

2
δinc

†
icm −

γi
2
δimc

†
nci + γifiδinδnm.

(6.13)

Finally, combining the unitary and dissipative part in Eq. (6.7) we get

d
〈
c†ncm

〉
dt

= −
∑
i

(
−iHin +

γi
2
δin

)〈
c†icm

〉
−
∑
j

(
iHmj +

γj
2
δjm

) 〈
c†ncj

〉
+ γnfnδnm,

(6.14)

Using the definition of the covariance matrix, this equation can be written compactly in

matrix notation as

dC

dt
= −(WC + CW †) + F, (6.15)

where the matrix W is defined as

W = iH +
Γ

2
, (6.16)

with Γ = diag(γ1, γ2, ..., γL) and F = diag(γ1f1, γ2f2, ..., γLfL). In the NESS, dC/dt =

0, therefore the CM satisfies

WC + CW † = F, (6.17)
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which is known as the Lyapunov Equation.

It is worth mentioning that the system described by the master equation (6.3) is gaus-

sian, because all terms are at most quadratic in the fermionic operators. When gaussianity

holds, the covariance matrix contains all information about the system, and the density

matrix can be written in terms of its components. Despite this fact, we did not have to

make explicit use of gaussianity, since all our observables of interest are already elements

of the CM.

6.3 Numerical computation of the NESS

The Lyapunov equation (6.17) is ubiquitous in control theory, also appearing in a wide

range of contexts. As such, most numerical linear algebra packages provide off-the-shelf

solvers to this equation, usually based in the Bartles-Stewart algorithm [42], whose com-

putational complexity is O(L3). In Mathematica, for example, Eq. (6.17) can be solved

using the function LyapunovSolve. Alternatively, the solution can be found using the

eigendecomposition of the non-hermitian matrix W , as described in [10]. We have found

that this second procedure is faster for our particular system. In this section, we will dis-

cuss this method and provide the explicit code for the solution, written in Mathematica.

The formal solution to Eq. (6.15) is given by

C(t) = e−WtC(0)e−W
†t +

t∫
0

dt′ e−W (t−t′)Fe−W
†(t−t′). (6.18)

Making the substitution t− t′ → t′ and taking the limit t→∞, we arrive at an expresion

for the steady-state,

C =

∞∫
0

dt e−WtFe−W
†t, (6.19)

where we write C = C(∞) for simplicity. This is the formal solution to the Lyapunov

equation [Eq. (6.17)]. Although the matrix W is not hermitian it is diagonalizable, and

thus can be decomposed as
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W = SΛS−1, (6.20)

where Λ = diag(λ1, . . . , λL). Using this decomposition, the matrix exponentials can be

written as e−Wt = Se−ΛtS−1 and e−W †t = (S−1)
†
e−Λ∗tS†. Inserting this expression in

Eq. (6.19), one obtains

C = S

 ∞∫
0

dt e−λtS−1F
(
S−1

)†
e−λ

∗t

S† (6.21)

Therefore, the covariance can be written as

C = SY S†, (6.22)

where Y is the matrix in brackets in Eq. (6.21), whose elements are

Yij =
∑
k

(
S−1

)
ik

(
S−1

)∗
jk
γkfk

∞∫
0

dt e−(λi+λ
∗
j )t

=
∑
k

(
S−1

)
ik

(
S−1

)∗
jk

γkfk
λi + λ∗j

.

(6.23)

In our numerical simulations, we considered only the boundary-driven case where

F = diag(γf1, 0, . . . , 0, γfL), but the code can be easily generalized to accomodate cou-

plings to every site. The following Mathematica functions were used to compute the

NESS:

58



Chapter 6. Boundary-driven quantum chains

LyapunovMatrices[ℋ_, γ_, {f1_, fL_}] :=

Module{L, Γ, W, F},

L = Length@ℋ ;

Γ = SparseArray[{{1, 1} → γ, {L, L} → γ}, {L, L}];

W =
Γ

2
+ ⅈℋ ;

F = SparseArray[{{1, 1} → γ f1, {L, L} → γ fL}, {L, L}];

{W, F}

;

LyapunovNESSEigen[ℋ_, γ_, {f1_, fL_}] :=

Module{W, F, Y, Λ, S, Sinv},

{W, F} = LyapunovMatrices[ℋ , γ, {f1, fL}];

{Λ, S} = Eigensystem[W];

S = S;

Sinv = Inverse[S];

Y =
1

Outer[Plus, Λ, Λ]
Sinv.F.Sinv;

S.Y.S

;

The function LyapunovMatrices returns the matrices W and F and the function

LyapunovNESSEigen computes the covariance matrix in the NESS.

If one wishes, instead, to use Mathematica’s built-in implementation, then the function

LyapunovNESSEigen can instead be replaced by

LyapunovNESS[ℋ_, γ_, {f1_, fL_}] :=

Module[{W, F},

{W, F} = LyapunovMatrices[ℋ , γ, {f1, fL}];

LyapunovSolve[W, F]

];
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6.4 Particle/spin current operator

The main observable of interest in the classification of the transport regime is the particle

current, which we now define. We start be looking at the time evolution of the mean

occupation number for some site in the middle of the chain, given by 〈ni〉 =
〈
c†ici

〉
, for

1 < i < L. According to Eq. (6.14), this evolution is given by

d〈ni〉
dt

= i
〈
c†ici−1 − c†i−1ci

〉
− i
〈
c†i+1ci − c

†
ici+1

〉
, 1 < i < L. (6.24)

This expression can be interpreted as a continuity equation,

d〈ni〉
dt

= 〈Ji−1〉 − 〈Ji〉 , (6.25)

where Ji is the particle current operator at site i, defined as

Ji = i
(
c†i+1ci − c

†
ici+1

)
. (6.26)

The term 〈Ji〉 thus corresponds the particle current entering the mode i, while 〈Ji〉 ac-

counts for the current leaving mode i towards mode i+ 1.

The time evolution of 〈ni〉 at the boundaries are slightly different from Eq. 6.24, but

can still be interpreted as a continuity equation. At the left boundary, one has

d〈n1〉
dt

= γ
(
f1 −

〈
c†1c1

〉)
− i
〈
c†2c1 − c†1c2

〉
= 〈JD1〉 − 〈J1〉 ,

(6.27)

where we defined

JD1 = γ
(
f1 −

〈
c†1c1

〉)
, (6.28)

corresponding to the current of quanta coming from the left bath to the system. Similarly,

for the last site one may write

d〈nL〉
dt

= 〈JL〉 − 〈JDL〉 . (6.29)
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where 〈JDL〉 = γ
(
fL −

〈
c†LcL

〉)
is the current leaving the last site into the right bath.

In the NESS, d〈ni〉/dt = 0, and so all currents must coincide:

〈JD1〉 = 〈J1〉 = · · · = 〈JL〉 = 〈JDL〉 ≡ J (6.30)

Therefore, we may unequivocally refer to the current flowing through the chain simply as

J . In terms of the covariance matrix, we have that

J = i(Ci,i+1 − Ci+1,i). (6.31)

Using the fact that Ci+1,i = −C∗i,i+1, this equation may written conveniently as

J = 2 ImCi,i+1, (6.32)

which is the expression we adopted in the numerical simulations.

In the spin chain formulation, the particle current is naturally translated into a spin

current. Using the Jordan-Wigner transformation (Appendix A), one may show that

J = 2i
〈
σxi σ

y
i+1 − σ

y
i σ

x
i+1

〉
. (6.33)

The same expression may be obtained by writing an explicit expression for d〈σzi 〉/dt and

interpreting it as a continuity equation, in a similar spirit to Eq. (6.24).
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7.1 Classification of the transport properties via the par-

ticle current

As discussed in the introduction, when a metal bar is put in contact with two reservoirs at

its bundary, the heat current in the NESS is inversely proportinal to its length:

J = κ
∆T

L
∝ 1

L
, (7.1)

which chracterizes a typical diffusive scaling. In boundry-driven quantum chains, how-

ever, the situation is different. In a non-interacting chain with no on-site potential, the

particle in the NESS exhibits a ballistic behavior, as we will discuss in section. More-

over, with the addition of quasiperiodic potentials, a wide range of transport regimes may

emerge. In general, the particle current in the NESS scales as

J ∼ 1

Lν
, (7.2)

where ν is a non-negative constant which we refer to as non-equilibrium transport coeffi-

cient, and J is defined in Eq. (6.32).

As in the coherent dynamics scenario, the coefficient ν can be used to classify the

transport regimes of the system. If ν = 0, the transport is ballistic, and J is independent

of the system size, and ν = 1 corresponds to diffusive scaling. Other values of ν are
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considered anomalous transport, which is further classified as superdiffusive if 0 < ν < 1

or subdiffusive if ν > 1. The absence of transport, which happens for instance in localized

systems, can be seen as an extreme case of subdiffusion where ν → ∞. A summary of

these classifications is given in Table 7.1.

Table 7.1: Classification of the non-equilibrium transport regime using the value of ν.

Transport regime Transport coefficient

Ballistic ν = 0

Superdiffusive 0 < ν < 1

Diffusive ν = 1

Subdiffusive ν > 1

Localized ν =∞

The procedure to compute the coefficient ν is illustrated in Fig. 7.1. The exact value

of the coefficient depends on the numerical theorical properties of the chosen family of

sizes L. As usual in the literature, we chose the sizes L to be Fibonacci numbers, which

are known to yield smooth curves for the current for the quasiperiodic potentials. The

value of ν are then computed by fitting a linear regression of the following form to the

data points:

log J = ν logL+ C (7.3)

In order to approximate the value of the current in the termodynamic limit, the linear

regression is performed using only the five largest values of L we are able to simulate,

which are highlited in blue in Fig. 7.1.

7.2 Connection between transport coefficients

The coefficients α and ν can be related via a simple relation, provided that one assumes

that the scalings in the system are governed by a single exponent in both the unitary and

non-equilibrium scenarious. In closed system, the width of the wave function follows

the scaling
√〈

(∆x)2〉 ∼ tα, thus the characteristic time it takes for a particle to cross

the whole chain is τ ∼ L1/α. In the NESS, the particle current should equal the rate of
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Figure 7.1: Illustration of the procedure used to computed the transport coefficient ν in
Eq. (7.2). Only the last five points are used in the regression. This particular example
corresponds to the critical point of the AAH, averaged over 100 values of θ, which is
subdiffusive.

particles flowing through the sytem,

J ∼ L

τ
∼ L

L1/α
(7.4)

Comparing this expression with the scaling J ∼ L−ν , we obtain the relation

α =
1

1 + ν
. (7.5)

Notice, however, that the hypothesis that the transport is governed by a single expo-

nent is central to this derivation. Although this may be true in some cases, and indeed

Eq. (7.5) has been explicit verified in some classical [43] and quantum systems, it is still

somewhat arbitrary, and there is none a priori reason it should hold.

In fact, as discussed, in Ref. [10], this hypothesis breaks down in the Fibonacci model

and in the critical point of the AAH model, and hence Eq. (7.5) is not satisfied.

Nonetheless, we will still make use Eq. (7.5) in chapter 8, where we discuss the ef-

fect of dephasing on the system, which will make to possible to explain some qualitative

behaviours of the particle current. In this case, Eq. (7.5) may be understood as the defi-

nition of some “effective transport coefficient” of excitations moving trough the chain in

the NESS.

64



Chapter 7. Non-equilibrium transport properties

7.3 Transport with zero potential

When the on-site potential is constant, the covariance matrix in the NESS can be found

analitically. In this section, we will briefly describe the approach used in [44]. In this

work, they considered a boundary-driven bosonic chain, but all the equations have exactly

the same structure to the fermionic case.

When there is no bias between the baths, that is, f1 = fL = f , the solution to the

Lyapunov Equation (6.17) is C = f1, which can be readily verified by substitution:

fW1+ f1W † = f

(
iH +

Γ

2

)
+ f

(
−iH +

Γ

2

)
= fΓ

= F.

(7.6)

Therefore, when there is no bias, the final population of the excited state in every site

will the same, given by the value f determined by the bath. Interestingly, in this case all

the sites correctly thermalize independetly of each other, even with our choice of local

dissipators. This fact is the motivates the following ansatz to the general case:

C = f̄1+ ∆fD, (7.7)

where

f̄ =
f1 + fL

2
and ∆f =

f1 − fL
2

, (7.8)

and D is a new matrix, to be determined from the Lyapunov equation. The first term

captures the equilibrium state to whhich the system would converge if f1 and fL sub-

stituted by their average, while the second term is a pertubation caused the bias of the

baths. In particular, the particle current is determined by the coherences of D, that is,

J = ∆f ImDi,i+1.

Using the definition of W [(6.16)], the Lyapunov equation can be rewritten as

i[H,C] +
1

2
{C,Γ} = F. (7.9)
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Substituting the ansatz (7.8), one obtains

i[H,D] +
1

2
{D,Γ} = Γ̃, (7.10)

where

Γ̃ =
1

∆f
(F − fΓ) = diag(γ1, 0, . . . , 0,−γL). (7.11)

The solution to this system, assuming γ1 = γL = γ, has a simple tridiagonal structure, as

discussed in [44], given by

D =
2γ

4 + γ2


γ −i
i 0 −i

i
. . . . . .
. . . 0 −i

i −γ

. (7.12)

Therefore, the particle current in the NESS is

J =
2γ

4 + γ2
(f1 − fL) ∼ L0. (7.13)

This expression is independent of the system size, which chracterizes ballistic transport.

Moreover, the mean occupation number is equal to f̄ for all the sites inside the chain,

whereas in the border they are

〈n1〉 = f̄ +
2γ2

4 + γ2
∆f and 〈nL〉 = f̄ − 2γ2

4 + γ2
∆f. (7.14)

Therefore, the baths simply shift the occupation number of the boundary sites in opposite

directions, while the occupation number is constant inside the chain. This is also a typical

signature of ballistic behavior, as opposed to what happens, for instance, in a real metal

bar couple to baths, whose temperature profile in the NESS is linear.
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Figure 7.2: (a) Scaling of the current with respect to L with zero on-site potential. The
current is independent of the system size, thus the transport is ballistic. (b) Population
profile in the NESS for a chain with L = 20. In both plots, the other parameters are
γ = 1, f1 = 1 and fL = 0.

7.4 Transport properties with quasiperiodic potentials

In this section, we will discuss the transport properties of the boundary-driven AAH and

Fibonacci models. The non-equilibrium transport properties of the AAH model are sum-

marized in Fig. 7.3, which shows the scaling of the particle current with L for different

values of λ. As in the unitary case, the presence of a localization transition is clear. For

λ < 1, which corresponds to the extended phased, the transport is ballistic, as one would

expect. On the other hand, when λ > 1, which corresponds to localized eigenstates, the

current decays exponentially with the system size. This show that the current vanishes in

the termodynamic limit, although it is positive for a finite system. We estimate the rate of

decay by fitting a curve of the form L ∼ e−δL to the simultation data.

At the critical point λ = 1.0, when eigenstates are neither localized nor delocalized,

the transport is subdiffusive. The exact value of α depends the phase θ and on the family of

sizes one chooses to perform the linear regression [10]. In the particular case of Fig. 7.3,

the current is averaged over θ and the system sizes are Fibonacci numbers, which results

in the value ν = 1.26. This coefficient is very close to the result report in Ref. [10], which

is 1.27.

This result shows that the connection between the coefficients [(7.5)] breaks down in

the critical point. The value ν = 1.26 corresponds to an effective unitary coefficient of

approximately1/(1 + 1.26) ≈ 0.44, but, as shown in Fig. 4.4, the unitary transport is

diffusive at λ = 1.0, with α = 0.5.
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Interestingly, the connection is indeed satisfied for the symmetrical version of the

potential. In Ref. [10], it is shown that, in the critical point of the symmetric version, the

current scales as J ∼ L−1.1. Therefore, the effective coefficient is 1/(1 + 1.1) ≈ 0.476,

which is remarkably close to the value of α, as shown in Fig. 4.4.
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-5

0.001

0.100

Figure 7.3: Scaling of the current with system size for the AAH model for different values
of λ. For λ < 1, the transport is ballistic. For λ = 1, the transport is subdiffusive, with
J ∼ L−1.26. For λ > 1, the current decays exponentially with L. The linear regression is
performed using the last five points for λ ≤ 1 and all available the points for λ > 1. The
current is averaged over 100 values of θ evenly spaced in between 0 and π. The system
sizes are Fibonacci numbers.

The analogous curves for the Fibonacci model are shown in Fig. 7.4. Similarly to the

unitary the case, the system can be tuned to exhibit any type of transport behavior. Notice

that whenever the value of λ is increased the slope of the curve gets decreases. For values

of λ smaller the 3, the system is superdiffusive. For λ = 3.0, the transport is very close

the diffusive. For values of λ above this value, the system is subdiffusive.

The dependence of the coefficient ν is shown in Fig. 7.5. As in the unitary case, the

system goes continuously from the ballistic regime to subdiffusion when λ is increased.

The diffusive regime, indicated by the dashed line, occurs for λ ≈ 3.

As we mentioned, in the Fibonacci model the connection between the exponents α and

ν is also broken. For instance, when λ = 2.0, we found that ν = 0.69, which corresponds

to an effective unitary coefficient of ≈ 0.63, which slightly differs from the actual value

0.61.
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Figure 7.4: Scaling of the current with system size in the Fibonacci model for different
values of λ. The last five points of each curve were used to compute the coefficient ν. The
system sizes were chosen as Fibonacci numbers.
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Figure 7.5: Dependence of the exponent ν with the system size L in the Fibonacci model.
The exponent was computed by fitting a power-law J ∼ L−ν to the simulation data, using
the last five points for each value of λ.
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Dephasing enhanced transport

In this final chapter we discuss an original contribution from this work, which aims to

understand the competition between quasiperiodicity and dephasing in one-dimensional

chains.

8.1 Boundary-driven chains with dephasing

In the presence of dephasing, the master equation is modified to

dρ

dt
= −i[H, ρ] +D1(ρ) +DL(ρ) +

L∑
i=1

Ddeph
i (ρ), (8.1)

where the dissipatorDdeph
i models the effect of dephasing coupled to site i. It has the same

form as in Eq. (5.18),

Ddeph
i (ρ) =

Γ

2
D[σzi ] =

Γ

2
(σzi ρσ

z
i − ρ), (8.2)

or, using the Jordan-Wigner transformation,

Ddeph
i (ρ) = ΓD[c†ici] = Γ

(
c†iciρc

†
ici −

1

2

{(
c†ici
)2
, ρ
})

. (8.3)

In this case, the mapping is exact, since c†ici = 2σzi − 1, for any i.

Notice that the dissipators modeling the daphasing noise are quartic in the fermionic
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operators. Therefore, when they are included in the master equation, it will no longer be

gaussian preserving. Notwithstanding, it turns out that the equations for the covariance

matrix remain closed.

The time evolution of the covariance matrix can again be computed using Eq. 5.28.

Because of the linearyy of the master equation, the dephasing dissipators simply add an

extra term to Eq. 6.14, namely

∑
i

D̄[ni](c
†
ncm). (8.4)

Each of the terms in the sum can be computed in a similar fashion to what was done in

section 6.2. To this end, the following commutator will be useful:

.
[
ni, c

†
ncm
]

=
[
c†ici, c

†
n

]
cm + c†n

[
c†ici, cm

]
= (δin − δim)c†ncm. (8.5)

Thus, using the expression for the adjoint dissipation given in Eq. (5.27), one obtains

D̄[ni](c
†
ncm) =

1

2
ni
[
c†ncm, ni

]
+

1

2

[
ni, c

†
ncm
]
ni

=
1

2
(δim − δin)nic

†
ncm −

1

2
(δim − δin)c†ncmni

=
1

2
(δim − δin)

[
ni, c

†
ncm
]

=
1

2
(δim + δin − 2δimδin)c†ncm,

(8.6)

where in the last step we used the fact that δ2
ij = δij to write (δin − δim)2 = (δim + δin −

2δimδin). The extra term added by the dephasing dissipators is then

∑
i

D̄[ni](c
†
ncm) = (1− δnm)c†ncm. (8.7)

Therefore, the time evolution of
〈
c†ncm

〉
is modified to

d
〈
c†ncm

〉
dt

= −
∑
i

Wmi

〈
c†nci

〉
−
∑
i

W ∗
ni

〈
c†icm

〉
− Γ(1− δnm)c†ncm + γnfnδnm. (8.8)

In terms of the covariance matrix, this equation can be written more neatly in matrix
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notation as

dC

dt
= −(WC + CW †)− Γ∆(C) + F, (8.9)

where ∆( · ) is an operation the removes the diagonal of a matrix:

∆(C) = C − diag(C11, . . . , CLL). (8.10)

Moreover, the quantity Γ multiplying ∆(C) refers to the constant appearing in the de-

phasing dissipator (8.2) and not the matrix Γ used in the previous chapter. We apologize

for the confusion in the notation.

In the NESS, dC/dt = 0, thus the covariance matrix satisfies

WC + CW † + Γ∆(C) = F. (8.11)

This equation is not in Lyapunov form, thus it can’t be solved using specialized routines

or the method we described in section 6.3. Nevertheless, it is still a sparse linear system in

the entries of the matrix C, and can be solved using standard solvers bult-in in any linear

algebra package. We now proceed to describe how to accomplish this.

8.2 Non-equilibrium steady state

In this section we will now describe how Eq. (8.11) can be cast into a more familiar linear

system notation, by defining the vectorization operation. The vec operation converts a

matrix into a vector by stacking all columns, as in this 2× 2 example:

vec

(
a b
c d

)
=


a
c
b
d

. (8.12)

More generally, the operation vec maps an L × L matrix into a vector with L2 elements.

The vectorization operation has many useful properties. For example, the vectorization

of a product of three matrices is given by
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vec(ABC) =
(
C> ⊗ A

)
vec(B). (8.13)

The vectorization of a product AB is a special case of this property, in which C = 1:

vec(AB) = vec(AB1) = (1⊗ A) vec(B) (8.14)

This expression can be used to vectorize all the termis in Eq. (8.11). Suppose at first that

Γ = 0, which means that C satisfies the Lyapunov equation (6.17). Using the vectoriza-

tion operation, one obtains

(1⊗W +W ∗ ⊗ 1) vec(C) = vec(F ), (8.15)

which has the familiar form Ax = b, where x = vec(C). Now consider the case where

Γ > 0. The operation ∆( · ) is linear, thus the map vec(C) 7→ vec(∆(C)) is a linear

transformation. Therefore, there must be an L2 × L2 matrix M corresponding to this

transformation, defined trough

M vec(C) = vec(∆(C)). (8.16)

The transformation coressponding to M deletes all elements in vec(C) corresponding to

non-diagonal elements in C. In the vector vec(C), each diagonal element Cii is followed

by L non-diagonal elements, thus the matrix M is a diagonal matrix of the form

M =

0
1

. . .
1

0
1

. . .
1

. . .
0





L
times

L
times

. (8.17)

The diagonals of M can also be conveniently written using modulo operation as

Mii =

{
0 if i mod L+ 1 = 1
1 if i mod L+ 1 6= 1,

(8.18)
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where i mod L + 1 is the remainder of the integer division of i by L + 1. With this

definition of M in hand, the vectorized version of Eq. (8.11) is

(1⊗W +W ∗ ⊗ 1+ ΓM) vec(C) = vec(F ), (8.19)

which again is in the form Ax = b.

The following Mathematica function was used to compute the NESS in the presence

of dephasing in our simulations:

DephasingNESS[ℋ_, γ_, {f1_, fL_}, Γ_] :=

Module{L, Γmat, W, vecF, M, A},

L = Length@ℋ ;

Γmat = SparseArray[{{1, 1} → γ, {L, L} → γ}, {L, L}];

W =
Γmat

2
+ ⅈℋ ;

M = SparseArray{i_, i_} /; Mod[i, L + 1] ≠ 1 → 1, L2, L2;

vecF = SparseArray1 → γ f1 , L2 → γ fL , L2;

A = kron[W, NEye[L]] + kron[NEye[L], W] + Γ M;

LinearSolve[A, vecF] // Unvec // Chop

;

This code uses the functions kron, NEye and Unvec, which are part of the Qulib

library [45], a Mathematica library for Quantum Information tasks developed by Prof.

Landi. The core of the computation is done via the Mathematica bult-in method Lin-

earSolve. Since the system does not exhibit any particular structure that can be ex-

ploited, besides being sparse, the computational cost is much higher in comparison with

the solution of the Lyapunov equation. For this reason, the maximum system size we

were able to simulate is smaller when dephasing is present.

8.3 Transport properties with dephasing

In this section, we will study the effect of dephasing in the transport properties of the

system. When the on-site potential is constant, or, without loss of generality, identically

zero, the covariance matrix in the NESS can be found analitically. Using the same ansatz
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(7.7), we obtain the following equation for the matrix D in the NESS::

i[H,D] +
1

2
{D,Γ}+ Γ∆(D) = Γ̃. (8.20)

An identical system is solved in Ref. [44], where the authors studied the effect of

dephasing on a boundary-driven bosonic chain. According to that solution, the analytical

expression for the current in the NESS is

J =
2γ(f1 − fL)

4 + γ2 + γΓ(L− 1)
. (8.21)

Notice that when Γ is set to zero, the expression for the current without dephasing [(7.13)]

is recovered.

When L is large the constant terms in the denominator can be negleted, causing the

current to scale as

J ∼
(

2

Γ

)
∆f

L
, L� 1, (8.22)

which is inversely proportinal to L. Therefore, in the presence dephasing the transport is

diffusive and the current obeys Fourier’s law. Additionaly, Eq. (8.21) also shows that this

happens for any non-zero Γ, as long as L is sufficiently large. This behaviour is illustrated

in Fig. 8.1. For all the values of Γ, the corresponding curve reaches the diffusive scaling

[(8.22)], indicated by the dashed line. However, the smaller the value of Γ, the larger is

the size range in which the dephasing-induced diffusion sets in. Notice, in particular, the

curve for Γ = 10−3, represented in orange. For small values of L, the current is almost

constant, similarly to the ballistic case, and the dephasing regime as achieved only for

sizes of the order ∼ 105.

Fig. 8.1 shows that that finite size effects play a significative role in the transport

regime of the system. It also indicates that there exists a crossover size LΓ, which in-

creases with Γ, above which the dephasing-induced diffusion dominates. Below this

value, the transport regime is still influenced by the original Hamiltonian.

This characteristic length can be estimated using a simple scaling argument, similar

to the one we used in section 7.2. Firstly, we notice that the coupling Γ determines a
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Figure 8.1: Scaling of the particle current withLwith zero on-site potential, for increasing
values of Γ. All the curves eventually reach the diffusive scaling ∼ L−1, indicated by the
dashed line.

characteristic time for the dephasing effect, given by τΓ ∼ 1/Γ. This can be seen by

inspecting the time evolution of the coherences in the single spin case with dephasing

[(5.21)]. In this equation, the constant Γ is the rate of relaxation. Then, this charateristic

time may be compared with the time it takes for an excitation to traverse the whole chain,

τ ∼ 1/Lα. If τΓ � τ , then the dephasing effect completely dominates, but if τΓ � τ the

transport properties are still affected by the Hamiltonian. The crossover length is thereby

obtained by equating these two characteristic times, which results in

LΓ ∼ Γ−1/(ν+1), (8.23)

where we used the relation α = 1/(ν + 1). Notice that this derivation relies on the

assumption that there is a single scaling coefficient.

To conclude this section, we will make a few remarks about Eq. (8.22), and precisely

what it means to say that it follows Fourier’s law. The original law states that the heat

current in a piece of material is proportional to the temperature gradient [(1.1)]. In our

ongoing example of the metal bar, the temperature profile in the NESS is a simple linear

interpolation between T1 and T2:

T (x) = T1 +

(
T2 − T1

L

)
x. (8.24)
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Thus, by Eq. (1.1), the heat current in the NESS is given by

J = κ
∆T

L
, (8.25)

where ∆T1 − T2. Therefore, for a fixed value of L, the current is proportional to the

temperature difference. In Eq. (8.22), however, when L is fixed the current is instead

proportional to the difference f1−fL. This is in agreement with the discussion we made in

section 6.1, where we introduced our choice of local master equations. As we mentioned,

in this dissertation we avoid providing a definition of the temperature inside the chain,

and refer to ∆f simply as a “bias”.

Therefore, we say that Eq. (8.22) satisfies Fourier’s law by a simple analogy, with

∆f playing the role of ∆t. It is worth mentioning that, in the particular case of a free

chain with dephasing, the authors of Ref. [44] have indeed tried to define an internal

temperature , but we will not dive into the subtleties of this discussion.

The above statements can me made more precise in the spin chain framework. In this

case, the analogous of Fourier’s law is Fick’s law of diffusion, which states that the spin

current is proportional to the magnetization gradient:

J = −D∇〈σzi 〉 . (8.26)

Here, D is the diffusion constant, which is the analogous of the conductivity in Fourier’s

law. Furthermore, the two laws are, in fact, completely equivalent. This can be seen as

follows. For large L, the gradient of the magnetization is given by

∇〈σzi 〉 ≈
〈σzL〉 − 〈σz1〉

L
=
〈n1〉 − 〈nL〉

L
. (8.27)

Imposing the continuity equation on the boundaries [Eqs. (6.29) and (6.30)], we obtain

γ(f1 − 〈n1〉) = γ(fL − 〈nL〉), (8.28)

whence 〈n1〉 − 〈nL〉 = f1 − fL. Therefore,

∇〈σzi 〉 ≈
∆f

L
, (8.29)
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which shows that the two laws are equivalent.

8.4 Quasiperiodic chains with dephasing

In this section, we will discuss the effect of dephasing when the quasiperiodic potentials

are included. In this case, an analitical expression for the current can no longer be found,

thus we applied the numerical method described in Sec. 8.2.

The transport properties of the AAH model with dephasing are summarized in Fig. 8.2.

In this figure, each panel shows the scaling of the current for a fixed value of λ. As can be

seen, the presence of dephasing always lead to diffusion if L is sufficiently large. Quite

remarkably, for λ = 1.1, which corresponds to the localized phase, the dephasing noise

restores the transport. A similar result has been reported in Ref. [46]. There, it was shown

that a disordered XX chain, which is localized, also becomes diffusive in the presence of

dephasing.

Notice also that for λ = 0.1, which is shown in panel (a), the length scale necessary

for the diffusive behavior to be achieved is much higher than the other cases. This fact is

explained by Eq. (8.23), as follows. When the system is ballistic, which corresponds to

α = 1, the crossover length scales as LΓ ∼ 1/Γ, and thus can be considerably large when

Γ is small. However, in the localized phase of the model, α = 0, and hence LΓ ≈ 1. This

means that the dephasing effect dominates even in the smallest length scales.

In the case where λ = 0.9, shown in panel (b), the eigenstates are also in the extended

phase. However, the value of the current decreases slightly in the small length scale,

before reaching a constant plateau. This is a consequence of the fact that the localization

transition is not sharp for finite L, but becomes sharper when L is increased.

The results for the Fibonacci model are shown in Fig. 8.3. Similarly to the AAH

model, the addition of dephasing always leads to diffusive transport, but for smaller values

of λ, the crossover length is higher. For λ = 4.0, the Fibonacci model without dephasing

exhibits subdiffusive transport, but with the addition of dephasing it becomes diffusive.

This fact is already an indicative that dephasing can lead to an enhanced transport in the

subdiffusive phase. This will be discussed in details in the next section.
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Figure 8.2: Scaling of the currents with system size for the AAH model with different
dephasing strengths Γ. (a) λ = 0.1. (b) λ = 0.9. (c) λ = 1.0. (d) λ = 1.1. The dashed
line is a visual reference of diffusive behavior, showing the curve J = L−1. The current
is averaged for 100 values of θ evenly spaced in between 0 and π. The other parameters
are γ = 1, f1 = 1 and fL = 0. The system sizes are Fibonacci numbers.

8.5 Scaling of the conductivity

In this section, we will discuss the main original contribution of this dissertation, which

is the study of the interplay between the strength of the quasiperiodic potential, λ, and

the coupling to the dephasing baths, Γ. To do so, we will apply the same approach of

Ref. [18].

As we discussed in section 8.3, the presence of dephasing always leads to diffusive

transport. That is, for asymptotically large L, the current is inversely proportional to L,

thus obeying Fourier’s law,

J =
κ∆f

L
, L� 1. (8.30)

where κ is the conductivity. This constant can be explicitly defined by inverting the equa-

tion above, which results in
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Figure 8.3: Scaling of the currents with system size for Fibonacci model with different
dephasing strengths Γ. (a) λ = 0.5. (b) λ = 1.0. (c) λ = 2.0. (d) λ = 4.0. The dashed
line is a visual reference of diffusive behavior, showing the curve J = L−1. The other
parameters are γ = 1, f1 = 1 and fL = 0. The system sizes are Fibonacci numbers.

κ = lim
L→∞

LJ(L)

∆f
, (8.31)

where L → ∞ is to be understood as the thermodynamic limit. However, this definition

only works in this case, in which the transport is diffusive. Imposing it to a ballistic

regime, for example, would yield κ→∞.

Nonetheless, a generalized version of Fourier’s law can still be imposed to non-

diffusive systems, as long as κ is allowed to have a dependence with L:

J ∼ κ(L)∆f

L
, (8.32)

which is defined for L large, but not infinite. For the general scaling J ∼ Lν , we then

have

κ(L) ∼ L1−ν . (8.33)
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The “non-diffusive” factor of the scaling is simply hidden inside κ(L). With this gen-

eralized definition, a diverging κ can be understood as the defining feature of ballistic

transport.

When dephasing is included, the conductivity is expected to have an additional depen-

dence with Γ, i.e, κ = κ(Γ, L). As we discussed in section 8.3, the dephasing effect only

becomes important above a crossover length LΓ. When Γ is small, by Eq. (8.23), LΓ � 1.

Therefore, it is expected that the conductivity also exhibits two different scalings:

κ(Γ, L) =

{
cL1−ν L ≤ LΓ

κdeph(Γ) L > LΓ

, (8.34)

where c is some irrelevant proportionality factor. When the system size is bellow LΓ,

the transport follows the scaling dictated by the Hamiltonian without dephasing, hence

κ(Γ, L) ∼ L1−ν . When L > LΓ, the dephasing effect dominates, thus κ converges to

some value κdeph(Γ), which is independent of L. By imposing continuity at LΓ, one

obtains

κdeph(Γ) ∼ L1−ν
Γ ∼ Γ(ν−1)/(ν+1), Γ� 1, (8.35)

where we used the expression for LΓ [Eq. (8.23)]. When Γ is large, Eq. (8.23) predicts

that LΓ ≈ 1. Therefore, the diffusive transport induced by dephasing sets in even for

small L, except in the shortest length scales.

Eq. (8.35) holds for Γ � 1. Conversely, the behavior for large Γ can be obtained by

expanding Eq. 8.35 in the limit of large Γ, which results in

κdeph(Γ) ∼ 1

Γ
, Γ� 1. (8.36)

This is, for example, the proportionality constant found in Eq. (8.21) (with an extra, irrel-

evant factor of 2).

For the remainder the text, we wil consider only the case where L is large, well above

the crossover length LΓ. For this reason, we will drop the subscript “deph” and refer to

the conductivity simply as κ.

When Γ → ∞, it is expected that κ ∼ 1/Γ, as in Eq. (8.36). In contrast, when Γ is
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sent to zero, the transport properties of the system without dephasing should be recovered,

and κ should scale according to Eq. (8.35). Therefore, the scaling of κ with Γ be used

to detect the influence of the original Hamiltonian in the transport properties, even in the

presence of dephasing. For example, if the original system without dephasing is ballistic,

then we expect κ to scale as ∼ Γ, diverging in the limit Γ → 0. In this manner, the

diverging conductivity of ballistic transport is recovered. On the other hand, if the original

system is subdiffusive, with some coefficient ν > 1, then κ should scale as ∼ Γβ , where

β = (ν − 1)/(ν + 1), which vanishes in the limit Γ → 0, as expected for subdiffusive

transport.

We applied this framework to both the AAH and the Fibonacci models, with special

interest in the behavior of the conductivity in their subdiffusive phase. In order to com-

pute the conductivity as close as possible to the thermodynamic limit, we numerically

found the current in the NESS for the largest system we are able to simulate with dephas-

ing. Then, using Eq. (8.31) and the parameters f1 = 0 and fL = 0, the conductivity is

computed simply as κ = JL.

In Fig. 8.4 (a), we show the scaling of the conductivity in the Fibonacci model for a

series of values of λ. As can be seen, when Γ is large all curves reach the scaling ∼ 1/Γ,

regardless over the value of λ. In contrast, when Γ is sent to zero, the conductivity scales

very differently depending on the coefficient ν of the original model without dephasing.

When λ = 0, the original model without dephasing is ballistic, with ν = 0. As can

be seen, the conductivity scales as ∼ Γ when Γ is decreased, as predicted by Eq. 8.35. In

the thermodynamic limit, the conductivity would diverge for Γ→ 0. However, since this

curve was generated for a finite system with L = 987, it saturates at a finite value.

For the values of λ in the range 0 < λ < 3, which corresponds to the superdiffusive

phase of the model, the same observations hold, except that now, when Γ is sent to zero,

κ grows with a smaller slope, determined by Eq. 8.35.

When λ ≈ 3, the model without dephasing is very close to diffusive (as shown in

Fig. 7.4). As one can see in Fig. 8.4 (a), κ remains virtually constant when Γ → 0, thus

recovering the original conductivity of the model without dephasing. To be precise, for

this value of λ the Fibonacci model is not exactly diffusive, but slightly subdiffusive with

ν = 0.99, hence the curve for κ actually has a small, but non-zero inclination. The exact
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value λ which leads to diffusion, is slightly above 3.

The most interesting results correspond to the effect of dephasing on the subdiffusive

phase of the model. In Fig. 8.4 (a), this corresponds to curves for λ = 4.0 and λ = 5.0,

which are also highlighted separately in Fig. 8.4 (b). As one can see, the two curves also

collapse in limit of large Γ, and start to follow the scaling ∼ 1/Γ. On the other hand,

then Γ is sent to zero, the conductivity decreases, following the scaling κ ∼ Γβ , and thus

vanishes when Γ→ 0 (in the thermodynamic limit).

Interestingly, the coefficient β closely matches the one predicted by Eq. 8.35, de-

spite the fact that the Fibonacci model breaks the single coefficient hypothesis. This is

illustrated in Fig. 7.1, which compares the coefficient β computed in this manner with

(ν − 1)/(ν + 1), where ν is the corresponding transport coefficient without dephasing,

computed numerically in section 7.4. At the time this dissertation was finished, we still

have not found a reasonable explanation to this fact, but hope to do so before this result is

published.

Notice that, in the diffusive phase of the model, the conductivity vanishes in both

limits Γ → 0 and Γ → ∞, but for different physical reasons. For Γ → 0, the original

model without dephasing is recovered, and the conductivity is zero by the generalized

definition of Fourier’s law [Eq. (8.32)]. Conversely, when Γ → ∞, the conductivity

becomes very small due to the extreme effect of the dephasing noise, and the effect of the

original Hamiltonian in the transport is essentially washed out. However, for intermediate

values of Γ, there occurs a competition between the two effects.

As can be seen in Fig. 8.4 (b), the conductivity reaches a local maximum for a certain

value of Γ, before the diffusive regime dominates. In this region, the effects of dephas-

ing and of the Hamiltonian are balanced. As a consequence, for finite values of L, the

absolute value of the current increases when Γ is close to this value, with respect to the

original current without dephasing. We refer to this phenomenon as dephasing-enhanced

transport.

Fig. 8.6 shows the scaling of κ with Γ for the AAH model. The results are analogous

to the Fibonacci model. For large Γ, the conductivity always reaches the diffusive scaling

κ ∼ 1/Γ, independently of the value of λ. For small Γ, however, the behavior of κ

depends on λ. When λ < 1, the AAH model is ballistic, so κ diverges when Γ → 0.
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Figure 8.4: (a) Scaling of the conductivity with Γ in the Fibonacci model for increasing
values of λ. (b) Scaling of κ for λ = 4.0 and λ = 5.0, which correspond to subdiffusive
transport without dephasing.
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Figure 8.5: Coefficient β fitted from the relation κ ∼ Γβ in small Γ region. The dashed
line shows the value predicted by Eq. (8.35).

For λ > 1, the system is localized, which corresponds to an extreme case of subdiffusive

transport, where ν = ∞; hence κ vanishes when Γ → 0. For intermediate values of Γ,

before the transition to the diffusive regime, a maximum of κ is reached, similarly to what

occurs in the subdiffusive phase of the Fibonacci model.

At the critical point, the model is subdiffusive without dephasing. When the current is

averaged over θ, the transport coefficient is ν = 1.26, while for the symmetrical version

of the potential it is ν = 1.1. In both cases, as shown in Fig. 8.6 (b), the conductivity

decreases when Γ is decreased. In the thermodynamic limit, κ should vanished, but since

L is finite, it converges to the non-zero value of the current.

However, in neither case the coefficient β matches the value predicted by Eq. (8.35),

even for the symmetrical potential, for which the connection between the coefficients

[(7.5)] holds. For the symmetrical case, the coefficient is ν = 1.1, which by Eq. (8.35)

84



Chapter 8. Dephasing enhanced transport

should result in β ≈ 0.09. However, the coefficient we found is approximately 0.14. At

time this dissertation was finished, we still have not found an explanation to this discrep-

ancy.
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Figure 8.6: (a) Scaling of the conductivity with Γ in the AAH model for increasing values
of λ. (b) Comparison of the scaling of κ with L in the critical point between between the
symmetrical version of the potential and the average over θ. This particular curve was
generate for a smaller system size, L = 610.
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Conclusion

In this dissertation we have studied the transport properties of non-interacting fermionic

chains subject to two choices of quasiperiodic potentials: the Aubry-André-Harper and

the Fibonacci model. We considered both isolated and boundary-driven chains, with a

particular focus on the latter.

In the closed system scenario, we classified the transport regime of the system via the

scaling of the root mean square deviation of the wave function with time during a unitary

time evolution, starting from a localized wave-packet. To do so, the wave function at each

time step was computed numerically, using an efficient code written in Mathematica,

which is provided in section 4.1. The transport coefficients we obtained are consistent

with those found in the literature.

Then, we discussed our main class of models, the boundary-driven quantum chains,

obtained by coupling local Linbdlad dissipators at each end. In the NESS, the covariance

matrix obey a Lyapunov equation [(6.17)]. We have written efficient functions to solve

this equation, provided in section 6.3. We have found that, for our particular system, the

algorithm we used outperforms the usual procedure to solve the Lyapunov equation, the

Bartels–Stewart algorithm, at least in parameter region we worked. The full code is still

being adjusted, but will be freely available upon completion.

Then, using this numerical method, we studied the non-equilibrium transport prop-

erties of the boundary-driven chains with quasiperiodic potentials. In this scenario, we

classified the transport regime via the scaling of the particle current with the system size.

As in the coherent transport case, we have found transport coefficients consistent with the
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values reported in the literature.

Finally, in chapter 8, we considered the effect of dephasing noise on the boundary-

driven chains. We verified that the presence of dephasing always leads to diffusive trans-

port in the thermodynamic limit, regardless of the original transport properties of the

system. Nevertheless, we have verified that by analyzing the scaling of the conductivity

with the coupling to the dephasing, it is possible to probe the original transport coefficient

of the system, even when dephasing is present.

Furthermore, we have shown that the presence of dephasing may lead to an increased

current in the subdiffusive phases of the AAH and Fibonacci models, when compared to

the zero dephasing case. This is the main original contribution of this dissertation, as

it corresponds to a realization of dephasing-assisted transport in quasi-periodic chains.

These results are currently being prepared for publication.
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Appendix A

The Jordan-Wigner Transformation

The Jordan-Wigner transformation maps spin operators into fermionic operators. Con-

sider the Hamiltonian for an XX spin chain with open boundary conditions:

H = 2J
L−1∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1

)
+

1

2

L∑
i

Viσ
z
i

= J
L−1∑
i=1

(
σ+
i σ
−
i+1 + σ−i σ

+
i+1

)
+

1

2

L∑
i

Viσ
z
i .

(A.1)

The Jordan-Wigner transformation is defined as

ci =

[
i−1⊗
k=1

(−σzk)

]
σ−i . (A.2)

The term (−σz1)⊗ · · · ⊗ (−σzi−1) is known as a Jordan-Wigner string. Notice that all the

operators in the string act on different sites and thus commute with each other. One may

show that the operators defined in Eq. A.2 satisfy the usual fermionic algebra, i.e,

{
ci, c

†
j

}
= δij and

{
ci, cj

}
=
{
c†i , c

†
j

}
= 0. (A.3)

88



Appendix A. The Jordan-Wigner Transformation

Using this transformation, the operator c†ici can then be written as follows:

c†ici =

[
i−1⊗
k=1

(−σzk)

]
σ+
i

[
i−1⊗
k=1

(−σzk)

]
σ−i

=

[
i−1⊗
k=1

(σzk)
2

]
σ+
i σ
−
i

= σ+
i σ
−
i ,

(A.4)

where we used the facts that spin operators acting on different sites commute and (σzi )
2 =

1. Since σzi = 2σ+
i σ
−
i − 1, we thus have that

σzi = 2c†ici + 1. (A.5)

Similarly, the operator c†ici+1 can be written in terms of spin operators as follows:

c†ici+1 =

[
i−1⊗
k=1

(−σzk)

]
σ+
i

[
i⊗

k=1

(−σzk)

]
σ−i+1

=

[
i−1⊗
k=1

(σzk)
2

]
σ+
i (−σzi )σ−i+1

= σ+
i σ
−
i+1,

(A.6)

where we used the fact that σ−i σ
z
i = −σ−i . The adjoint is given by c†ici+1 = σ−i σ

+
i+1.

Therefore, the XX chain Hamiltonian can then be written as

H = −J
L−1∑
i=1

(
c†ici+1 + c†i+1ci

)
+

1

2

L∑
i=1

Vi(2c
†
ici + 1), (A.7)

which, up to an irrelevant constant factor, is equal to the tight-binding Hamiltonian [Eq. 2.1].

89



Bibliography

[1] Z. Rieder, J. L. Lebowitz, and E. Lieb, “Properties of a harmonic crystal in a
stationary nonequilibrium state,” Journal of Mathematical Physics, vol. 8, no. 5,
pp. 1073–1078, 1967. DOI: 10.1063/1.1705319. eprint: https://doi.
org/10.1063/1.1705319. [Online]. Available: https://doi.org/10.
1063/1.1705319.

[2] P. W. Anderson, “Absence of diffusion in certain random lattices,” Physical Review,
vol. 109, no. 5, pp. 1492–1505, Mar. 1958, ISSN: 0031899X. DOI: 10.1103/
PhysRev.109.1492. [Online]. Available: https://journals.aps.
org/pr/abstract/10.1103/PhysRev.109.1492.

[3] S. Aubry and G. André, “Analyticity breaking and Anderson localization in in-
commensurate lattices,” Proceedings, VIII International Colloquium on Group-
Theoretical Methods in Physics, vol. 3, 1980.

[4] P. G. Harper, “Single band motion of conduction electrons in a uniform magnetic
field,” Proceedings of the Physical Society. Section A, vol. 68, no. 10, pp. 874–878,
1955, ISSN: 03701298. DOI: 10.1088/0370-1298/68/10/304.

[5] S. Ostlund, R. Pandit, D. Rand, H. J. Schellnhuber, and E. D. Siggia, “One-dimensional
schrödinger equation with an almost periodic potential,” Physical Review Letters,
vol. 50, no. 23, pp. 1873–1876, 1983, ISSN: 00319007. DOI: 10.1103/PhysRevLett.
50.1873.

[6] M. Kohmoto, B. Sutherland, and C. Tang, “Critical wave functions and a Cantor-
set spectrum of a one-dimensional quasicrystal model,” Physical Review B, vol. 35,
no. 3, pp. 1020–1033, 1987, ISSN: 01631829. DOI: 10.1103/PhysRevB.35.
1020.

[7] S. Abe and H. Hiramoto, Dynamics of an Electron in Qusiperiodic Systems. I.
Fibonacci Model, 1988.

[8] H. HIRAMOTO and M. KOHMOTO, “Electronic Spectral and Wavefunction Prop-
erties of One-Dimensional Quasiperiodic Systems: a Scaling Approach,” Interna-
tional Journal of Modern Physics B, vol. 06, no. 03n04, pp. 281–320, Feb. 1992,
ISSN: 0217-9792. DOI: 10.1142/s0217979292000153.

[9] A. Purkayastha, S. Sanyal, A. Dhar, and M. Kulkarni, “Anomalous transport in
the Aubry-André-Harper model in isolated and open systems,” Physical Review B,
vol. 97, no. 17, Feb. 2017. DOI: 10.1103/PhysRevB.97.174206. arXiv:
1702.05228. [Online]. Available: http://arxiv.org/abs/1702.
05228%20http://dx.doi.org/10.1103/PhysRevB.97.174206.

90

https://doi.org/10.1063/1.1705319
https://doi.org/10.1063/1.1705319
https://doi.org/10.1063/1.1705319
https://doi.org/10.1063/1.1705319
https://doi.org/10.1063/1.1705319
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://journals.aps.org/pr/abstract/10.1103/PhysRev.109.1492
https://journals.aps.org/pr/abstract/10.1103/PhysRev.109.1492
https://doi.org/10.1088/0370-1298/68/10/304
https://doi.org/10.1103/PhysRevLett.50.1873
https://doi.org/10.1103/PhysRevLett.50.1873
https://doi.org/10.1103/PhysRevB.35.1020
https://doi.org/10.1103/PhysRevB.35.1020
https://doi.org/10.1142/s0217979292000153
https://doi.org/10.1103/PhysRevB.97.174206
https://arxiv.org/abs/1702.05228
http://arxiv.org/abs/1702.05228%20http://dx.doi.org/10.1103/PhysRevB.97.174206
http://arxiv.org/abs/1702.05228%20http://dx.doi.org/10.1103/PhysRevB.97.174206


Bibliography

[10] V. K. Varma, C. De Mulatier, and M. Žnidarič, “Fractality in nonequilibrium steady
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