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Abstract

The physics of systems out of equilibrium is a topic of great interest, mainly due to
the possibility of exploring phenomena that can not be observed in equilibrium systems.
Driven-dissipative phase transitions open the opportunity of studying phases with no
classical counterparts, and these can be experimentally realized in quantum optical
platforms. Since these transitions occur in systems kept out of equilibrium, they are
characterized by a finite entropy production rate. However, due to technical difficulties
regarding the zero temperature limit and the non-gaussianity of such models, very little
is known about how entropy production behaves around criticality. Using a quantum
phase-space method, based on the Husimi Q-function, we put forth a framework that
allows for the complete characterization of the entropy production in driven-dissipative
transitions. This new theoretical framework is tailored specifically to describe photon
loss dissipation, which is effectively a zero temperature process for which the standard
theory of entropy production breaks down. It makes no assumptions about Gaussianity
about the model or the state. It works for both, steady-states as well as the dynamics and
as an application, we study both situations in the paradigmatic driven-dissipative Kerr
model, which presents a discontinuous phase transition. For general driven-dissipative
critical systems, where one can define a thermodynamic limit, we find that the entropy
production rate and flux naturally split into two contributions: an extensive one and a
contribution due to quantum fluctuations only. Moreover, we identify a contribution to
the entropy production due to unitary dynamics, and we find that the behavior of this
contribution at the non-equilibrium steady-state (NESS) matches the behavior of entropy
production rate observed in classical systems. The quantum contributions are found to
diverge at the critical point.

Keywords: Quantum thermodynamics; Quantum phase transitions; Open quantum
systems; Entropy production; Critical phenomena; Quantum master equation.





Resumo

A física de sistemas fora do equilíbrio é um tópico muito interessante, principal-
mente devido à possibilidade de explorar fenômenos que não podem ser observados
em sistemas de equilíbrio. Transições de fase forçada-dissipativas (driven-dissipative
phase transitions) possibilitam o estudo de fases da matéria que não possuem análogos
clássicos, e estas podem ser realizadas experimentalmente em plataformas de óptica
quântica. Uma vez que estas transições ocorrem em sistemas mantidos fora do equilíbrio,
elas são caracterizadas por uma taxa de produção de entropia finita. Entretanto, devido a
dificuldades técnicas relacionadas ao limite de temperatura nula e à não gaussianidade
de tais modelos, muito pouco se sabe sobre o comportamento da produção de entropia
próximo à criticalidade. Utilizando um método de espaço de fase quântico, baseado na
função Q de Husimi, apresentamos uma estrutura teórica que permite a caracterização
completa da produção de entropia para tais transições. Esta nova estrutura é adequada
para descrever especificamente a dissipação devido a perda de fótons, que é um processo
que ocorre efetivamente a temperatura nula, para o qual a teoria usual da produção de
entropia não se aplica. Ele também não impõe nenhuma restrição sobre a gaussianidade
do modelo ou do estado. Ele funciona tanto para estados estacionários quanto para a
evolução temporal e como uma aplicação, estuda-se ambas as situações para o modelo
paradigmático de Kerr, o qual apresenta uma transição de fase descontínua. Para sistemas
forçado-dissipativos gerais apresentando criticalidade, onde se pode definir um limite
termodinâmico, encontra-se que a taxa de produção/fluxo de entropia dividem-se em duas
contribuições: uma extensiva e outra devido somente à flutuações quânticas. Além disso,
identifica-se uma contribuição para a taxa de produção de entropia devido à dinâmica
unitária, e encontra-se que o comportamento desta contribuição no estado estacionário
de não equilíbrio assemelha-se àquele observado em sistemas clásicos. As contribuições
quânticas por sua vez divergem no ponto crítico.

Palavras-chave: Termodinâmica quântica; Transições de fase quânticas; Sistemas quân-
ticos abertos; Produção de entropia; Fenômenos críticos; Equação mestra quântica.
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Introduction

Thermodynamics is an old and robust physical theory [4, 5]. It played a major role during

the Industrial Revolution and since then had a simple objective: to answer how to exploit

as much as possible of the available resources to accomplish a given task.

The Laws of thermodynamics are experimentally based postulates, which cannot be

violated by any classical system. The zeroth law provides the concept of thermodynamic

equilibrium, the first law is related to energy conservation and finally, the Second Law is

the one that contains the most interesting and important physical content: it dictates which

processes are allowed by nature, what are their consequences, and imposes restrictions

on their efficiency. It introduces the concept of entropy production, which measures the

irreversibility of a process.

Moreover, after the acceptance of the atomic theory, it became possible to understand

thermal phenomena from a more fundamental level. The macroscopic quantities that

were used in thermodynamics, such as pressure and temperature could be understood

as a consequence of the random motion of microscopic entities. Statistical mechanics

has become the bridge between the microscopic world and the emergent phenomena

observed. All the concepts and laws of thermodynamics can be put into this new theoretical

framework, including phase transitions [5–7].

Equilibrium phase transitions are abrupt structural changes on a system between two

equilibrium states which occur as a consequence of the competition between different

energetic and entropic contributions. Phase transitions have been one of the topics of great

interest by the physics community as they extend from particle physics, through condensed

matter and even cosmology. Historically, the first types of phase transitions studied were

related to the solid, liquid and gaseous phases. But this concept was extended to other

phases of matter, such as ferromagnetism and paramagnetism in magnetic systems [7, 8].
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The pinnacle of the theoretical description of such phase transitions occurred with the

establishment of Landau’s theory [9], and the notions of an order parameter and symmetry

breaking.

A better understanding and description of microscopic phenomena was provided by

quantum mechanics [10–12]. It made possible the development of several new, quantum-

based technologies and the exploration of the microscopic realm. Quantum mechanics is

robust both theoretically and experimentally and it encompasses highly counter-intuitive

physical properties, such as coherence and entanglement. Much can be inferred by

considering the quantum system completely isolated, since it may be a good approximation

in many cases, but it does not represent reality. For a more precise description, it is

necessary to consider the interplay between the system and its surroundings. The theory

that deals with this scenario is called open quantum systems, which has an intrinsic

non-equilibrium nature [13, 14].

For a long time, it was believed that it did not make sense to apply thermodynamics, a

macroscopic theory, to quantum systems. However, with the advent of stochastic thermo-

dynamics [15], which enabled the thermodynamic description of systems of arbitrary sizes,

the conception that genuinely quantum properties (such as entanglement and coherence)

could be used as resources plus the miniaturization of electronic components to a size where

quantum fluctuations appear, led to the development of quantum thermodynamics [16–19].

Open quantum systems describe processes out-of-equilibrium that are of great interest

since they are more commonly found in nature than their equilibrium counterparts. While

the later is very well established theoretically, the former imposes great difficulty for

a theoretical description and much can still be developed for them. Systems that are

continuously pushed out of equilibrium may reach a steady-state, in this case, it is called a

non-equilibrium steady state (NESS). They are observed in both quantum and classical

systems. The main feature that distinguishes a NESS from an equilibrium state is the flux

of some physical quantity such as charge, energy, mass, etc. For instance, we can think

about a classical case, the RL circuit. When we turn on the circuit the battery will generate

a steady electric current, i.e. a steady flux of charges. We can also consider the effect of

dissipation due to the Joule effect. The wires will heat the air surrounding them, which

generates a heat flux from the system to the environment. Hence, the circuit will tend to a
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NESS, with a constant flux of charges and heat, as long as the battery is charged.

In the classical context, there are non-equilibrium phase transitions. For these types of

transitions, it becomes interesting to look at the behavior of the entropy production due

to the information it provides about the non-equilibrium nature of the process. Several

studies in this context [20–24] indicates that the entropy production is always finite across a

non-equilibrium transition, presenting either a kink or a discontinuity. Indeed, this behavior

was shown to be universal for systems described by classical Pauli master equations and

breaking a Z2 symmetry in Ref. [2].

In the last decades, it was discovered the existence of phase transitions at zero tempera-

ture, called quantum phase transitions [25]. They occur due to the existence of competing

terms in the Hamiltonian. The quantum analog of classical non-equilibrium phase transi-

tions are driven-dissipative phase transitions, that occur due to the competition between

the coherent and dissipative evolution of the quantum state.

There is an experimental indication that the mentioned classical behavior of entropy

production across a dissipative phase transition does not hold. We can refer to the driven-

dissipative Dicke model, in which it was experimentally found that the contribution

of quantum fluctuations to the entropy production diverges at the critical point [26].

However, important questions such as if this divergence is universal or not and what are

the ingredients required for it to happen were not addressed so far due to two technical

problems.

First, dissipative phase transitions occur at zero temperature, where the usual theory of

entropy production, based on the von Neumann formalism, breaks down; secondly, the

models and state are, in general, not gaussian, what makes it not possible to use a theory

recently developed in our group of the Wigner entropy production rate (this one applies

only for gaussian systems). This dissertation aims to fill this gap. Based on Ref. [27]

we formulate a theory that is suited for describing non-equilibrium quantum systems in

general and specializes for driven-dissipative transitions.

This dissertation is organized as follows:

• Chapter 1 is devoted to reviewing important concepts of quantum mechanics and

open quantum systems. The latter is exemplified with two simple textbook systems.

We list some properties of coherent states and introduce the Husimi Q-function, the
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phase space method we use to develop our theory of entropy production rate;

• In chapter 2, we introduce and review the concept of entropy production in classical

thermodynamics, thus introducing the concept of irreversibility. We also review the

entropy production based on the von Neumann entropy, which is the usual definition

one uses for quantum mechanical systems and comment why it breaks down for zero

temperature;

• In chapter 3, we briefly review the concept of phase transitions highlighting some

important properties both in the classical and quantum context. As an example, we

make a detailed discussion of the Lipkin-Meshkov-Glick (LMG) model quantum

phase transition. Moreover, we make some comments on how entropy production

has helped to characterize classical non-equilibrium phase transitions in recent

works. Finally, at the end of this chapter, we introduce and discuss the concept of

driven-dissipative phase transitions. This is the last review chapter;

• In chapter 4, we put forth the main contribution of this dissertation, the theory of

Wehrl entropy production rate. We apply it to an example of a driven-dissipative

system at zero temperature (already encountered in chapter 1). Then, we specialize it

to critical driven-dissipative systems and find the contributions solely due to quantum

fluctuations for this type of systems;

• In chapter 5, we introduce the paradigmatic Kerr bistability model (KBM), which

presents a discontinuous phase transition, discuss it in detail and apply the theory

developed in the previous chapter for the NESS of this system. We mention that the

results of these two last chapters were the content of a recently published paper [28],

which can be found attached to this dissertation;

• In chapter 6, we apply our formalism to the dynamics of the KBM model under

quantum quenches. We study the gaussianity of the state during the dynamics and

the Wehrl entropy rate components.

• Finally, in chapter 7 we draw our conclusions and give perspectives of future re-

search.



Chapter 1

The theoretical framework of quantum

mechanics

Historically, quantum mechanics (QM) was developed from the necessity of explaining

experimental data that could not be understood within the theoretical framework provided

by classical physics. Planck proposed that energy was quantized to fit data of the black

body radiation spectrum and in 1905, Einstein used the same assumption so that he could

explain the photoelectric effect. These two events were the milestone of what would

become modern quantum theory.

One could say that the scope of QM is the description of the dynamics of objects at

the a small scale. This way of defining QM is not wrong at all, but one must have in

mind that nowadays experimentalists are able to create and control mesoscopic objects that

display quantum behavior, for instance Bose-Einstein condensates and optomechanical

systems [26, 29–32].

In modern terms, the mathematical framework of quantum theory is linear algebra [10–

12]. To every physical quantum system there is an associated Hilbert space, denoted by

H , which is a particular normed vector space. The dimension of H can be either finite or

infinite. If we have N quantum systems, say S1, S2, ..., SN , each one have with its own

Hilbert space, then the Hilbert space of the composite system will be constructed by the

Kronecker product of the individual Hilbert spaces, H = H1 ⊗H2 ⊗ ...⊗HN .

The elements of the Hilbert space are represented by kets such as |φ〉, these are the

pure states of the system. We can chose a orthogonal basis {|i〉}, i.e. a set of linearly

25
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independent vectors |i〉, such that 〈j|i〉 = δij , where δij is the Kronecker delta. This way

we can write,

|φ〉 =
∑
i

ci |i〉 (1.1)

where ci are complex coefficients. A pure state is normalized 〈φ|φ〉 = 1, it leads to∑
i|ci|2= 1, this gives us the concept of quantum probability, which is given by |ci|2 and

stands for the probability of a system to be in the state |i〉.
For each ket there is a dual correspondence 〈ξ| in the dual space of H , so that the

inner product between two vectors |φ〉 , |ξ〉 is given by 〈ξ|φ〉 (a bracket). It is also possible

to define an outer product, |φ〉 〈ξ|, which represents a linear operator and not a scalar.

Modern quantum mechanics for isolated systems can be summarized by four postulates,

which are the subject of next section.

1.1 The postulates of quantum mechanics

The state is an object that carries all the information one can obtain about a physical

system. The most general quantum state has to take into account both quantum and

classical probabilities, so

Postulate 1 (about the state): The state of a physical quantum system is completely

characterized by a density matrix ρ. The properties of a density matrix are:

i) It is normalized tr{ρ} = 1;

ii) It is hermitian, ρ = ρ† and

iii) It is positive semi-definite, ρ ≥ 0.

One can always diagonalize ρ as ,

ρ =
∑
i

pi |ψi〉 〈ψi| (1.2)

where pi ∈ [0, 1] represents classical probabilities and |ψi〉 are pure states encoding

quantum probabilities. The average of an operator O can be written as 〈O〉 = tr{Oρ}.
Another important concept is the purity of the state defined as P = tr{ρ2} ≤ 1; the state
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is said to be pure if the equality holds and mixed otherwise. If we chose a basis where ρ is

not diagonal, then the off-diagonal terms represent the coherence.

When dealing with a physical system we are often interested in quantities which can

be measured in a laboratory, these are called observables and are associated to special set

of operators,

Postulate 2 (about observables): Physical observables, i.e. quantities that can be

measured in a laboratory, are represented by hermitian operators, O = O†, which are

defined in a Hilbert space.

Observables are associated with hermitian operators because they have the important

property that all its eigenvalues are real.

The third postulate is related to measurements. To obtain information about a quantum

system one must perform a measurement on it and this concept is formalized as follows:

Postulate 3 (about measurements): Any quantum measurement is specified by a

set of Kraus operators {Mi}, satisfying
∑

iM
†
iMi = 1. The probability of obtaining the

outcome i is pi = tr
{
MiρM

†
i

}
and, if the outcome is i then the state after the measurement

is updated to,

ρ0 → ρi =
Miρ0M

†
i

pi
, (1.3)

this is the most general way of formalizing the concept of a measurement. Projective

measurements are a particular case.

Finally, the time evolution of a quantum state must take an initial physical state, where

all three properties specified in postulate 1 are satisfied, into another physical state ρt at time

t. We can write this as a linear map ρt = Vt(ρ0), where Vt is a super-operator1 that must

be completely positive and trace-preserving (to conserve probabilities), usually denoted by

CPTP. Such maps can be expressed in terms of Kraus operators as ρt =
∑

iMiρ0M
†
i . The

last postulate tells us how to evolve a completely isolated quantum system:

Postulate 4 (about state evolution): Given that a system that is isolated, described by

the Hamiltonian H and has a initial state ρ0, its state evolution will be governed by the von

Neumann equation, which is,

∂tρt = −i[H, ρt] (1.4)

1It has the some properties of a operator but it receives the super in front of it because it acts on
operators.
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One can readily show that Eqn.(1.4) conserves the purity of the state during the evolution,

so that a pure state never becomes mixed and vice-versa.

1.2 Open quantum systems

Fortunately nature is not so simple. A quantum system is always embedded in an

environment and the coupling between them, the smaller it may be, cannot be neglected in

some circumstances. For instance, if a system is prepared with coherence and is weakly

coupled with the electromagnetic vacuum, we can say that the environment continuously

interact with it, so that coherence can vanish as time goes by, a phenomenon called

decoherence. The theory that deals with quantum systems that are not isolated is called

open quantum systems [13].

As we have seen in Postulate 4, a physical map must be CPTP, then a natural question

one can make is: what is the most general dynamical CPTP map that encompasses the

interaction of the system with its environment? This is a very hard question, and is still

being the focus of research [33, 34]. A possible and useful answer is provided by the

Lindblad theorem [35], which gives the form of the equation that describes the evolution

of a markovian system, which means that the state in t+ δt depends only on the state at

time t, interacting with its surroundings. The Lindblad master equation is,

∂tρ = L (ρ) = −i[H, ρ] +D(ρ) (1.5)

where L is the Liouvillian superoperator and

D(ρ) =
∑
i

2κi

(
LiρL

†
i −

1

2
{L†iLi, ρ}

)
(1.6)

is the Lindblad dissipator. Here H is the Hamiltonian operator, Li are arbitrary operators

and κi ≥ 0 represent the coupling strength with the environment. It is not the purpose of

this dissertation to prove that this is the structure. For that we refer to Refs. [13,14,35]. We

mention that the main hypotheses for this to work is that initially system and environment

are uncorrelated, ρTotal
o = ρ0 ⊗ ρenv and the environment is markovian. We mention

that eqn. (1.6) can also describe a non-markovian system, if the dissipation rates are
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negative [13].

Eqn.(1.5) describes a non-equilibrium dynamics and we can view it as a competition

between different terms. Each term pushes the system to a different state, and eventually it

reaches a (generally) non-equilibrium steady state (NESS), which will be a compromise

between the strength of each term. This kind of competition will give rise to the driven-

dissipative phase transitions that are the main topic of this dissertation. We note that if

κi = 0 for all i we recover the von Neumann Eqn.(1.4).

Next, we apply this formalism to two simple and illuminating examples, one with finite

dimension and the other with infinite dimension.

1.2.1 Exemple 1: Dynamics of a single qubit

A qubit is a two level system, and the simplest Hamiltonian to describe it is,

H =
Ω

2
σz, (1.7)

where Ω is the energy gap between the two possible states and σz is a Pauli matrix. We

can introduce an environment where the Lindblad operator is L = σz, then

D(ρ) = 2κ(σzρσz − ρ) (1.8)

This is a dephasing noise, and is responsible for washing out coherences of the system.

Since it is a simple two dimensional system we can parametrize its density matrix as

ρ =

p q

q̄ 1− p

 (1.9)

where p stands for the population on the ground state and q is the coherence term. Writting

the Lindblad equation ∂tρ = −i[H, ρ] +D(ρ) and solving for initial conditions p(0) = p0

and q(0) = q0, one finds,

p(t) = p0 (1.10)

q(t) = q0e
−(iΩ+4κ)t (1.11)
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Figure 1.1: Population and coherence dynamics for the Dephasing noise: The initial
population and coherence were set p0 = 0.5, q0 = 0.3 and the energy gap is Ω = 3. In
panel (a) κ = 0, i.e. there is no dissipation, while in panel (b) κ = 0.15.

In Fig.1.1(a) we can see the dynamics given by Eqn.(1.10) in absence of dissipation

κ = 0, i.e. the system is isolated. The population is always constant while the coherences

oscillates between ±q0. In Fig.1.1(b) we have turned on the interaction with the environ-

ment by setting κ = 0.15. In this case, again the population remains constant but as time

goes by the coherences are washed away from the system. This simple example sheds light

on the role of the environment for quantum system, it is responsible for decoherence that

happens exponentially in time e−4κt, for this example.

1.2.2 Exemple 2: Driven-dissipative quantum harmonic oscillator at

finite temperature

As a second example we take a driven-dissipative quantum harmonic oscillator de-

scribed by a single mode a. The annihilation operator a and its conjugate, the creation oper-

ator a†, are related to the quadrature operators by q = (a† + a)/
√

2 and p = i(a†− a)/
√

2.

The Hamiltonian of the system, in the interaction picture (see App. B), is

H = ∆a†a+ iE (a† − a) (1.12)

where ∆ is the detuning and E is the driving amplitude. The finite temperature dissipator

is,

D(ρ) = 2κ(N + 1)

(
aρa† − 1

2
{a†a, ρ}

)
+ 2κN

(
a†ρa− 1

2
{aa†, ρ}

)
(1.13)
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where N = (eω/T − 1)−1 is the Bose-Einstein occupation with ω being the free oscillator

frequency. We note that when T = 0 the occupation vanishes N = 0, hence the only term

that survive in the dissipator is the first one. We say in advance that this is the kind of

dissipators we will be concerned with in this dissertation, since driven-dissipative phase

transitions occur at zero temperature. One can write the Lindblad equation as,

∂tρ = −i[H, ρ] +D(ρ), (1.14)

which is possible to solve numerically truncating the dimension of the Hilbert space, since

it is infinite. In this case, it is more informative and feasible to study the evolution of some

observable rather than the dynamics of the state itself. Henceforth, when dealing with

infinite dimensional systems we will study quantities such as the number of quanta 〈a†a〉t.
The dynamics of the the first and second moments is given by (see App.A),

∂t〈a〉t = −(i∆ + κ)〈a〉+ E (1.15)

∂t〈a†a〉t = E (〈a〉+ 〈a†〉) + 2κ(N − 〈a†a〉) (1.16)

It is important to note that the second moment 〈a†a〉 only depends on the first moment,

which in turn depends only on itself. Then, it is possible to obtain an analytical expression

for both 〈a〉t and 〈a†a〉t. The steady state value can be readily found by equating both to

zero. The result is,

〈a〉SS =
E (κ− i∆)

∆2 + κ2
(1.17)

〈a†a〉SS = N +
E 2

κ2 + ∆2
(1.18)

The result for the second moment, which is related to the number of quanta of the system,

shows that in the absence of a pump E = 0, temperature will push the number of exci-

tations towards the Bose-Einstein occupation number N . Otherwise, we have a positive

contribution to the N proportional to E 2, the greater the pump, the more excitations we

have on the system. This contribution is also inversely proportional to the dissipation κ2.

The competition between driving and dissipation will ultimately define how far from N
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the NESS will be. The following plots can clarify this discussion:
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Figure 1.2: Number of quanta dynamics for a driven-dissipative quantum harmonic
oscillator at finite temperature: (a) E = 0 (b) E = 3. The plots are for three different
Bose-Einstein occupation number, as shown in panel (a). The initial condition was set
with 〈a†a〉0 = 2 and 〈a〉0 = 0. The blue (E = 0) and orange (E 6= 0) dashed lines
correspond to the NESS as given by Eqn.(1.18). Other parameters were set: ∆ = 5,
κ = 0.5.

In Fig.1.2(a) we see the dynamics of the number of quanta 〈a†a〉 of a quantum harmonic

oscillator, E = 0 subjected to dissipation κ. The role of temperature is to take the system

to the occupation Bose-Einstein occupation number N . In Fig.1.2(b) we plot the same for

a forced quantum harmonic oscillator, E 6= 0. Again, temperature pushes the system into

N but the pump is responsible to take the system to a state with more excitations as can be

seen in Eqn.(1.18).

1.3 Coherent states

In the last section we studied the dynamics of a forced quantum harmonic oscillator.

This system has an infinite number of discrete levels and is usually referred to as a

continuous variable. The study of continuous variables is important because it is useful to

describe many experimental platforms, the most prominent in quantum optics where one

uses harmonic oscillators to represent the electromagnetic field [36, 37]. Other platforms

one can cite are trapped ions, optomechanical oscillators and Bose-Einstein condensates.

A suitable set of states to form the basis of continuous variables systems is that of

coherent states |µ〉, which are the states defined as the eigenvector of the annihilation
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operator,

a |µ〉 = µ |µ〉 . (1.19)

Coherent states minimize the uncertainty relation [q, p] = i where q, p are the quadrature

operators. We will list below some important properties for the development of this

dissertation. For a more detailed explanation on these states, we recommend Refs. [1, 38].

I) A coherent state can be expressed in terms of number states |n〉, which are the

eigenstates of the number operator a†a |n〉 = n |n〉, as,

|µ〉 = e−
1
2
|µ|2

∞∑
n=0

µn√
n!
|n〉 (1.20)

II) The scalar product between two coherent states |µ〉 , |ν〉 is

〈ν|µ〉 = eν̄µ−
1
2
|ν|2− 1

2
|µ|2 → |〈ν|µ〉 |2= e−|ν−µ|

2

, (1.21)

we can see that different coherent states |ν〉 , |µ〉 are not orthogonal to each other.

However, their overlap decays exponentially with the difference |µ− ν|.

III) The completeness relation for coherent states is,

1

π

∫
d2µ |µ〉 〈µ| = 1, (1.22)

where the integral is taken over the entire complex plane. The 1/π reflects the fact

that the coherent state basis is overcomplete.

IV) The expectation value of any operator O in a coherent state can be written as

〈µ|O |µ〉 =
∑
n,m

〈n|O |m〉√
n!m!

e−|µ|
2

µ̄nµm. (1.23)

This result shows that the diagonal elements in the coherent state basis fully determine

all matrix elements of O , since:

〈n|O |m〉 =
1√
n!m!

∂nµ̄∂
m
µ (e|µ|

2 〈µ|O |µ〉)|µ=0, (1.24)
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where the derivatives are formal derivatives.

V) The probability of observing a coherent state µ with n quanta is given by,

Pµ(n) = |〈n|µ〉 |2=
|µ|2ne−|µ|2

n!
, (1.25)

which is the Poisson distribution with mean |µ|2.

One can also define Bargmann states,

||µ〉 = e
1
2
|µ|2 |µ〉 =

∞∑
n=0

µn√
n!
|n〉 , (1.26)

They have the property that derivatives are translated into the action of an operator on it,

∂µ||µ〉 = a†||µ〉 . (1.27)

We say in advance that this identity together with the representation (I), will be used to

numerically compute the entropy production in Chaps.5 and 6.

1.4 Quantum mechanics in phase space: The Husimi Q-

function

In classical physics the dynamical state of a system can be fully characterized by its

canonical coordinates in phase space. For continuous variable systems it is also possible

to define a quantum phase space. There are many ways of describing it, the first one was

introduced by Wigner [39], which is called the Wigner function. Here, we will introduce

the Husimi Q-funtion proposed by Kôdi Husimi in Ref. [40] and discuss some of its main

properties.

Let |µ〉 be a coherent state, as defined by eqn. (1.19). We know, by property (IV),

that any operator O can be determined by its diagonal coherent state matrix elements

〈µ|O |µ〉 [1, 38]. This fact enables us to map the density matrix into a real function that

will behave as a quasi-probability density for the system. We define the Husimi Q-function
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corresponding to a density operator ρ as

Q(µ, µ̄) =
1

π
〈µ| ρ |µ〉 , (1.28)

where µ̄ denotes complex conjugation. In words , Q(µ, µ̄) is the expectation value of the

density matrix in a coherent state and it is interpreted as the probability distribution of the

outcomes of a heterodyne experiment (see next section) [41, 42].

The Husimi Q-function is always positive, for instance take a density operator ρ =∑
i pi |ψi〉 〈ψi|, using the definition it is straightforward to see that

Q(µ, µ̄) =
1

π
〈µ| ρ |µ〉

=
1

π

∑
i

pi|〈µ|ψi〉 |2≥ 0.

It is bounded as 0 ≤ Q(µ, µ̄) ≤ 1/π, because
∑

i pi|〈µ|ψi〉 |2≤ 1 and it is normalized due

to the normalization of the density matrix ρ, indeed

1 = tr{ρ} = tr

{
1

π

∫
d2µ |µ〉 〈µ| ρ

}
=

∫
d2µ Q(µ, µ̄) (1.29)

where the integration extends over the entire complex plane.

Finally, the averages of the anti-normally ordered products of creation and annihilation

operators are given by

〈ar(a†)s〉 =

∫
d2µ µr(µ̄)sQ(µ, µ̄). (1.30)

The Q-function is a quasi-probability2 distribution: it is normalized; always positive, which

ensures that every physical state will be associated with a well defined Q-function and the

antinormally ordered quantum moments can be determined in terms of simple moments of

Q(µ, µ̄).

To end this section we must know how the action of an operator in a state ρ is translated

into a differential operator acting in Q(µ, µ̄), the correspondence is given by the following

2Q(µ, µ̄) does not represent the probability of mutually different states, because these are not orthogo-
nal, this fact breaks down the third axiom of probability [43, 44].
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table [1],

aiρ→ (µi + ∂µ̄i)Q(µi, µ̄i), (1.31a)

a†iρ→ µ̄iQ(µi, µ̄i), (1.31b)

ρai → µiQ(µi, µ̄i), (1.31c)

ρa†i → (µ̄i + ∂µi)Q(µi, µ̄i). (1.31d)

The usefulness of this correspondence is that we can map a differential equation for

an operator, such as the Lindblad equation into a partial differential equation, for Q. It is

straightforward to generalize the above results for an arbitratry number of applications of

the operators, for instance ariρ→ (µi + ∂µ̄i)
rQ(µi, µ̄i).

1.5 Heterodyne measurements

In the last section it was claimed that the Husimi Q-function can be interpreted as the

probability distribution of the outcomes of a heterodyne measurement. To see that, we will

use Postulate 2, and consider the set of Kraus operators defined as

Mµ =
1√
π
|µ〉 〈µ| (1.32)

Due to the completeness relation Eqn.(1.22) of the coherent states basis, this set is properly

normalized, ∫
d2µ M †

µMµ =

∫
d2µ
|µ〉 〈µ|
π

= 1. (1.33)

The probability of obtaining the outcome µ is given by,

pµ = tr
{
MµρM

†
µ

}
=

1

π
〈µ| ρ |µ〉 = Q(µ, µ̄), (1.34)

and that demonstrates our claim.

The idea of the heterodyne detection (see Fig. 1.3) is to mix the signal beam with

a strong coherent signal, the local oscillator, before detecting it. It is called heterodyne

because the local oscillator has a different frequency than the signal (if both have the
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Figure 1.3: Experimental arrangement: for heterodyne detection. Taken from Ref. [1].

same frequency we have a homodyne detection) and it is done because this procedure

has experimental advantages, such as gain in detection and reduction of noise to the shot

noise limit [1]. The mixing is performed by the beam splitter. After that, the mixed signal

goes to a photo-detector and some operations are performed to treat the signal, for further

details on heterodyne measurements we refer to Ref. [1].

1.5.1 Examples of the Husimi Q-function

As a first example, we consider a number state |n〉, hence ρn = |n〉 〈n|. Its Husimi

Q-function is,

Qn(µ, µ̄) =
1

π
|〈n|µ〉 |2=

1

π

|µ|2ne−|µ|2

n!
(1.35)

where we used Eqn. (1.25). So, up to a factor 1/π it is exactly the probability of observing

n quanta in the coherent state |µ〉.
Now, we consider the Husimi Q-function of a coherent state |α〉, where ρ = |α〉 〈α|, in

this case we obtain,

Qα(µ, µ̄) =
1

π
|〈µ|α〉 |2=

1

π
exp
{
−|µ− α|2

}
, (1.36)

where we used Eqn. (1.21). We observe that it is a gaussian distribution over the complex

plane centered around α with unity variance. We note that in Eqn. (1.35) if we are at the

ground state, i.e. |0〉 we obtain exactly Eqn. (1.36) centered around zero. This observation

allows us to give another interesting interpretation for the coherent state as a displaced

vacuum state, that is, it has the same distribution of the vacuum state but displaced by α
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in the complex plane (see Fig. 1.4(f)). One can compute the mean value and variance of

Eqn. (1.36) to find, 〈|µ|2〉 = Var(|µ|2) = n + 1. Hence, the larger the value of n is the

distribution will be peaked around |µ|2= n + 1. Moreover, the exponential form of this

function says that it will not be zero only when µ ≈ α. In Fig. 1.4) we show some plots of

representative Husimi Q-functions.

Figure 1.4: Examples of Husimi Q-functions: The Husimi Q-functions are Qn=0(µ, µ̄),
Qn=1(µ, µ̄) and Qα=2+2i(µ, µ̄), respectively. The upper line shows the 3D plots, while in
the lower line we plot the contour of these functions.



Chapter 2

Entropy production: the second law of

thermodynamics

Entropy is one of the most important concepts in physics. It was first introduced by

Clausius as a function of a thermodynamic state useful to characterize the Carnot cycle.

Later, within a microscopic description of thermodynamics, Boltzmann gave a physical

meaning to it, in the context of micro-canonical ensemble. The entropy is a measure of how

many micro-states are accessible to a macroscopic state. In information theory entropy is

the function that provides the lack of information one have about a random variable [45].

It is ultimately the quantity that links physics with information theory [46].

For open systems, the entropy does not satisfy a conservation law. In addition to the

entropy exchanged with the reservoir, entropy can also be spontaneously generated in

the process. The latter is called entropy production and accounts for how irreversible a

physical process is, or, equivalently, serve as a measure of how far from equilibrium a given

process takes place [5,47]. The main contribution of this dissertation is the development of

a theory of entropy production for non-equilibrium quantum systems tailored to a specific

kind of open quantum system. Hence, in this chapter we review this concept. At the end of

this chapter we aim to have answered the following questions:

• Why is entropy production important?

• What are the problems with the usual theory of entropy production (which we shall

refer below as the "von Neumann formulation")?

39



CHAPTER 2. ENTROPY PRODUCTION: THE SECOND LAW OF THERMODYNAMICS40

Throughout this chapter we will refer to the equilibrium state of a system relative to its

environment as defined by the zeroth law of thermodynamics: "If two systems are in

thermal equilibrium with a third system, then they are in thermal equilibrium with each

other". In Chap.3, the equilibrium state will be defined more formally in the context of

statistical mechanics, which gives a microscopic interpretation for thermal phenomena.

The first law of thermodynamics states that energy is conserved. If we have a system,

for instance a steam engine, we can change its internal energy by ∆U by providing some

heat Q, and/or performing some work on it W ,

∆U = Q+W. (2.1)

Work can be interpreted as the controlled contribution to the change in internal energy,

whereas heat is the amount of heat exchanged with a vast bath, which can not be controlled.

The second law of thermodynamics imposes restrictions on what type of transforma-

tions are allowed by nature. There are (at least) three equivalent statements of the 2nd law

due to Carnot [48], Clausius [49] and Kelvin-Planck [5]. All of them are related to the

aforementioned entropy production, which we will denote by Σ.

2.1 Entropy production in classical systems

In classical thermodynamics we learn the Clausius’ inequality [4, 5], which states

that the change in entropy from an initial state with Si to a final one with Sf , defining

∆S = Sf − Si, is such that

∆S ≥ Q

T
, (2.2)

where Q is the total heat delivered to the thermodynamic system and T is its absolute

temperature. We mention that heat depends on the path taken, i.e. the steps of the

thermodynamic process, so that it is usually written as Q/T =
∮
dQ/T . The process is

said to be reversible if ∆S = Q/T , as occurs in idealized thermodynamic cycles, as will

be exemplified by the Carnot cycle soon. A process is said to be irreversible if ∆S > Q/T .
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It is useful to rewrite the inequality (2.2) as the following equality,

∆S = Σ +
Q

T
→ Σ = ∆S − Q

T
≥ 0 (2.3)

where Σ ≥ 0 is the entropy production, that is, it is the entropy produced within the system

during an irreversible process. The process is reversible if and only if Σ = 0, otherwise it

is irreversible. Hence, the 2nd law can be stated in terms of entropy production as,

Σ ≥ 0 (2.4)

We can differentiate Eqn.(2.3) with respect to time to obtain,

dSt
dt

= Πt − Φt, (2.5)

where Πt = dΣ/dt ≥ 0 is the entropy production rate within the system and Φ =

−(1/T )dQ/dt is the entropy flux rate from the system to the reservoir. The subscript t

denotes the time dependence of these quantities.

Next, we will review three statements of the second law in classical thermodynamics

and see how entropy production relates them.

Carnot statement

"If Th and Tc, where Tc < Th, are the absolute temperatures of a hot and cold bath,

respectively, the maximum efficiency for a thermal machine operating between them is that

of a Carnot machine, which is,"

ηC = 1− Tc
Th

(2.6)

The Carnot machine is an idealized machine in which every process is reversible. This

means that by performing infinitesimal changes we can make the engine operate forward

or backward. Physically, it means that there is no friction in the engine and that its heat

reservoirs are never in contact with something colder or hotter than themselves. Suppose

that we have a gas in a cylinder, initially occupying a volume V1, with a frictionless piston
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attached to it. It operates between two heat reservoirs, the hot at temperature Th and the

cold one at temperature Tc, where Th > Tc. We consider the following four reversible

steps (See Fig.2.1):

1. We put the cylinder in contact with the hot reservoir and then pull the piston slowly,

to make sure that the temperature of the gas is never too different from the heat

reservoir (which would not be possible if we pulled the piston fast) until the gas

occupies a volume V2 > V1. This is an isothermal expansion of the gas, and a heat

Qh flows from the reservoir to the gas (heat absorption). In this case the internal

energy is constant, so that Qh = W1,2;

2. The second step consists in taking the piston out of contact with any heat reservoir,

so that no heat is exchanged. Again, one pulls the piston slowly until the gas

temperature reaches Tc, in a volume V3 > V2. This is an adiabatic expansion and we

have ∆U2,3 = W2,3;

3. In the third step, we put the system in contact with the heat reservoir at Tc and

compress the piston slowly, so that the temperature of the gas does not change, until

it reaches the volume V4 < V3. This is an isothermal compression, and an amount of

heat Qc will flow from the system to the reservoir. Here, we have Qc = −W3,4;

4. Finally, we take the cylinder out of contact with the cold reservoir and compress the

piston slowly until the temperature reaches Th, an adiabatic compression. This closes

the cycle (see Fig.2.1). We can make all of these steps again or reverse the order,

because it is composed of four reversible processes. Then, this cycle is reversible.

This is the Carnot cycle, by making the thermodynamic analysis of it [50] one obtains that

its efficiency is precisely that given in Eqn. (2.6).

Now we consider, once again, a machine operating between a hot bath, with temperature

Th and a cold bath with temperature Tc, where Tc < Th. To simplify the above analysis,

we assume that each cycle operates very quickly (like the engine of a car) so that we can

describe the thermodynamic quantities in a continuous fashion, instead of stroke-based.

After the engine has reached a limit cycle, the rate of change of the internal energy and

entropy will therefore no longer change, i.e. the limit cycle is the steady state cycle. The
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Figure 2.1: Carnot cycle: The red line corresponds to step (1), the isothermal expansion
at Th, while the blue line corresponds to step (3), the isothermal compression at Tc. The
black lines correspond to the adiabatic process.

1st and 2nd laws therefore yield:

dU

dt
= Q̇h + Q̇c + Ẇ = 0 (2.7)

dS

dt
= Π +

Q̇h

Th
+
Q̇c

Tc
= 0 (2.8)

Using these relations, we can rewrite the efficiency as,

η = − Ẇ
Q̇h

= 1 +
Q̇c

Q̇h

=

(
1− Tc

Th

)
− Tc

Q̇h

Π = ηC −
Tc

Q̇h

Π (2.9)

from Eqn. (2.9) we see that the last term is always non-positive (because Π ≥ 0). Whence,

the efficiency of the machine will be smaller than Carnot’s efficiency due to the entropy

production. It will only be a Carnot machine if Π = 0.

Clausius’ statement

"Heat can never pass from a colder to a warmer body without some other change,

connected therewith, occurring at the same time."

Consider a process where we have two bodies, a hot one at Th and a cold one at Tc,
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where Tc < Th. We assume there is no work involved, so the 1st law gives,

Q̇c = −Q̇h, (2.10)

and the 2nd law, reads

Π = −Q̇h

Th
− Q̇c

Tc
≥ 0. (2.11)

Combining them,

Π =

(
1

Tc
− 1

Th

)
Q̇h ≥ 0. (2.12)

Since (1/Tc − 1/Th) > 0, Eqn.(2.12) yields Q̇h ≥ 0. Physically, it means that heat

flows from the hotter body to the cold one. This result is astonishing, the first law only says

that energy must be conserved. So, in principle, as long as it is satisfied, we could have a

heat flow from a colder body to a hot one. But the entropy production imposes a restriction

on the flow of energy, this process is not allowed by nature unless we do something else.

Kelvin-Planck statement

"It is impossible to devise a cyclically operating device, whose the sole effect is to

absorb energy in the form of heat from a single thermal reservoir and to deliver an

equivalent amount of work."

Consider there is one heat bath at temperature Th only, and there is no change in the

internal energy ∆U . Then, the 1st and 2nd laws reads,

Ẇ = −Q̇h, (2.13)

Π = −Q̇h

Th
=
Ẇ

Th
. (2.14)

Eqn.(2.14) says that positive work means there is an external agent performing work

on the system.

The above analysis therefore shows quite clearly why entropy production is a central

quantity in the characterization of thermodynamic processes out of equilibrium.
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2.2 Entropy production and non-equilibrium steady states

We have seen that the entropy balance can be written as (see Eqn. (2.5)),

dSt
dt

= Πt − Φt,

where Πt is the entropy production rate and Φt is the entropy flux rate. We say the system

has reached a steady state when physical quantities do not change in time anymore. For

an open system, there are two different kinds of steady states. We say the system is in an

equilibrium steady state when it does not produce any entropy and there is no flux either,

i.e. Π = Φ = 0. Otherwise, if the system has a finite amount of entropy production rate

Π = Φ > 0 we say it has reached a non-equilibrium steady state (NESS). Hence, NESSs

are characterized by a finite entropy production rate.

The theory of entropy production one has to use depends on the type of stochastic

process under study. For classical systems, approaches based on classical master equations

[51, 52] and Fokker-Planck equation [15, 53–56] have been extensively used.

In particular, in Ref. [56] the authors have developed a theory focused on systems

described by linear Langevin equations. As an example, they studied the entropy production

of a RL circuit in series. They showed that the NESS entropy production of such system is

given by,

ΠRL =
E 2

RT
, (2.15)

where E is the electric potential of the battery, R is the resistance and T is the absolute

temperature. This is the same result first obtained by Landauer in Ref. [57]. The system

is completely classical as both the energy input, provided by the battery and the energy

output due to dissipation thorough the system take place in a incoherent way. Remarkably,

we will find a structurally similar result for a quantum system presenting criticality in

Chap.5, that is why we mention Eqn. (2.15) at this point.
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2.3 Entropy production for quantum systems

Regarding quantum systems, given a state ρ, von Neumann [14, 58] proposed the

following definition of the entropy,

SvN = − tr{ρ ln ρ} (2.16)

where ln denotes the natural matrix logarithm. If the density matrix ρ is diagonalized as in

Eqn.(1.2), we have

SvN = −
∑
i

pi ln pi (2.17)

where pi is the population of the state |ψi〉. It measures the lack of information about the

system. It is null in two cases only, if pi = 0 or pi = 1, which means there is no chance

of finding the system in state |ψi〉 or it is certainly in state |ψi〉, respectively. Otherwise,

0 ≤ SvN ≤ ln d, where d is the dimension of a finite dimensional Hilbert space.

The entropy flux for an open quantum system, described by a Lindblad master equation

as Eqn.(1.5), is defined as,

Φ = − 1

T
tr{HD(ρ)} =

ΦE

T
. (2.18)

where ΦE is the energy flux from the system to the environment. Hence it relates entropy

flux with heat, in accordance with classical thermodynamics. By Eqn.(2.5) we have that

the von Neumann entropy production is

ΠvN =
dSvN

dt
+ Φ. (2.19)

The von Neumann formulation allows one to write Eqn.(2.19) in the following form,

ΠvN = −∂tKvN(ρ||ρeq) ≥ 0 (2.20)

where KvN(ρ||ρeq) = tr{ρ(ln ρ− ln ρeq)} is the von Neumann relative entropy, which

measures how distant the state ρ is from the equilibrium state ρeq = exp{−βH}/Z, where

β and Z are constants and H is the system Hamiltonian (it will be better understood in the
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next chapter). This enables us to interpreted entropy production as a measure of how far

from the equilibrium state ρeq, the state ρ is.

Despite the simple and familiar physical interpretations for the entropy production and

flux, the von Neumann formulation combined with the way one defines the entropy flux

rate in Eqn. (2.18), which is inspired by the classical structure and allows us to identify

the entropy production as in Eqn. (2.19), leads to unphysical, divergent results when

one takes the limit T → 0. The zero temperature limit is commonly used in quantum

optics, where the dynamics is well behaved and experimental results are theoretically

reproduced in several situations. Even the entropy balance dS/dt is finite, despite the

divergence of its individual contributions. This strange behavior was coined as the zero

temperature catastrophe [59]. This is a clear inconsistency of the theory and it has led

to approaches based on quantum Fokker-Planck equations using quantum phase space

methods [27, 60, 61], inspired by the classical context [15, 52]. The same idea that will be

used in Chap.4.



Chapter 3

Phase transitions

Last chapter was about thermodynamics, which allows one to determine relationships

between various properties of materials with minimal information about its internal struc-

ture. For instance, to describe a glass of water one only needs to talk about its volume V ,

temperature T and pressure p, without ever thinking about all the complex interactions

happening between the various molecules of water inside the glass.

However, due to the kinect interpretation, we know that thermal phenomena can be

reduced to the study of the random motions of particles, so that the study of heat can be done

in mechanical terms. Statistical mechanics is the bridge between the microscopic world, in

which the system is composed of an enormous number of particles (an ensemble), and the

macroscopic world, where we observe thermodynamic properties. Due to the randomness

of the microscopic world, a detailed description of the state becomes unfeasible and one

considers only the average properties of the ensemble. There are several ensembles, the

most important being the Canonical (Gibbs) ensemble, which will be defined in the next

section [6].

Among all phenomena statistical mechanics sheds light on, phase transitions are the

most remarkable. They are abrupt changes in the characteristics of a physical system at

certain specific points as a function of some parameter. They can happen for equilibrium

or non-equilibrium states, in classical and quantum mechanical systems. The physical

origin of phase transitions is due to interactions and a thermodynamic limit, which means

that when we have a system that displays non-trivial interactions between a large number

of particles one can expect a critical behavior to emerge. Basically, phase transitions are

48
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all about some kind of competition between different terms of the operator that governs

the dynamics (Hamiltonian or Liouvillian).

In this chapter, we will briefly review some concepts concerning classical and quantum

phase transitions and study an example of a quantum phase transition in the Lipkin-

Meshkov-Glick model. Then, we will discuss classical non-equilibrium phase transitions,

where the entropy production rate has been shown to be able to characterize the critical

behavior. Finally, we introduce and discuss driven-dissipative phase transitions, which are

the critical systems of interest of the present work.

3.1 Equilibrium phase transitions: classical and quan-

tum

In principle, any physical system can be described by a Hamiltonian operator that

depends on some parameter H(g), for which we can find the eigenvalues and eigenvectors,

H(g) |En〉 = En(g) |En〉 . (3.1)

We can now define thermal equilibrium according to statistical mechanics: a physical

system described by a Hamiltonian H(g) is in thermal equilibrium at temperature T if the

probability of finding the system in an eigenstate |En〉 is given by the Gibbs distribution

Pn =
e−βEn(g)

Z
, (3.2)

where β = 1/kBT , kB is the Boltzmann’s constant and Z is a normalization constant,

called partition function

Z =
∑
n

e−βEn . (3.3)

The partition function is the central object of equilibrium statistical mechanics as it

encodes all relevant equilibrium thermodynamic quantities. It is related to the free energy

of the system via the identity (we set kB = 1 from now on),

Z = e−βF → F = −T lnZ (3.4)
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This equality is a bridge between the probabilities of the microscopic world that are

encoded in the partition function and the macroscopic world, the thermodynamics of the

system, through the free energy.

A classical phase transition occurs when thermodynamic potentials or some of its

derivatives becomes non-analytic as a function of some parameter. For a temperature

driven phase transition, the free energy F exhibits a non-analytic behavior at a critical

temperature Tc. As an example of this type of transition we can imagine the liquid-vapor

transition of water at a constant pressure p. In this scenario, there is a competition between

the bounding energy of the molecules and the kinect energy they gain with temperature

increase.

It is possible to observe phase transitions at zero temperature, these are the so called

quantum phase transitions (QPT) [25]. In this case, some parameter g which measures the

relative strength between competing terms in the Hamiltonian can change the ground state

of the system, for a specific critical value gc. This is the physical origin of the QPT. If |ψ0〉
is the ground state with energy E0(g) and |ψ1〉 is the first excited state with energy E1(g)

of the Hamiltonian H(g), then the energy gap is defined as the difference

∆(g) = E1(g)− E0(g), (3.5)

and the QPT is associated with the closure of this gap, i.e. it takes place when ∆(gc) = 0.

To properly describe phase transitions it is useful to introduce a quantity denominated

order parameter, which was first introduced by Lev Landau, in his theory of spontaneous

symmetry breaking [9]. Its main property is to be null in one phase and non-zero in the

other. The order parameter idea is extremely important and powerful because it works for

both equilibrium or non-equilibrium phase transitions, in classical or quantum systems.

3.1.1 Example of a QPT: the Lipkin-Meshkov-Glick model

The Lipkin-Meshkov-Glick (LMG) [62] model describes the dynamics of a single

macro-spin by the following Hamiltonian,

H = −hJz −
γx
2j
J2
x , (3.6)
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where j is the total angular momentum, h ≥ 0 is the transverse magnetic field and γx ≥ 0

is the squeezing1 strength along the x-direction (critical field hc = γx). This Hamiltonian

is symmetric under the transformation Jx → −Jx and Jz → Jz, which is a discrete Z2

symmetry. The thermodynamic limit corresponds in this case to j →∞. In such a limit

the ground state (GS) of the system approaches a spin coherent state [63], defined by

|θ, φ〉 = e−iφJze−iθJy |j〉 , (3.7)

where θ ∈ [0, π], φ ∈ [0, 2π] and is |j〉 is the eigenstate of Jz with eigenvalue j. Bosonic

coherent states are the quantum states that minimize the uncertainty relation, so they are

the most "classical" states allowed by QM, as discussed in Sec.1.3. Spin coherent states

share the same particularity: they make the averages of the spins to be equal to classical

spins,

S = (〈Jx〉, 〈Jy〉, 〈Jz〉) = j(sin θ cosφ, sin θ sinφ, cos θ), (3.8)

where 〈Ji〉, i = x, y, z is the average of the macrospin Ji taken with respect with the state

(3.7). Hence, the average energy in spin coherent states of Eqn.(3.6) is given by, in leading

order 2,

E(θ, φ) = 〈θ, φ|H |θ, φ〉

= −hj cos θ − γxj

2
sin2 θ cos2 φ.

(3.9)

The GS is found by minimizing Eqn.(3.9) with respect to the angle variables, ∇E(θ, φ) =

0, which leads to the set of equations,

sin θ(h− γx cos θ cos2 φ) = 0

sin2 θ(γx cosφ sinφ) = 0.

(3.10)

There are two possible solutions for the set of Eqns.(3.10). The trivial one is θ = 0, in this

1Squeezing acts by decreasing the variance, i.e. the quantum uncertainty of the angular momentum in
a given direction.

2The term 〈θ, φ| J2
x |θ, φ〉 ≈ j2 sin θ cosφ + O(j). In the thermodynamic limit we neglect the terms

O(j) because, due to 1/(2j), their contribution is of order O(0).
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Figure 3.1: Magnetization of the LMG model: We plot the magnetization along the x
and z direction as given by Eqns.(3.13) and (3.14). The black vertical line represents the
critical point. The squeezing along the x direction was set γx = 1

case φ is arbitrary. But it is a minimum only when h > hc. The other solution is given by,

cos θ =
h

γx
≤ 1 (3.11)

with φ = 0 or φ = π and is valid only if,

h ≤ hc = γx (3.12)

It is insightful to look at the magnetization along the x and z directions. They are given by,

mx =
〈Jx〉
j

= sin θ cosφ =


1
γx

√
h2
c − h2, h ≤ hc

0, h ≥ hc

(3.13)

and,

mz =
〈Jz〉
j

= cos θ =


h
γx
, h ≤ hc

1, h ≥ hc.

(3.14)

In Fig.3.1 we can see the plot of both magnetizations. They have a kink at the critical

point h = γx. The order parameter is mx, since it is non-zero in the broken symmetry
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phase and identically zero in the other phase (the symmetric one) where the magnetization

in the z direction is maximal.

3.2 Classical non-equilibrium phase transitions and en-

tropy production

Non-equilibrium phase transitions occur between two non-equilibrium steady states

(NESSs). As discussed in the introduction and in Sec. 2.2, a NESS is a state where there is

a constant flux of some physical quantity, such as charge and is characterized by a finite

amount of entropy production rate Π = Φ > 0. Moreover, what distinguishes NESSs from

equilibrium steady states (ESS) is that the later satisfy the detailed balance. This concept is

as follows, let Mi,j be the transition probability from state j to state i, and let P ∗i denote the

ESS distributions, detailed balance says that Mi,jP
∗
j = Mj,iP

∗
i , which means that going

from state j to state i can occur with the same probability of the reversal process. It is

related to the invariance under time reversal. However, the aforementioned fluxes lead to

NESS distributions P ∗i that break the detailed balance condition and it creates probability

currents in phase space that will be needed to characterize these states [47].

When a system is not in thermal equilibrium it becomes very hard to describe it because

of the lack of a function such as the partition function Eqn. (3.3). Yet, one can use the idea

of an order parameter to describe these type of phase transitions. However, this kind of

description hides the non-equilibrium nature, and most importantly its behavior when the

transition happen.

For that reason, it becomes interesting to study the behavior of entropy production, as

it can give insights and even characterize them. Regarding this matter, there are several

studies in the classical context [20–24] where the entropy production was calculated,

indicating that it is always finite across a non-equilibrium transition and presents a kink

or a discontinuity. Indeed, this behavior was shown to be universal for classical systems

described by classical Pauli master equations and breaking a Z2 symmetry in Ref. [2].

In Ref. [2], they consider the majority voter model [47], which presents both continuous

and discontinuous phase transitions, depending on some parameters. This model is

described by a classical master equation, for such systems one can use the Schnakenberg
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expression for entropy production,

Πt =
kB
2

∑
i,j

(Mj,iPi(t)−Mi,jPj(t)) ln
Mj,iPi(t)

Mi,jPj(t)
. (3.15)

This model is known to not satisfy the detailed balance, hence there is a finite entropy

production rate. These facts characterize its non-equilibrium nature.

The model is defined as follows: consider an arbitrary lattice where each site i can

assume integer values σi = 0, 1, ..., q − 1. The dynamics depends on the fraction wσi =

(1− θ)∑k
j=1 δ(σ

′
i, σj) + θδ(σ′i, σi), where σj denotes the spin of the k nearest neighbors

of site i (k is the conectivity parameter). The term θδ(σ′i, σi) is the local spin dependence,

proportional to the inertial term θ and σ′i represents the spin of the majority neighborhood.

We define a misalignment parameter f , so that with probability 1 − f a local spin σi

changes to σ′i and with probability f it does not. We can think of the model as describing a

community of individuals where each one has its own opinion about some subject and all

of them are debating about it. As time goes by, they can change their opinion depending

on their neighbors, we have individuals that change their minds according to the majority

and others that do not. It was demonstrated that a discontinuous phase transition happens

for large inertia term θ. Some plots for this model are shown in Fig. 3.2.

The authors consider a bidimensional lattice with conectivity k = 20 and inertial

parameter θ = 0.375. Panel (a) and (b) shows, respectively, the NESS entropy production

and the order parameter |m| at the vicinity of the critical parameter f0, the inset shows

the behavior of the NESS entropy production for a larger range of f , we observe that the

entropy production is finite and has a discontinuity.

Panel (c) is the plot of the variance χ = N(〈m2〉 − |m|2) at the vicinity of the

critical point, we note that as the volume N increases, the variance presents a finite peak

approaching f0. This is a finite size effect because the variance should diverge at the

critical point. We must bear in mind that phase transitions occurs when one defines a

thermodynamic limit, in this case that would be N → ∞ (in the example of Sec. 3.1.1

it was the spin j → ∞), but it is not possible to have something really infinite when

performing computational simulations. It actually becomes harder to do when the system

size increases. Although in this sense we cannot say we observe "real" phase transitions
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Figure 3.2: Majority vote model presenting a discontinuous phase transition: This
panel was taken from Ref. [2]. The parameters were set k = 20 and θ = 0.375. The
plots are for different values of the system volume N as shown in panel (b). Panel (a)
shows the steady entropy production rate Π,(b) shows the order parameter |m| and (c)
shows the variance χ versus f . All at the vicinity of phase coexistence. Dashed lines:
Crossing point among entropy production curves. Continuous lines in (a) and (b) corre-
spond to the theoretical description, Eqn.(28) of the paper. Top and bottom insets: Π for
larger sets of f and collapse of data by taking the relation y = (f − f0)N , respectively.
In (d), the plot of the maximum of χ, minimum of U4 and equal area order-parameter
probability distribution versus N−1.

in numerical simulations, it is true that a large enough finite system will have a phase-

transition-like behavior, with its singularities and divergences smoothed. Hence, in order to

use the finite size results for infinite system it is important to know how the finite variance

change when one increases the system size. According to standard finite-size scaling, the

variance behaves as χ = N
γ
ν g(N

1
ν |f − f0|), where f is the control parameter, g being

a scaling function and γ, ν the critical exponents. If one obtained the right critical point

and critical exponents, then the data should collapse for every value of N , and we can

extrapolate the results to the infinite system, where the phase transition takes place. This

is shown in the inset of panel (c), where we observe data collapse for y = (f − f0)N . It

indicates the universality of the entropy production behavior.

In panel (d), we see the plot of the maximum of the variance χ, the minimum of the

function U4 = 1 − 〈m4〉/(3〈m2〉2), which is the function used to find the critical value
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f0 as the point where, for diferent sizes, the curves intersect each other and equal area

order-parameter probability.

Surprisingly, we will encounter a similar behavior, as shown in the insets of Fig.3.2

for one of the contributions to the entropy production in the quantum context at the end of

Chap.5.

3.3 Driven-dissipative phase transitions

Driven-dissipative phase transitions (DDPTs) occur in systems whose state is governed

by a Lindblad master equation of the form,

∂tρ = −i[H0 + i
∑
i

Ei(a
†
i − ai), ρ] +

∑
i

2κi

(
aiρa

†
i −

1

2
{a†iai, ρ}

)
,

where H0 is the Hamiltonian of a particular model, Ei is the amplitude of the driving laser

associated with the mode ai in the interaction picture and we have a zero temperature

dissipator (see Eqn.(1.13)). We note that the energy input is coherent while the dissipation

occurs incoherently.

In fact, we can be more general and consider an evolution described by a Liouvillian

that depends on a parameter g, which will be denoted by L (g),

∂tρt = L (g)ρt (3.16)

We can apply the vectorization procedure (see App. D) and obtain the equation,

∂tvec(ρt) = L̂ (g)vec(ρt) (3.17)

where L̂ stands for the vectorized Liouvillian. From Eqn.(3.17) the solution is simply

given by vec(ρt) = exp
{

L̂ (g)t
}

vec(ρ0). So that all information we need in order to

know the state at time t is the spectrum of L̂ . The Liouvillian spectrum is complex and

has two important properties [13, 64],

1. It always has a zero eigenvalue, λ0 = 0 and the steady-state is associated with it

L̂ (g)vec(ρNESS) = 0;
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2. The eigenvalues are always negative, due to the stability of the state. If it were

positive, then the exponential would diverge.

We may order the eigenvalues as 0 = |<[λ0(g)]|< |<[λ1(g)]|< ... < |<[λn(g)]|. The

eigenvalue λ1(g) is the one whose real part is the closest to zero. It plays a similar role

as the first excited state in the energy gap ∆(g) in QPTs. Then, a dissipative phase

transition is defined to happen when the real part of the first non-zero eigenvalue vanishes

<[λ1(gc)] = 0 [65].

Physically, the interplay between the unitary dynamics and the dissipation is responsible

for the emergence of the phase transition. Indeed, the system will eventually relax to a

steady state as we have seen in Sec.1.2.2. The non-equilibrium nature can be physically

visualized by the following reasoning: consider an optical cavity excited by a laser. The

laser will continuously insert photons inside the cavity, this is the driving. But, photons

can also leak out to the environment by a semitransparent mirror, this is the dissipation

(see Fig.4.1). The competition between the driving and dissipation will lead the system

to a NESS. In this sense, DDPTs are the non-equilibrium analogue of quantum phase

transitions.

The main advantage of exploring DDPTs is due to the possibility of realizing phases

that have no equilibrium counterpart. It provides a richer physics playground and this is

due to the several terms of the model H0 that will compete not only between them as in

the QPT, but also with the dissipation channel to determine the NESS.

DDPTs have been extensively studied theoretically in recent years for various platforms,

to mention some we can talk about nonlinear photonic resonators [65–74] , spin lattices

[75–82] and exciton-polariton condesates [83–85].

The main concepts of this chapter can be summarized into the following table [77]:
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TPT QPT DPT

Operator
Hamiltonian

H = H†

Hamiltonian

H(g) = H†(g)

Liouvillian

L (g)

Relevant

quantity

Free energy

F = −T lnZ

Energy eigenvalues

H(g) |ψi〉 = Ei(g) |ψi〉
Eigenvalues

L (g)ρ = λi(g)ρ

State
Gibbs

ρ ∝ exp{−βH}
Ground state

(H(g)− E0(g)) |ψ0〉 = 0

Non-equilibrium

steady state

L (g)ρ = 0

Phase

transition
Non-analiticity in F

Energy gap

∆(g) = E1(g)− E0(g)

Vanishing real part of eigenvalue

closest to zero

<[λ1(gc)] = 0

Table 3.1: Table of phase transitions: The first colunm stands for thermal phase transi-
tions (TPT), the sencond for quantum phase transition (QPT) and the last for Dissipative
phase transitions (DPT). Based on the table of Ref. [77]

Next chapter, we will put forward our theory of entropy production suited for driven-

dissipative phase transitions, the key result of this dissertation.



Chapter 4

Wehrl entropy production rate

In this chapter we develop and present the main result of this work, the theoretical frame-

work coined as Wehrl entropy production rate. A phase transition can always be character-

ized by an order parameter, but such quantities do not hold neither the irreversible nature of

the system nor the role of quantum fluctuations. We recall that entropy production serves

to characterize NESSs [47], as it measures how far from equilibrium a quantum state is.

Since driven-dissipative phase transitions are the quantum analogue of non-equilibrium

phase transitions, some natural questions one can come up with are:

1. How does Π behaves as one crosses the transition?

2. What is the role of quantum fluctuations?

Driven-dissipative phase transitions occur at zero temperature and the states are not

gaussian, in general. These are the technical problems that arises when trying to define

entropy production for critical quantum systems. The usual theory of entropy production

breaks down for zero temperature, leading to the zero temperature catastrophe [59], and

the non-gaussianity of the state prevents us from using the Wigner entropy production rate

proposed in Ref. [27], once the Wigner function can be negative and bad behaved near the

criticality.

Our proposal is to use the Husimi Q-function to define entropy production for systems

that undergo driven-dissipative phase transitions. The chapter is organized as follows: first,

we use the Wehrl entropy [86] to obtain closed expressions for the entropy production and

entropy flux rate for general driven-dissipative systems described by a Lindblad master

59
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equation, that can be mapped into a Fokker-Planck like equation [15, 53], it is applied to

example 2 of Chap.1 for the driven-dissipative harmonic oscillator at zero temperature

where one can easily obtain an analytical expression for the NESS entropy production.

Finally, the results are specialized for critical driven-dissipative systems and the role of

quantum fluctuations becomes clear. This chapter is based on Ref. [28]

4.1 Wehrl entropy production rate for driven-dissipative

systems

We consider a bosonic system described by a set of modes ai subjected to external

coherent drives with amplitude Ei and incoherent photon losses at rate κi (see fig. 4.1)

evolving according to the Lindblad master equation

∂tρ = −i[H0 + i
∑
i

Ei(a
†
i − ai), ρ] +

∑
i

2κi

(
aiρa

†
i −

1

2
{a†iai, ρ}

)
, (4.1)

where the first term is the coherent evolution of the dynamics, H0 is the Hamiltonian of the

model and the sum runs over all modes. The second term is the usual Lindblad dissipator

describing the incoherent one-photon losses for the enviroment at zero temperature (see

Eqn. (1.13)).

Figure 4.1: Standard driven-dissipative scenario: an optical cavity filled with a non-
linear medium subjected to an external pump E and a photon loss at rate κ.

We move to phase space by defining the Husimi Q-function Q(µ, µ̄) = 〈µ| ρ |µ〉 /π
where |µ〉 =

⊗
i |µi〉, with ai |µi〉 = µi |µi〉 being coherent states. Using Eqns. (1.31) the
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master equation (4.1) is converted into a Quantum Fokker-Planck equation

∂tρ→ ∂tQ(µ, µ̄) = U (Q) + D(Q), (4.2)

where U (Q) stands for the unitary differential operator operator (which will depend on

the specific form of the Hamiltonian H0) and D(Q) is the differential operator related to

the dissipator. For the sake of generality, we consider the finite temperature dissipator as in

Eqn. (1.13),

D(ρ) =
∑
i

2κi(Ni + 1)

(
aρa† − 1

2
{a†a, ρ}

)
+ 2κiNi

(
a†ρa− 1

2
{aa†, ρ}

)
(4.3)

where Ni = (eωi/T − 1)−1 is the Bose-Einstein occupation with ωi being the free oscillator

frequency of each mode ai. It leads to,

D(Q) =
∑
i

κi(2Q+ µi∂µiQ+ µ̄i∂µ̄iQ+ 2(Ni + 1)∂µ̄i∂µiQ). (4.4)

At this point it turns out to be convenient to define the quantity,

Ji(Q)
.
= −κi[µQ+ (Ni + 1)∂µ̄Q], (4.5)

which becomes for Ni = 0 (zero temperature limit),

Ji(Q) = −κi(µiQ+ ∂µ̄iQ). (4.6)

It allows one to write Eqn. (4.4) more neatly as,

D(Q) = −
∑
i

(∂µiJi(Q) + ∂µ̄i J̄i(Q)), (4.7)

so that the dissipative operator can be viewed as a divergence in the complex plane.1 The

quantities Ji(Q) have a rich physical meaning. First, we highlight that by introducing

Ji(Q) one can interpret Quantum Fokker-Planck equation (4.2) as a continuity equation

for the quasiprobability distribution Q(µ, µ̄). Secondly, we note that when the system

1Explicitly, one can see that D(Q) = −∇ · J, where ∇ = (∂µi
, ∂µ̄i

), J = (Ji, J̄i)
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reaches the vacuum state, defined as |0〉 = |00.....0〉, which is the fixed point (equilib-

rium state) of the dissipator, i.e. D(ρvac) = 0 where ρvac = |0〉 〈0|, the Q-function

will be Qvac(µ, µ̄) = 1
π
|〈µ|0〉 |2= 1

π
exp
{
−∑j|µj|2

}
and then it is trivial to verify that

Ji(Qvac) = 0. Thus, the quantities Ji(Q) vanish in the equilibrium state of the dissipator

(which will, in general, not be the steady-state of the full master equation due to the Hamil-

tonian contributions). All these observations induces us to interpret Ji(Q) as irreversible

quasiprobability currents in the quantum phase space associated with the mechanism

of photon losses (dissipation). We can say in advance that these quantities will have a

substantial role in entropy production [15, 47, 53].

To proceed we choose as our entropic quantifier the Wehrl entropy defined as [86],

S(Q) = −
∫
d2µ Q lnQ, (4.8)

since Q(µ, µ̄) is the probability distribution of a heterodyne measurement, we have that

S(Q) can be interpreted as the entropy of the system convoluted with additional noise due

to the heterodyning measurement. Indeed, one can show that it is an upper bound for the

von Neummann entropy S(ρ) ≤ S(Q) [86].

We differentiate (4.8) in time to obtain,

dS(Q)

dt
= −

∫
d2µ

d

dt
[Q lnQ]

= −
∫
d2µ ∂tQ lnQ.

Our goal now is to separate this as in Eqn. (2.5) ,

dS(Q)

dt
= Πt − Φt, (4.9)

where Πt is the rate of entropy production within the system and Φt is the entropy flux

rate from the system to the reservoir. Inserting Eqn.(4.2) into (4.9), inspired by a standard

procedure developed for classical systems in Ref. [15] we identify the entropy production
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rate and the entropy flux rate as,

Πt
.
= ΠU + ΠJ , (4.10)

ΠU = −
∫
d2µ U (Q) lnQ, (4.11)

ΠJ − Φt
.
= −

∫
d2µ D(Q) lnQ. (4.12)

Physically Eqn. (4.12) essentially amounts to the fact that dissipation is an irreversible

process, so that it must be related to the flux of entropy and must produce some entropy.

The unitary dynamics is identified as a contribution to the entropy production because it is

related to something that happens within the system, the act of heterodyning may produce

entropy for certain systems, it depends on H0 (it is trivial to demonstrate that the pumping

contribution vanishes). We proceed by identifying the entropy production rate and entropy

flux rate associated with dissipation. The only assumption we make is that the Q-function

and its derivatives vanish at the infinity, applying integration by parts,

ΠJ − Φt = −
∫
d2µ D(Q) lnQ

=

∫
d2µ

∑
i

(∂µiJi(Q) + ∂µ̄i J̄i(Q)) lnQ

= −
∑
i

(∫
d2µ

∂µiQ

Q
Ji(Q) +

∂µ̄iQ

Q
J̄i(Q)

)
=

∑
i

2

κi(Ni + 1)

∫
d2µ
|Ji(Q)|2
Q

+
∑
i

∫
d2µ (µiJ̄i + µ̄iJi)

=
∑
i

2

κi(Ni + 1)

∫
d2µ
|Ji(Q)|2
Q

−
∑
i

2κi
Ni + 1

(〈a†ia〉 −Ni),

where in the third line we used Eqn. (4.5) to write ∂µ̄iQ

Q
= − 1

(Ni+1)

[
1
κi

Ji(Q)
Q

+ µi

]
. Whence,

we find for the entropy flux rate,

Φt =
∑
i

2κi
Ni + 1

(〈a†ia〉 −Ni), (4.13)
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which, for Ni = 0 (zero temperature limit) simplifies to,

Φt =
∑
i

2κi〈a†ia〉, (4.14)

which is a simple and beautiful formula. The flux of entropy to the reservoir is directly

proportional to the number of photons inside the cavity: the more photons you have, the

more the dissipator will act throwing them away, then the greater the flux will be. For the

dissipative contribution to the entropy production we find,

ΠJ =
∑
i

2

κi(Ni + 1)

∫
d2µ
|Ji(Q)|2
Q

≥ 0, (4.15)

it is directly related to the irreversible quasi-probability currents, for each mode, in quantum

phase space. Indeed, it can be seen as the average of |Ji(Q)/Q|2, where Ji(Q)/Q may be

interpreted as the velocity of the currents according to Ref. [15], then ΠJ is a sum over the

average of the squared velocities. Thus, the emergence of irreversibility at the quantum

level is associated with the probability current of the dissipative process.

The unitary contribution to the entropy production (4.11) is a model dependent term, it

may vanish or not. We will soon specialize it for critical systems where it is possible to

provide a formula for this contribution.

4.1.1 Application: driven-dissipative quantum harmonic oscillator

As a simple, yet illuminating, application of our results, we revisit example 2 of Chap.1.

Consider a single bosonic mode with HamiltonianH0 = ∆a†a, driven with an amplitude E

and subjected to dissipation at zero temperature with rate κ. Explicitly, Eqn.(4.1) becomes

∂tρ = −i[∆a†a+ iE (a† − a), ρ] + 2κ

(
aρa† − 1

2
{a†a, ρ}

)
, (4.16)

The unitary differential operator is U (Q) = U∆ + UE , where

U∆ = i∆(µ∂µQ− µ̄∂µ̄Q), (4.17)

UE = −E (∂µQ+ ∂µ̄Q) (4.18)
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To compute the ΠU explicitly, we make use of integration by parts repeatedly and assume

that Q(µ, µ̄) and its derivatives vanishes as µ goes to infinity. Then,

Π∆ = −
∫
d2µU∆ ln(Q)

= −i∆
∫
d2µ ln(Q)µ∂µQ− ln(Q)µ̄∂µ̄Q

= −i∆
(
−
∫
d2µ(Q lnQ+ µ∂µQ) +

∫
d2µ(Q lnQ+ µ̄∂µ̄Q)

)
= −i∆

(
−
∫
d2µµ∂µQ+

∫
d2µµ̄∂µ̄Q

)
= −i∆

(
−
∫
d2µQ+

∫
d2µQ

)
= 0

and,

ΠE = −
∫
d2µUE ln(Q)

= E

∫
d2µ ln(Q)∂µ̄Q+ ln(Q)∂µQ

= −E

∫
d2µ∂µ̄Q+ ∂µQ = 0

Hence ΠU = 0, which yields Πt = ΠJ and Φt = 2κ〈a†a〉t. The NESS entropy production

rate is such that dS/dt = 0, which implies

ΠSS = ΦSS = 2κ〈a†a〉SS. (4.19)

The value of 〈a†a〉SS can be easily found by writing the temporal evolution for the moments

(we repeat these equations for the sake of clarity),

∂t〈a〉 = −(i∆ + κ)〈a〉+ E (4.20)

∂t〈a†a〉 = −2κ〈a†a〉+ E (〈a†〉+ 〈a〉) (4.21)
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and setting them to zero. The results are,

〈a〉SS =
E (κ− i∆)

κ2 + ∆2
, (4.22)

〈a†a〉SS =
E 2

κ2 + ∆2
. (4.23)

Finally, the NESS entropy production rate will be

ΠSS =
2κE 2

κ2 + ∆2
. (4.24)

In case we have a driven-dissipative cavity ∆ = 0 we find that ΠSS = 2E 2/κ, which

is similar to the entropy production of the RL circuit discussed in 2.2, ΠRL = E 2/RT .

It is important to notice that, although the results have the same structure, the physical

processes behind them are quite different, in the RL circuit both energy and dissipation

occur in an incoherent way, while in the driven cavity the energy input is coherent.

Our formalism also enables us to obtain the dynamics of the entropy production rate.

To illustrate this, we consider a quench scenario for its simplicity: we choose an initial

E0 and let the system relax to the corresponding NESS, then at time t = 0 the amplitude

is abruptly changed to Ef , the temporal evolution of the system is given by solving the

Lindblad equation with this new parameter. After some transient dynamics it settles down

into the NESS of the final amplitude. In fig. 4.2 we show the entropy production as a

function of time in this scenario.

In panels (a) and (c) we simply have a driven-dissipative cavity, as ∆ = 0, in this

case the entropy production monotonically increases (decreases) as Ef > (<)Ei until it

reaches the value for the NESS entropy production of the final pump and it never becomes

greater (lower) than this value. In panels (a) and (c) we simply have a driven-dissipative

cavity, as ∆ = 0, in this case the entropy production monotonically increases (decreases)

as Ef > (<)Ei until it reaches the value for the NESS entropy production of the final pump

and it never becomes greater (lower) than this value.

In panels (b) and (d) we have the harmonic oscillator term ∆ = −2, for quenchs such

that Ef > (<)Ei. During the transient dynamics the entropy production becomes greater

(lower) than the entropy production of the NESS for which the system will relax. Hence
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Figure 4.2: Entropy production rate for a driven-dissipative cavity: Entropy produc-
tion computed numerically in a quench dynamics scenario. In the first column ∆ = 0
while in the second ∆ = −2. Panels (a) and (b) show the quench from Ei = 0.5 to
Ef = 1.5. Panels (c) and (d) show the quench from Ei = 1.5 to Ef = 0.5. The dashed
horizontal lines represent the NESS entropy production as given by Eqn. (4.24). The
dissipation rate is κ = 1/2.

the ∆ contribution acts by taking the system farther from equilibrium when Ef > Ei. In

the case Ef < Ei there is a certain time where the entropy production tends asymptotically

to zero, i.e. at this time the dissipator is almost leaving no photons inside, and the system

gets close to the equilibrium, but the continuous pump prevents it from happening.

4.2 Thermodynamic limit in critical systems

Now we reach the core result of this dissertation, where we define the thermodynamic

limit for driven-dissipative systems at zero temperature, i.e. along this section we consider

Ni = 0, and specialize the results of the last section to critical systems. To do so we

need to define the notion of a thermodynamic limit. For the class of driven-dissipative

systems described by Eqn.(4.1) criticality emerges when the pump intensity becomes

very large, Ei → ∞, which physically translates to injecting a lot of photons into the
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cavity. To represent the thermodynamic limit we define an adimensional parameter N and

parametrize

Ei = εi
√
N, (4.25)

with εi finite and N →∞. In a driven system, 〈ai〉 scales proportionally to the amplitude

Ei, so that we also define

〈ai〉 = µi = αi
√
N, (4.26)

where αi are finite and represent the order parameters of the system. The scaling (4.26) is

such that 〈a†a〉 ∝ N , so the parameterN is directly related to the number of photons inside

the cavity. In our case, however, the parameter N is only introduced as a bookkeeping

device, so we can tune the model towards a critical behaviour in a controlled way. The

combination of scalings in Eqns.(4.25) and (4.26) makes Ei(〈a†i〉 − 〈ai〉) ∝ O(N) in

the mean field level, where ai are replaced by 〈ai〉, this means that the pumping term is

extensive in N . We shall henceforth assume that this holds for the model hamiltonian H0.

Next we introduce the displacement operators,

ai = 〈ai〉+ δai = αi
√
N + δai, (4.27)

where 〈δai〉 = 0. Inserting this into Eqn.(4.14) the entropy flux naturally splits as

Φt =
∑
i

2κiN |αi|2+
∑
i

2κi〈δa†iδai〉
.
= Φext + Φq, (4.28)

so that we have an extensive contribution, that depends only on the mean field values |αi|2

and an intensive term proportional to the variance of the order parameter, thus related to

quantum fluctuations.

A similar splitting is found for the dissipative contribution of the entropy production

rate (4.15) by introducing displaced phase space variables µi = 〈ai〉+ νi = αi
√
N + νi,

where 〈νi〉 = 0. We note that the displacement does not affect the derivative ∂µi = ∂νi so

that, placing this into (4.6) we find the displaced currents to be

Ji(Q) = κi[(αi
√
N + νi)Q+ ∂ν̄iQ] =

√
NκiαiQ+ Jνi (Q), (4.29)
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where Jνi (Q) = κi(νiQ+ ∂ν̄iQ). Placing (4.29) into (4.15), with Ni = 0, it is straightfor-

ward to show that the entropy production rate associated with the dissipative contribution

splits as

ΠJ =
∑
i

2Nκi|αi|2+
∑
i

2

κi

∫
d2ν
|Jνi (Q)|2

Q
.
= Πext + Πd, (4.30)

which is the main result of this chapter: the entropy production rate for critical driven-

dissipative systems splits into three contributions

Πt = ΠU + Πext + Πd. (4.31)

The first one related to the unitary part and the coarse-graining of the Wehrl entropy, the

second is extensive in N , so that it is completely independent of fluctuations, indeed

Πext = Φext =
∑
i

2Nκi|αi|2, (4.32)

while the last term is related with the probability currents Jνi of the fluctuation operators.

The entropy balance (4.9) becomes,

dS(Q)

dt
= ΠU + Πd − Φq. (4.33)

One can see clearly that ΠU and Πd are associated with quantum fluctuations when the

system reaches the NESS, i.e. when dS/dt = 0, thus ΠU + Πd = Φq. They may be

interpreted as two sources for the quantum entropy flux rate Φq. We also note that Πd ≥ 0

but we can not say that, in general, the same will be true for ΠU . We shall come back to

this issue below.

4.2.1 Properties of the unitary contribution to entropy production

In order to understand the physics of the unitary contribution to the entropy production

rate given by Eqn.(4.12) we will consider the case of a system described by a single mode

normal ordered Hamiltonian,

H =
∑
r,s

Hrs(a
†)ras, (4.34)
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where Hrs are some coefficients. As discussed above, an important assumption about the

total Hamiltonian H is that at the mean field level (a→ 〈a〉) it is at most extensive in N ,

i.e. it must be of order O(N). To ensure this condition is satisfied we parametrize the

coefficients as Hrs = hrsN
1− r+s

2 with hrs finite and independent of N . As an example we

can think about a term proportional to a†a†a†aa, here r = 3 and s = 2, thus the coefficient

must be proportional to N−3/2. Eqn.(4.34) acquires the form

H = N
∑
r,s

hrs

(
a†√
N

)r (
a√
N

)s
. (4.35)

The unitary differential operator U (Q) is found straightforwardly using the correspondence

table in Eqns.(1.31) repeatedly in −i[H, ρ]. The normal ordering becomes useful at this

step, once it pulls all the derivatives to the right. The result is,

− i[H, ρ]→ U (Q) = −i
∑
r,s

hr,sN
1− (r+s)

2 [µ̄r(µ+ ∂µ̄)s − µs(µ̄+ ∂µ)r]Q, (4.36)

next we insert the displaced phase space variables ν =
√
Nα + µ and expand the result in

a power series of N . The result, to leading order in N is

U (Q) = − i
√
N
∑
r,s

hr,sα
s−1ᾱr−1(sᾱ∂ν̄ − rα∂ν)Q

− i
∑
r,s

hr,s
αs−2ᾱr−2

2

(
s(s− 1)ᾱ2(2ν∂ν̄ + ∂2

ν̄)− r(r − 1)α2(2ν̄∂ν + ∂2
ν)
)
Q

− i
∑
r,s

hr,s2rs|α|2(ν̄∂ν̄ − ν∂ν)Q

+ O(N−
1
2 ), (4.37)
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where terms of O(N−
1
2 ) are suppressed in the limit N →∞. To simplify the cumbersome

expression (4.37) we introduce the constants,

Λ1 = −i
∑
r,s

hrs α
s−1ᾱrs, (4.38)

Λ2 = −i
∑
r,s

hrs α
s−2ᾱrs(s− 1), (4.39)

Λ11 = −i
∑
r,s

hrs α
s−1ᾱr−1rs. (4.40)

Using these constants and the Hermiticity of the Hamiltonian, i.e. hrs = h̄rs, Eqn.(4.37)

becomes,

U (Q) =
√
N
(
Λ1∂ν̄ + Λ̄1∂ν

)
Q

+
1

2
[Λ2(2ν∂ν̄ + ∂2

ν̄) + Λ̄2(2ν̄∂ν + ∂2
ν) + 2Λ11(ν̄∂ν̄ − ν∂ν)]Q (4.41)

+ O(N−
1
2 ).

These are the leading terms of the unitary dynamics in the thermodynamic limit to the

quantum Fokker-Planck equation. A characteristic feature of the Husimi Q-function

becomes apparent here, which is the second derivatives terms, interpreted as diffusive

terms. These diffusive terms, however, appear here in the unitary contribution. This is a

unique feature of quantum dynamics and is ultimately a consequence of the coarse-graining

nature of the Wehrl entropy.

Next, we plug Eqn.(4.41) into Eqn.(4.11) and perform multiple integration by parts,

always assuming that the Q function, as well as its derivatives vanish at the infinity. This

yields

ΠU =
1

2

∫
d2ν

Q

[
Λ2(∂ν̄Q)2 + Λ̄2(∂νQ)2

]
, (4.42)

which is the analytical expression of the entropy production rate due to the unitary dynamics

in the thermodynamic limit.

Finally, the summary of the main analytical results for critical driven-dissipative models
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can be cast in the following table,

dS(Q)

dt
= ΠU + Πd − Φq,

ΠU =
1

2

∫
d2ν

Q

[
Λ2(∂ν̄Q)2 + Λ̄2(∂νQ)2

]
,

Πd =
∑
i

2

κi

∫
d2ν
|Jνi (Q)|2

Q
,

Φq = 2κ〈δa†δa〉.

(4.43)

where the expression for ΠU holds only in the thermodynamic limit.



Chapter 5

Kerr bistability model: non-equilibrium

steady state

The term bistability refers to the existence of two stable states for a system to be and it is a

known feature of classical non-linear systems [87, 88]. For instance, if one thinks about

a conservative force field U(x), it will be bistable if the potential energy has two local

minima points, not necessarily symmetric, which are stable (see Fig.5.1). Between them

there is always a local maximum, which is the unstable equilibrium point, in the sense that

any perturbation makes the system go to one of the minima and it can be interpreted as a

barrier between the minima. In classical systems, it is possible for the system to transition

between the two minima as long as enough energy is given for it to overcome the barrier.

This happens, for instance, when the system is in contact with a thermal bath which causes

thermal fluctuations.

Stable

Stable

Unstable

-8 -6 -4 -2 0 2 4 6
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x

U
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)

Figure 5.1: Plot of a classical potential: The plot stands for a potential of the type
U(x) = a0 + a1x − a2x

2 + a4x
4, with ai > 0. The stable and unstable points of

the potential are represented by the position of the bricks.

73
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Optical bistability is the existence of two stable states with different photon numbers

for the same driving conditions and it is a general feature of nonlinear systems described

within a mean field approximation. It was first observed in Ref. [89] and formalized

theoretically in the seminal paper by Drummond and Walls [3] where they developed a

fully quantum mechanical model for the dispersive optical bistability, here referred to as

the Kerr bistability model (KBM). This model describes a cavity filled with a nonlinear

medium. The system is also assumed to lie within the driven-dissipative scenario described

in the previous chapter: the cavity is pumped by an external laser source, injected through

one of its mirrors. This mirror has to be semi-transparent, so photons also leak out. Since its

introduction, it has been a topic of various studies and recently the physics emerging from

fluctuations of nonlinear models that appears in various KBM-like plataforms [90–95]

has received a lot of interest mainly due to the possibility of studying quantum many

body phases [96–98] and critical phenomena [99–102]. In particular, the KBM is a

paradigmatic model when one talks about driven-dissipative phase transitions (DDPT),

both in theoretical [71, 103, 104] and experimental [96, 105] realms, as it presents a

discontinuous DDPT.

This chapter is devoted to explaining the KBM in detail and applying the formalism

developed in the previous chapter to its non-equilibrium steady state (NESS). In the next

chapter we will present the time evolution of entropic quantities in a quench dynamics

scenario for this same model.

5.1 The model

We consider the Kerr bistability model (KBM) that describes an optical cavity filled

with a medium whose polarization vector is non-linear, going up to third order, i.e. P =

χE + χ(2)E2 + χ(3)E3 with χs denoting the polarizability tensor and E the electric field,

which will be described by a single mode a. The effect of the non-linear medium is to

promote an effective interaction between the photons, with strength U . The cavity is

coherently driven by a laser with an amplitude E , which will behave as a classical field.

And finally, there is a dissipation channel at rate κ that describes single photon losses due

to the contact with the electromagnetic field, an environment at zero temperature.
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This setup fits precisely into the formulation developed in the last chapter and presents

a discontinuous driven-dissipative phase transition. Before studying the Wehrl entropy

production rate, we will give further details of the model.

The KBM Hamiltonian was derived from the Maxwell-Bloch equations in Ref. [3] and

reads,

H̃ = ωca
†a+ i(E e−iωpta† − Ē eiωpta) +

U

2
a†a†aa. (5.1)

The first term describes the cavity mode oscillating with the cavity frequency ωc which

is related with its geometry; the second describes the pump of the laser with a frequency

ωp and amplitude E , that from now on, without loss of generality, will be assumed to be

real. The last term is due to the nonlinearity of the medium and describes the effective

interaction between the photons inside the cavity. The hamiltonian is time dependent, to

simplify we can go to a frame rotating at a frequency ωp (see App. B) and obtain a time

independent Hamiltonian,

H = ∆a†a+ iE (a† − a) +
U

2
a†a†aa, (5.2)

where we basically took away the time dependency of the pump at the cost of replacing

ωc → ∆ = ωc − ωp where ∆ is the detuning between the cavity and the pump frequency.

The bistable behaviour is directly linked to this quantity. We can say in advance that

bistable behaviour only occurs when ∆ < 0, i.e. the frequency of the intracavity mode

ωc is lower than the frequency of the laser ωp. This is the condition to observe the phase

transition.

The one photon losses are described by the usual Lindblad dissipator,

D(ρ) = 2κ

(
a†ρa− 1

2
{a†a, ρ}

)
, (5.3)

so that the dynamics of the system state ρ is described by the Lindblad master equation,

∂tρ = −i[H0 + iE (a† − a), ρ] +D(ρ). (5.4)

which is precisely Eqn.(4.1) with H0 = ∆a†a+ (U/2)a†a†aa.
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5.2 Dynamical equations for the moments

Once the dynamics of the state of the system is given by Eqn.(5.4), it is possible to

write equations for the time evolution of the quantities of interest such as the moments 〈a〉,
〈a†a〉, an so on. The equation for the mean value of the amplitude 〈a〉 = µ is (see App.A),

∂tµ = −(κ+ i∆)µ+ E − iU〈a†aa〉. (5.5)

This formula is exact but we end up with a hierarchy problem. Due to the interaction term

the equation for 〈a〉 depends on a higher order moment, 〈a†aa〉 and this will go on for

every moment equation we write. Hence, the set of differential equations is not closed and

it is impossible to obtain analytical formulas for µ following this approach.

In order to obtain µ, 〈a†a〉 and 〈aa〉 at the non-equilibrium steady state (NESS), i.e.

when the mean values do not change in time, we will use two different approaches: the

first one will be the mean field approximation, where we replace the operator by its mean

values plus some fluctuation (which is described by an operator) around it. The second is a

numerically exact approach based on a vectorization procedure (see App.D) where we find

the NESS ρSS and compute the moments numerically. It is worthy saying that there is an

exact solution for the NESS moments 〈(a†)r(a)s〉 [3, 106–109].

5.2.1 Mean Field approximation

The simplest way to solve the Eqn. (5.5) at the NESS is to perform a mean field

approximation (MFA) [6], where the basic idea is to define a fluctuation operator δa,

δa = a− µ. (5.6)

This way the triple product in Eqn.(5.5) of operators becomes,

a†aa = |µ|2µ+O(δa) (5.7)

the approximation takes place when we neglect terms of order δa and higher, which is

justified when we consider a thermodynamic limit where these fluctuations are not expected
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to play an important role. It is worth emphasizing that this approximation is quite rough.

It is valid only when the number of photons 〈a†a〉 = |µ|2 inside the cavity is "very high",

in such a way that the interaction strength U becomes very weak. Whence, we loose any

effects due to quantum fluctuations and that is the key point to understand why bistability

appears. Eqn.(5.5) in the MFA then becomes,

∂tµ = −(κ+ i∆ + iU |µ|2)µ+ E . (5.8)

We introduce the dimensionless parameter N as in Sec.4.2 to define a thermodynamic limit

N →∞. Explicitly the scalings will be [65],

U =
u

N
, (5.9)

E =
√
Nε, (5.10)

µ =
√
Nα, (5.11)

such that the assumption of H0 ∝ O(N) holds true. We also note that the product,

UE 2 = uε2 ∼ O(0). (5.12)

The equation of motion for the scaled amplitude α will be,

∂tα = −(κ+ i∆ + iu|α|2)α + ε. (5.13)

It is interesting to note that both (5.8) and (5.13) have the same structure and, from a

mathematical point of view, have the same properties; in the next section we address the

problem of the stability of this equation.

To know what are the conditions to have stable solutions for the Eqn. (5.8) in the

long-time limit t→∞ where the system reaches the NESS we will perform a linearization

procedure (see App. C) closely following Ref. [3].
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We begin by writing the system of differential equations,

∂tα = −[κ+ i(∆ + u|α|2)]α + E = G(α, ᾱ),

∂tᾱ = −[κ− i(∆ + u|α|2)]ᾱ + E = Ḡ(α, ᾱ).

(5.14)

The NESS is, ∂tα0 = 0→ E = [κ+ i(∆ + u|α|2)]α = f(|α|2)α,

∂tᾱ0 = 0→ E = [κ− i(∆ + u|α|2)]ᾱ = f̄(|α|2)ᾱ.

(5.15)

where we defined the function f(|α|2) = [κ + i(∆ + u|α|2)]. To simplify the notation

along this section, we set |α|2= n so that the NESS can be summarized by the equation,

E 2 = |f(n)|2n (5.16)

5.2.2 Stability analysis of the steady state

To begin the stability analysis we consider small fluctuations α1(t) around the NESS,

α1(t) = α− α0, we obtain the following equation,

∂tα1(t) = ∂αG(α0, ᾱ0)α1 + ∂ᾱG(α0, ᾱ0)ᾱ1, (5.17)

where

∂αG(α, ᾱ) = − [∂nf(n)n+ f(n)] ∂ᾱG(α, ᾱ) = −∂nf(n)α2. (5.18)

The linearized system therefore is,

∂t

α1(t)

ᾱ1(t)

 =

−[∂nf(n)n+ f(n)] −∂nf(n)α2
0

−∂nf̄(n)(ᾱ0)2 −[∂nf̄(n)n+ f̄(n)]

α1(t)

ᾱ1(t)

 , (5.19)

which can be put into the neat matrix form,

∂t ~α1 = −J ~α1. (5.20)
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We want the stable solutions of Eqn.(5.20). In this case, due to the minus sign of J , a

stable solution requires both eigenvalues to be positive. This will be true if both the trace

and the determinant of J are positive,

Tr{J} = 2<f(n) + n∂nf(n) > 0, (5.21)

det{J} = |f(n)|2+n
(
f̄(n)∂nf(n) + f(n)∂nf̄(n)

)
> 0. (5.22)

If the Tr{J} or the det{J} changes sign then we have a change in the stability properties.

The first condition gives us that Tr{J} = 2κ > 0, so the dissipation rate must be positive,

which is in agreement with the Lindblad formalism. Now, note that using (5.16) we can

write,

det{J} = ∂nE
2 > 0, (5.23)

3u2n2 + 4∆un+ (κ2 + ∆2) > 0. (5.24)

Hence, the quadratic equation (5.24) on n gives us that the solution is stable if n < n− or

n > n+ where,

n± =
−2∆±

√
∆2 − 3κ2

3u
. (5.25)

This equation sheds light into the conditions for the existence of bistability (see Fig.5.2):

n± is related to the number of photons inside the cavity, so it must be real, which is

ensured by imposing ∆2 ≥ 3κ2. Also, it must be always positve, otherwise we would

have unphysical results. From the first term we see that ∆/u < 0, but u is assumed to be

positive due to its physical interpretation of an interaction strength between the photons,

hence ∆ < 0. This condition tells us that to have a bistable behavior we must have that the

cavity frequency is smaller than the pump frequency ωc < ωp. Finally, combining ∆ < 0

with ∆2 ≥ 3κ2 yields ∆ ≤ −
√

3κ.

5.3 Exact solution for the moments

In the last two sections, we have performed a MFA and a linearized analysis for the

NESS in a well defined thermodynamic limit, this constitutes a semiclassical approach
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to the problem which is given by Eqn. (5.7). The price we pay is to neglect quantum

fluctuations.

It turns out, however, that it is possible to find the NESS analytically for this model.

This was first done in Ref. [3] using the complex P-representation to map Eqn.(5.4)

into a Fokker-Planck equation. Later, [106] revisited the problem and used different

quasiprobabilities distributions, such as the Wigner and the Husimi Q-function.

Recently, in Ref. [107] the authors used again the complex P-function and generalized

it for the case with two photon losses. The NESS moments obtained by these methods

is always unique, therefore pointing to no bistable behavior. To reconcile this with the

bistability predicted by the MFA one has to take into account quantum fluctuations. They

are responsible for triggering a switching between the states and the unique solution is a

weighted average over the two states given by MFA. Indeed, experiments with two-mode

laser evidenced that the switching times were extremely long [110], and were predicted to

diverge when the fluctuations are weak and (or) if the number of photons were large [111].

There is yet another approach introduced in Ref. [108], called coherent quantum absorber,

where the authors applied it to a cascaded spin network and for the KBM as we have been

considering here. It was generalized in Ref. [109] for Kerr resonators pumped up to three

photons and with a two photon loss mechanism.

The expression found in [3] for the moments is:

〈(a†)nam〉 =
√

2
ξ̄nξmΓ(x̄)Γ(x)

Γ(x̄+ n)Γ(x+m)
0F2(x̄+ n, x+m; |ξ|2)

0F2(x̄, x; |ξ|2)
, (5.26)

where ξ = 2E /iU , x = 2(i∆ + κ)/iU , 0F2(a, b; c) denotes the hyper-geometric function

and Γ is the gamma function. Eqn.(5.26) is of paramount importance: first it solves the

problem of bistable states introduced by the MFA, secondly it gives us the exact form of

the entropy production at the NESS, ΠSS = ΦSS = 2κ〈a†a〉; and finally it serves as a solid

ground where we can check our results and test the accuracy of our numerical simulations.
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Figure 5.2: First moment |α| and g(2) correlation function NESS: of the Kerr bistabil-
ity model as a function of ε, computed from the exact solution Eqn.(5.26). The curves
are for three different values of N , as shown in image (a). In image (a) the dashed gray
curve corresponds to the mean-field prediction for this moment. The vertical line rep-
resents the critical value εc computed from the numerically exact solution. The orange
patch marks the bistable region, as predicted from mean-field theory Eqn.5.25. Other
parameters were fixed at κ = 1/2, ∆ = −2 and u = 1.

In Fig.5.2(a) we show the first moment α of the model comparing the exact solution

Eqn.(5.26) with three different values of N with the mean-field prediction Eqn. (5.25),

denoted by the gray dashed line. Indeed, we see that as N increases the exact solution

matches the MFA prediction, but instead of having a bistable behaviour, we observe an

abrupt jump from the lower to the upper branch, i.e. a phase transition.

In Fig.5.2(b) we show the second order correlation function, defined as

g(2)(0) =
〈a†a†aa〉
|〈a†a〉|2 , (5.27)

this is an important function from the experimental point of view because it is related to

the variance of the intensity of the light beam, which in turn is associated with the number

of photons counted in a detector. Thus, it tells us how often we detect two photons at times

very close to each other. Measuring this function allows an experimentalist to classify the

type of light being measured i.e. if it is coherent, bunched or antibunched. It is not the

purpose of this dissertation to get into the details of this function, for that we recommend

Refs. [36, 37]. The important thing to know is that it has a peak at the criticality εc, which

allows us to obtain the value of this parameter. Moreover it is worth mentioning the light is

classified as coherent, as that emitted by a laser, if g(2)(0) = 1, in which case two detection
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events are uncorrelated. It is bunched if g(2)(0) > 1 where there is a tendency for detection

events to be closer to each other. So at criticality the coherent light presents itself as

bunched light. Finally, it is called anti-bunched when g(2)(0) < 1.

5.3.1 On the coherent quantum absorber method

In this section we present the coherent absorber method closely following Ref. [108],

where it was introduced. The method relies on considering a cascaded quantum network

as show in Fig.5.3. The physical set up can be composed of N ≥ 2 subsystems fixed at

some positions xi. These subsystems are coupled to a 1D continuum of right propagating

bosonic modes, that may represent for instance photons traveling inside a wave-guide. The

interaction is such that time-reversal symmetry is broken. It means that photons can be

emitted from the left to the right, drive other subsystems and eventually leave the network.

It is assumed that the Born-Markov approximation is valid for this system coupled to the

wave-guide such that the cascaded master equation for the reduced system density matrix

ρ is,

∂tρ =
∑
i

−i[Hi, ρ] + 2κ

(
ciρc

†
i −

1

2
{c†ici, ρ}

)
+ 2κ

∑
j>i

([ciρ, c
†
j] + [cj, ρc

†
i ]), (5.28)

where the first sum describes the Lindblad evolution of each subsystem and the second

sum accounts for the unidirectionality of the bath and describes the possibility of a photon

emitted by subsystem in xi be reabsorbed in a subsystem xj > xi. Manipulating the terms

of (5.28) and defining c =
∑

i ci, Eqn. (5.28) becomes,

∂tρ = −i[Hcasc, ρ] + 2κ

(
cρc† − 1

2
{c†c, ρ}

)
(5.29)

where,

Hcasc =
∑
i

Hi − iκ
∑
j>i

(c†jci − c†icj) (5.30)

is the cascaded Hamiltonian featuring non-local coherent dynamics of the coupling medi-

ated by the environment.
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Figure 5.3: Sketch of the coherent absorber method for the KBM: Two non-linear
optical cavities coupled to a waveguide at rate κ. Both are driven by a laser with ampli-
tude E with frequency ωp.

To apply the method for the KBM model, we consider a network composed of two

subsystems A and B. The Coherent quantum absorber (CQA) is the B subsystem, which is

constructed artificially, so to act by perfectly reabsorbing the photons emitted by subsystem

A. It ensures that there are no photons leaking out of the wave-guide and will make the

system relax to a pure state ρ0 = |ψ0〉 〈ψ0| [112]. Another requirement is that the steady-

state has non-trivial correlations between subsystems A and B, so that they cannot be

partioned into smaller subsystems. So let a and b, be the annihilation bosonic operators

associated with each subsystem, respectively. The following properties must hold,

1. (a+ b) |ψ0〉 = 0, which ensures no photons will escape from the wave-guide;

2. [Hcasc, ρ] = 0, which ensures the system is in the stationary state;

3. C = −2(〈c†AcA〉 − |〈cA〉|2) 6= 0, which ensures there are non-trivial correlations

between the subsystems.

The idea builds on choosing the Hamiltonian HB, for system B such that it creates a dark

entangled state, i.e. a state |ψ0〉 with the aforementioned properties.

For the KBM we have,

HA = ∆a†a+ iE (a† − a) +
U

2
a†a†aa, (5.31)
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to make up the system HB we make use of the educated guess introduced in Ref. [108].

Hence, we define the system B with bosonic modes b with the exact same parameters of A,

but with a minus sign in the first and last terms,

HB = −∆b†b+ iE (b† − b)− U

2
b†b†bb. (5.32)

Thus the cascaded Hamiltonian Eqn. (5.30) becomes,

Hcasc = HA +HB − iκ(b†a− a†b). (5.33)

We define the composite symmetric c+ and anti-symmetric c− bosonic operators as,

c± =
a± b√

2
(5.34)

now using Eqn.(5.34) we can rewrite the Hamiltonian Eqn. (5.33) as,

Hcasc = i
√

2E c+ + (∆− iκ)c†+c− +

[
U

2
(c†+c+ + c†−c− − 1)

]
c†+c− + h.c.

= H1 +H2 +H3 + h.c.

(5.35)

Condition (1) imposes c+ |ψ0〉 ∝ (a+ b) |ψ0〉 = 0, so that the steady state symmetric mode

must be in the vacuum state |0〉+. Then, we write the dark state ansatz,

|Ψ0〉 = |0〉+ ⊗ |ξ0〉− (5.36)

and using the occupation number basis {|n〉}, we have

|ξ0〉− =
∑
n

αn |n〉 , (5.37)

for some coefficients αn. The next step is to use condition (2), which is equivalent to

Hcasc |ψ0〉 = λ |ψ0〉, where λ is some complex number. Moreover, using the fact that

c+ |0〉+ = 0 and performing the projection 〈ψ0|Hcasc |ψ0〉 = 0, we obtain that λ = 0.
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Computing Hcasc |ψ0〉 we find,

H1 |ψ0〉 = i
√

2E |1〉+ ⊗ |ξ0〉 (5.38)

H2 |ψ0〉 =
∑
n

αn
√
n(∆− iκ) |1〉+ ⊗ |n− 1〉− (5.39)

H3 |ψ0〉 =
∑
n

αn
U

2
(n− 1) |1〉+ ⊗ |n− 1〉− (5.40)

and the hermitian conjugate term is identically zero. Hence,

|1〉+ ⊗
∑
n

i
√

2Eαn |n〉+

[
(∆− iκ) +

U

2
(n− 1)

]√
nαn |n− 1〉 = 0 (5.41)

which yields,

∑
n

i
√

2Eαn |n〉+

[
(∆− iκ) +

U

2
(n− 1)

]√
nαn |n− 1〉 = 0 (5.42)

Projecting Eqn. (5.42) into 〈n− 1| we find,

i
√

2Eαn−1 +

[
(∆− iκ) +

U

2
(n− 1)

]√
nαn = 0 (5.43)

Finally, after some algebraic manipulation, Eqn. (5.43) becomes the following recursion

relation for the coefficients,

αn =

√
2

n

ξ

n+ x− 1
αn−1, (5.44)

where ξ = 2E /iU and x = 2(κ + i∆)/iU . This recursion is readily solved [113], such

that the solution that fulfills conditions (1)-(3) is,

|ξ0〉− =
1

N

∞∑
n=0

(
√

2ξ)n√
n!

Γ(x)

Γ(x+ n)
|n〉 (5.45)

with N =
√

0F2(x, x̄; 2|ξ|2) being the generalized hyper-geometric function. Since |ψ0〉
is a tensor product and the symmetric mode is in the vacuum state, the non-zero normally
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ordered operator are those of the anti-symmetric mode. Hence,

〈(c†−)n(c−)m〉 = 2
n+m

2
ξ̄nξmΓ(x̄)Γ(x)

Γ(x̄+ n)Γ(x+m)
0F2(x̄+ n, x+m; 2|ξ|2)

0F2(x̄, x; 2|ξ|2)
(5.46)

and going back to the original modes we find,

〈(a†)n(b†)kblam〉 =
(−1)k+l

2(n+k+l+m)/2
〈(c†−)n+k(c−)m+l〉, (5.47)

setting k = l = 0, we obtain Eqn.(5.26). The main advantage of the CQA method is that

the problem is reduced to a simple recursion formula Eqn. (5.44), instead of solving a

Fokker-Planck equation for the P-representation, which is much more complicated from a

mathematical point of view.

5.4 The Wehrl entropy production rate for the Kerr bista-

bility model

We apply the formalism developed in the last chapter to the KBM. We may repeat

some of the equations here for completeness. The first step is to transform the Lindblad

master equation (5.4) into a Fokker-Planck equation [106, 114] of the form,

∂tQ(µ, µ̄) = U (Q) + D(Q), (5.48)

where the one mode dissipative contribution is D(Q) = −(∂µJ(Q) + ∂µ̄J̄(Q)) according

to (4.7) with J(Q) being the one mode irreversible quasi-probability current as in Eqn.(4.6).

The unitary differential operator U (Q) can be split into three terms,

U (Q) = U∆ + UE + UU , (5.49)



CHAPTER 5. KERR BISTABILITY MODEL: NON-EQUILIBRIUM STEADY STATE87

where,

U∆ = i∆(µ∂µQ− µ̄∂µ̄Q), (5.50)

UE = −E (∂µQ+ ∂µ̄Q), (5.51)

UU =
iU

2
[2|µ|2(µ∂µQ− µ̄∂µ̄Q) + µ2∂2

µQ− µ̄2∂2
µ̄Q]. (5.52)

We note that Eqns. (5.50) and (5.51) are precisely the same of Sec.4.1.1, so we know they

do not contribute to the entropy production rate, i.e. Π∆ = ΠE = 0. The interaction term

Eqn.(5.52) has diffusion contributions (second derivatives), so we may expect it will not

vanish, as discussed in Sec.4.2.1. We compute explicitly the unitary contribution for the

entropy production rate Eqn. (4.11) ΠU = ΠU ,

ΠU = −
∫
d2µUU ln(Q) = −N

∫
d2αUu ln(Q),

= NΠ(1)
u + Π(0)

u .

In the first line we used the scalings (5.10) and (5.11), which allowed us to split Π into an

extensive and an intensive term. The first one is,

Π(1)
u = −iu

∫
d2α ln(Q)|α|2(α∂αQ− ᾱ∂ᾱQ) = 0,

and vanishes, as it should according to the discussion presented in Sec.4.2.1. Now the

intensive term reads,

Π(0)
u = −iu

2

∫
d2α ln(Q)(α2∂2

αQ− (ᾱ)2∂2
ᾱ(Q))

=
iu

2

∫
d2α

(α2(∂αQ)2 − ᾱ2(∂ᾱ(Q))2)

Q
6= 0.

Which is the same expression we would have found if, instead we have used Eqn.(4.42)

directly.

For the entropy production and entropy flux we can readly use Eqns.(4.28) and (4.30)

specialized for a single mode. The results are presented in Fig. 5.4.
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Figure 5.4: Intensive contributions to entropy production, extensive contribution,
quantum entropy flux at the NESS and finite size analysis: of the Kerr bistability
model as a function of ε. (a) and (b) were computed numerically while (c) and (d) were
computed from the exact solution Eqn.(5.26). The curves (a-d) are for three different
values of N , as shown in image (a), meanwhile Figs.(e-f) are for N varying from 10
to 40 in steps of five, as shown in panel (e). In Fig.(c) the dashed gray line represents
the mean field prediction ΠJ = 2κ|α|2, with the orange patch highlighting the bistable
region. In images (a-d) the solid black curve corresponds to the critical point. Other
parameters were fixed at κ = 1/2, ∆ = −2 and u = 1.
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In Fig. 5.4(a) we plot Πu, we note it is finite and present a discontinuity at the critical

point. In panel (e) we observe the data collapse by plotting Πu against N(ε/εc − 1) for

various values ofN , showing the universality. Hence, this contribution mimics the behavior

of entropy production in classical non-equilibrium phase transitions, discussed in Sec. 3.2.

In Fig. 5.4(b) and (d) we plot the dissipative quantum contribution Πd to the entropy

production and the quantum entropy flux Φq, respectively. In view of Eqn. (4.33) the

dissipative contribution Πd will behave like the variance of the order parameter 〈δa†δa〉
(the entropy flux rate), which diverges at the critical point. Such a behavior matches

experimental observation of the irreversible entropy production in mesoscopic systems,

reported in Ref. [26]. Moreover, in panel (f) we observe the data collapse of Πd/N against

N(ε/εc − 1) for various values of N , demonstrating the universality of this behavior.

In panel (c) we show the rescaled extensive contribution to entropy production (and

flux) rate Πext/N with the mean field prediction, the orange patch highlights the bistable

region.

In conclusion, we applied the formalism developed in chap. 4 to the paradigmatic Kerr

bistability model, which undergoes a discontinuous driven-dissipative phase transition.

To that end, we studied the model in detail deducing the conditions to observe the phase

transition by means of MFA and using the exact solution. We found that the contribution

to the entropy production due to unitary dynamics Πu is finite and presents a discontinuity

at the critical point, thus behaving similarly to the entropy production across a classical

non-equilibrium phase transition, as discussed in sec. 3.2. The contribution due to the

dissipative contribution Πd presents a divergence at the critical point, as the quantum

entropy flux Φq, in accordance with recent experimental investigations. Moreover, a

finite size scaling analysis of Πu and Πd ensures the universality of the results for the

thermodynamic limit.



Chapter 6

Kerr bistability model: quench

dynamics scenario

The formalism developed in Chap. 4 was able to capture some interesting features of

entropy production at the NESS of the KBM model, as reported in Ref. [28]. It is also

able to shed light on the entropic dynamics. So, in this chapter we address the following

question:

• How does the entropy rate components behave when one abruptly changes the

driving amplitude?

A sudden change in the driving amplitude (called a quantum quench) will cause the

system to evolve from one non-equilibrium state to another. On top of the entropy that is

already being constantly produced in these systems, there will therefore be an additional

entropy production associated with this dynamics. The goal of this chapter is to probe this

entropy production and understand how they are influenced by different quench protocols.

There are the so called gaussian states for which we are able to obtain the entropic

quantities easily since the Husimi Q-function is known. Some features of the KBM lead to

Gaussian states in the thermodynamic limit. If the dynamics were Gaussian, this would

therefore be an enormous simplification, since it would allow for very efficient means to

study the entropy production.

With that in mind, first we study the gaussianity of the state during the dynamics, and

we show that unfortunately it is not the case for our system. A study of quench dynamics

90
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in the KBM model therefore requires a full numerical approach, based on the vectorization

method discussed in App. D. Later, we present the results of our numerical simulations

to the entropic quantities, which demonstrates the usefulness of the formalism out of the

static scenario.

6.1 State gaussianity test during the dynamics

A quantum state is gaussian, which will be denoted by ρg, if its Husimi Q-function is a

Gaussian function of the coherent state variable µ [42, 115].

An example of a gaussian state is the thermal state ρT = exp
{
−βωa†a

}
/Z, where

Z = (1− e−βω)−1. The Q-function QT (µ, µ̄) = 〈µ| ρT |µ〉 /π is,

QT (µ, µ̄) =
1

π(n̄+ 1)
exp

{
− |µ|

2

n̄+ 1

}
, (6.1)

where n̄ = (eβω − 1)−1 is the Bose-Einstein occupation number. And as an example of

a non-gaussian state we take the superposition of coherent states, known as Schrödinger

cat state. These states are defined as |ψ〉 = (|α〉+ |−α〉)/
√

2, then ρSC = |ψ〉 〈ψ| and its

Husimi-Q function is,

QSC(µ, µ̄) =
e−|µ|

2−|α|2

2π
(eµ̄α+ᾱµ + e−(µ̄α+ᾱµ) + eµ̄α−ᾱµ + e−(µ̄α−ᾱµ)), (6.2)

which is clearly not a gaussian function. There is also the concept of gaussian preserving

maps, which takes gaussian states into gaussian states. If we have a system described by

an arbitrary number of bosonic modes ai, the most general map with this property is a

gaussian Hamiltonian. This means the Hamiltonian is at most quadratic in ai and a†i which

is not the case of the KBM model Eqn.(5.2), since it has an interaction term a†a†aa.

Gaussian states are nice because they can be fully characterized by the moments [42]:
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〈a〉, 〈a†a〉 and 〈aa〉 and their conjugates. We define,

µ = 〈a〉 (6.3)

〈δa†δa〉 = 〈a†a〉 − 〈a†〉〈a〉 (6.4)

〈δaδa〉 = 〈aa〉 − 〈a〉2. (6.5)

Moreover, the Husimi Q-function of a gaussian state Q(λ, λ̄) = 〈λ| ρg |λ〉 /π has a

neat analytical form [42], which is

Q(λ, λ̄) =
1

π
√
|ΘQ|

exp

(
−1

2
~v†Θ−1

Q ~v

)
(6.6)

where

ΘQ =

〈δa†δa〉+ 1 〈δaδa〉
¯〈δaδa〉 〈δa†δa〉+ 1

 (6.7)

is the covariance matrix, ~v = (λ− µ, λ̄− µ̄)T .

If the state of the KBM model were gaussian during the dynamics we could easily

obtain all entropic quantities by making use of Eqn.(6.6) in Eqns. (4.43).

However, as we now show, the state is unfortunately not Gaussian. To prove this,

we shall carry out a test based on the fourth moment. As is well known, for Gaussian

states, all higher order moments can be expressed solely in terms of the mean and the

covariance matrix. We shall therefore compare this prediction with that obtained from the

full numerics using vectorization. From Eqn.(6.6), we can obtain 〈ar(a†)s〉 by performing

an integral over the λ space variables,

〈ar(a†)s〉 =

∫
d2λ λrλ̄sQ(λ, λ̄, µ, µ̄), (6.8)

we obtain the moments symbolically using the software Mathematica®. Parametrizing

λ = x+ iy, we can make the the integration over λ becomes a double integral over x, y.

Using the commutation relation [a, a†] = 1 it is straightforward to show that the normal

ordered fourth moment is

〈a†a†aa〉 = 〈aaa†a†〉 − 4〈aa†〉+ 2, (6.9)
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the two terms of this expression can be computed symbolically using Eqns.(6.6) and (6.8),

which yields,

〈aa†〉 = 1 + 〈δa†δa〉+ |µ|2 (6.10)

and

〈aaa†a†〉 = |〈δaδa〉|2+4〈δa†δa〉(1 + |µ|2)

+ 2(1 + 〈δa†δa〉2) + |µ|2(4 + |µ|2) + (〈δa†δa†〉µ2 + 〈δaδa〉µ̄2), (6.11)

Thus, Eqn.(6.9) becomes,

〈a†a†aa〉g = 2〈δa†δa〉+|µ|2(4〈δa†δa〉+|µ|2)+|〈δaδa〉|2+µ2〈δa†δa†〉+µ̄〈δaδa〉. (6.12)

where we introduced the notation 〈...〉g to emphasize that Eqn.(6.12) is valid only for

gaussian states. We note that Eqn.(6.12) depends only on second order moments, a result

known as Isserlis’ theorem [116](also called Wick’s theorem in the context of quantum

field theory [117]).

We choose nine representative quenches to study the dynamics of this moment, as

will be explained below. To test the gaussianity we computed 〈a†a†aa〉 exactly using

vectorization to obtain the state ρt for each time t and compared it with the value of

Eqn.(6.12) by means of the following quotient,

G =
〈a†a†aa〉
〈a†a†aa〉g

(6.13)

where 〈a†a†aa〉g is computed from Eqn.(6.12), with the elements on the RHS computed

from the exact numerics. This way, the state is gaussian if G = 1 and non-gaussian

otherwise. The results are summarized in Fig. 6.1.
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Figure 6.1: Testing the gaussianity of the state during the dynamics: G , with
〈a†a†aa〉g given by Eqn.(6.12) for quenches from εi = 0.5 to (a) εf = 0.6 (b) εf = 0.8
(c) εf = εc − 0.01 (d) εf = εc (e) εf = εc + 0.01 (f) εf = 1.1 (g) εf = ε+ − 0.01 (h)
εf = ε+ (i) εf = ε+ + 0.01. Where εc stands for the critical pump amplitude and ε+ is
the upper limit of the bistable region as found by MFA in Eqn.(5.13). The simulations
are for six different values of N as shown in panel (a). Other parameters were fixed at
κ = 1/2, ∆ = −2 and u = 1.

Throughout this chapter, we will make frequent reference to Fig. 6.2(a), which shows

the different bistability regions in ε for the choice of parameters we are using. In this case,

recall, the mean-field bistability region occurs between ε− = 0.701373 and ε+ = 1.16616,

where ε± is given by Eqn.(5.25). Moreover, the exact critical point is at εc = 0.933. The

initial εi = 0.5 < ε− was chosen to be in the lower branch. This is the case for all quenches

presented in this chapter.
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Figure 6.2: Plot of the first moment: where the chosen values of ε to study the quench
dynamics are marked. (a) ε = 0.5, (b) ε = 0.6, (c) ε = 0.8, (d) ε = εc − 0.01, (e) ε = εc,
(f) ε = εc + 0.01, (g) ε = 1.1, (h) ε = εp − 0.01, (i) ε = εp, (j) ε = εp + 0.01

The quench in panel (a) goes to εf = 0.6. It continues in the lower branch and out of

the bistable region, i.e. εf < ε−. We can see that the state is almost gaussian already for

N = 3 and effectively gaussian from N = 10 onward.

In panel (b) the quench goes to εf = 0.8. It is still in the lower branch, but now it is

inside the bistable region and away from the critical point ε− < εf < εc. Now we observe

that N = 3 is not even close to gaussian, but again from N = 10 onward it is.

Next, we have in panels (c) εf = εc − 0.01, (d) εf = εc and (e) εf = εc + 0.01, i.e. the

quenches going to pumps at the vicinity of and to the critical pump. We observe that for

these three quenches the dynamics are not gaussian for N = 10 anymore, but it is still

approximately gaussian from N = 25 onward.

In panel (f) εf = 1.1, is such that it has crossed the critical point and lies inside the

bistable region, away from the upper border εc < εf < ε+. This quench is the first one to

present non-trivial behavior, being clearly not gaussian for any size of N .

Finally, the last three quenches are for the upper border and its vicinity, (g) εf =

ε+ − 0.01, (h) εf = ε+ and (i) εf = ε+ + 0.01. From these panels, we observe again that

the states are non-gaussian during the dynamics for any size of N .

Hence, we have seen that the last four quenches present highly non-gaussian dynamics,

we note that this is a specific feature of the dynamics. That is, the NESS may very well be



CHAPTER 6. KERR BISTABILITY MODEL: QUENCH DYNAMICS SCENARIO 96

approximated by a Gaussian. But this does not mean that the state during the dynamics

will.

6.2 Entropic dynamics in a quench scenario: results and

discussion

Here we present the results of the simulations for the entropy dynamics focusing on

the quantities defined in Chap. 4. Our results have four distinct behaviors, so that the

quenches presenting the same behavior were grouped together in four panels. For each

of the quenches, we plot: (1) the extensive entropy flux rate Φ/N Eqn. (4.14), (2) the

extensive entropy production rate ΠJ/N Eqn. (4.15), (3) quantum entropy flux rate Φq Eqn.

(4.28), (4) dissipative contribution to the quantum entropy production rate Πd Eqn. (4.30)

and finally (5) the unitary contribution to the entropy production rate Πu Eqn. (4.41).

As we have seen in the last section, the states are not gaussian during the dynamics.

So the simulation of the quench protocol requires full numerics using the vectorization

procedure of App. D. The quench protocol we used is as follows (it is the same used in

Sec. 4.1.1):

1. The system is initialized in εi, which is associated with an initial Liovillian Li. The

initial state is the NESS of this Liouvillian, i.e. Liρi = 0;

2. At time t = 0 we abruptly change the pump to a certain εf , which defines a new

Liouvillian Lf ;

3. The state evolution is governed by the final Liouvillian according to ρt = exp{Lf t}ρi.
The evolution is computed discretizing time in small steps ∆t;,

4. We compute the Husimi Q-function numerically for each instant of time t, by

constructing approximate coherent states,

|µ〉 = e−|µ|
2/2

nmax∑
n=0

µn√
n!
|n〉 , (6.14)
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the convergence of the numerical evolution is ensured by choosing different trunca-

tion sizes nmax;

5. To compute the entropic quantities we construct a grid of the Husimi function

Q(µ, µ̄), which will be integrated numerically using standard numerical integration

algorithms;

6. The derivatives of Q are computed using Eqn.(1.27), which yields expressions like,

∂µ̄Q = −µQ+
1

π
〈µ| aρ |µ〉 , (6.15)

with such an expression, derivatives of the Husimi function can be computed directly from

the obtained density matrix ρt.

All these steps are computationally costly. The main technical difficulties is that for

each quench the dimension of the Fock space nmax is different, and depending on the

quench it takes longer for the system to reach the new NESS. For more details on the

parameters of the simulations see App.E.2. The results are presented in Figs. 6.3-6.6.
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Figure 6.3: Entropic dynamics for the quench dynamics (I): The quenches are for
(a) εf = 0.6 in the upper row and (b) εf = 0.8 in the lower row. Each column repre-
sent one entropic quantity: (1) Extensive entropy flux rate Φ/N , (2) Extensive entropy
production rate ΠJ/N , (3) Quantum entropy production rate Φq, (4) quantum entropy
production rate due to dissipation Πd and (5) quantum entropy production rate due to
unitary dynamics Πu. The plots are for different values of N as shown in panel (a.2).
The dashed black lines represent the exact solutions for the entropy fluxes as given by
Eqn.(5.26). Other parameters were fixed at κ = 1/2, ∆ = −2 and u = 1.

We observe that all entropic quantities are well behaved and they have a similar behavior

for both quenches. In particular panels (a/b.1) Φ/N and (a/b.3) Φq shows that the system

goes from the NESS of εi to the NESS of εf , which are denoted by the black dashed lines.

The extensive entropy production rate Π/N , shown in (a/b.2) has the same behavior as

the flux, as expected by Eqn.(4.32)). This holds true for all the next quenches. Regarding

the entropy production rate, we note that the order of magnitude of the quantum contribution

due to dissipation Πd (a/b.4) is the same as Φq (a/b.3) and also as the unitary contribution

Πu (a/b.5) for all N . The later observation does not hold for all quenches, as we will

observe in the next quenches.
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Figure 6.4: Entropic dynamics for the quench dynamics (II): The quenches are for (c)
εf = εc − 0.01 in the first row, (d) εf = εc in the second row and (e) εf = εc + 0.01 in the
third row. The dashed black lines represent the exact solutions for the entropy fluxes as
given by Eqn.(5.26) and the dot-dashed blue lines represent the MFA prediction for the
NESS entropy flux Eqn.(5.16). The column ordering and other parameters were fixed as
in Fig.6.3

In Fig.6.4 we show the entropic dynamics for the quenches to (c) εf = εc − 0.01

(d) εf = εc and (e) εf = εc + 0.01. Interestingly, the extensive entropy flux rate Φ/N

(c/d/e.1) does not relax to the exact final NESS value, denoted by the black dashed line in

panels (c/d/e.1) in any case. Instead, it goes to the value predicted my MFA Eqn.(5.16),

represented by the blue dot-dashed lines. Moreover, we note that it takes longer for the

system to relax than it took in quenches presented before in Fig.6.3. Again, the extensive

entropy production rate ΠJ/N , shown in (c/d/e.2) has the same behavior as the extensive

flux. Regarding the quantum entropy production rate, we note that, as in the first panel,

the order of magnitude of the quantum contribution due to dissipation Πd (c/d/e.4) is the
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same as Φq (c/d/e.3) for all N . We also note that in this case Πd is greater than the unitary

contribution Πu for N = 3 only but it is of the same order for other N .
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Figure 6.5: Entropic dynamics for the quench dynamics (III): The quench is for (f)
εf = 1.1. The column ordering and other parameters were fixed as in Fig.6.3.

Fig.6.5 shows the simulation for the quench to (f) εf = 1.1. This pump frequency is

such that we have crossed the critical point and is located inside the region of bistability.

We emphasize that it was the first to display non-gaussian behavior (see Fig.6.1(f)). From

panel (f.1) we see that the total entropy flux rate Φ/N does not relax nor to the exact

solution neither to the MFA prediction, although it seems to be approaching the latter it as

N increases. Again, the extensive entropy production rate Π/N , shown in (f.2) has the

same behavior as the flux, as expected. The plot of the unitary contribution to the entropy

production rate Πu (f.5), suggests that its NESS depends on N , what is surprising, since

this contribution is intensive, as Φq (f.3) and Πd (f.4). We also note that the contribution

Πd is always greater than Πu for all N , the same is observed in the next set of plots.
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Figure 6.6: Entropic dynamics for the quench dynamics (IV): The quenches are for
(g) εf = ε+ − 0.01 (h) εf = ε+ and (e) εf = ε+ + 0.01. The column ordering and other
parameters were fixed as in Fig.6.3.

From panels (g/h/i.1) where we plotted Φ/N and (g/h/i.3) where we plotted Φq we

observe that the system asymptotically approaches the NESS predicted by the exact

solution in a much longer time than the previous quenches. The most striking result for

these quenches is that intensive quantities, such as Φq(g/h/i.3) and Πd (g/h/i.4) presents

a N -dependent very high peak during the transient dynamics, it is much greater than the

NESS value. We also note that Πd � Πu. The N -dependency can also be noted in Πu

(g/h/i.5) during the transient dynamics.

As a conclusion of this section we can say that during the dynamics the extensive

entropy production and flux are always the same, as predicted by Eqn.(4.32) and that the

quantum entropy production Πd has always the same behavior as the quantum entropy

flux Φq. We have observed a dependency of the NESS according to where the final pump

εf is located. And finally, we observed a dependency on the system size N of intensive
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quantities such as Φq and Πd for quenches crossing the critical pump, close to the upper

border of the bistable region.



Chapter 7

Conclusions

In this dissertation we developed and presented a new theoretical framework of entropy

production based on the Husimi Q-function. The main advantage of this theory is that it

works well for zero temperature systems and does not impose any restriction on the type

of Hamiltonian or state. The theory was specialized to driven-dissipative quantum systems

displaying criticality, which has been the focus of intense research in recent years, both in

theoretical and experimental branches. The main contribution of the formalism is to help

to understand the behavior of entropy production across these quantum non-equilibrium

transitions.

The entropy production rate was found to have two contributions, one of them due to

the unitary dynamics of the system, hence a model dependent term. This contribution is

related to the coarse-graining introduced by the Q-function, whose physical origin comes

from the performance of a heterodyne measurement. The second contribution is related to

the dissipation process, which is a usual source of irreversibility even in classical systems.

Moreover, for critical systems we found a closed expression for the unitary contribution

in Eqn. (4.42). We also found that the dissipative contribution splits into an extensive

term and a second term solely due to quantum fluctuations in phase space in Eqn. (4.30).

The entropy flux was found to be related to the number of photons inside the cavity, and

for critical systems it also splits into a extensive term, which is equal to the extensive

dissipative entropy production, and a quantum one related to the variance of the number of

photons in Eqn. (4.28).

Afterwards, we applied out formalism to the paradigmatic model of Kerr bistability,
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which was explained in detail in Sec. 5. We studied it in the NESS regime and in a quench

dynamics scenario. We have found that the NESS quantum entropy production rate due to

dissipation Πd and flux Φq diverge at the critical point, thus behaving like a susceptibility.

The unitary contribution Πu behaved qualitatively similar to that of the entropy production

in classical non-equilibrium transitions explained in Sec. 3.2. We emphasize that there is a

fundamental difference between driven-dissipative and classical non-equilibrium phase

transitions, in the former the energy input is coherent and the dissipation takes place

incoherently; in the latter both energy input and output take place incoherently, through

the transition rates in a classical master equation.

In the quench dynamics scenario we showed that the state is not gaussian during

the dynamics, preventing a huge simplification in the study of the entropic quantities

introduced by gaussian states. Then, by making use of vectorization we simulated the

quench dynamics for nine representative quenches and found four distinct behaviors, which

were discussed in detail. The most impressive result was that for some specific quenches,

intensive quantities showed a N dependency during the transient dynamics, i.e. the greater

the N , the further from equilibrium the state could get. A manuscript discussing these

results for the quench scenario is currently in preparation.

As research perspectives of this work we can say that it would be valuable to explore

models that presents DDPTs even in the presence of temperature (T 6= 0), in such a case we

would have an interplay between thermal and quantum fluctuations. Another research line

is to understand better the behavior of the unitary contribution to the entropy production

rate. A first step towards this direction is currently being undertaken, where we are studying

the Wehrl entropy production rate in the dynamical phase transition (DPT) of the LMG

model. These are non-equilibrium phase transitions that appear as a non-analyticity in

critical times in a quantity that has a formal similarity to the equilibrium partition function,

called the Loschmidt echo. The results were reported in Ref. [118].



Appendix A

The time derivative of the mean of an

operator

Given an operator O , we may want to write the equation that governs the time evolution

of its expectation value. Consider the dynamics is governed by a master equation,

∂tρ = −i[H, ρ] +D(ρ), (A.1)

where the dissipator due to some operator L is,

D(ρ) = 2κ

(
LρL† − 1

2
{L†L, ρ}

)
. (A.2)

The equation for the expectation value of the operator O will be,

〈O〉 = tr{Oρ} → ∂t〈O〉 = tr{O∂tρ}

= −i tr{O[H, ρ]}+ tr{OD(ρ)}
(A.3)

Using the cyclic property of the trace,

tr{O[H, ρ]} = tr

OHρ− OρH︸ ︷︷ ︸
HOρ


= tr{[O, H]ρ} = 〈[O, H]〉

(A.4)
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tr{OD(ρ)} = tr

{
2κO

[
LρL† − 1

2
†Lρ− 1

2
ρL†L

]}

= tr

2κOLρL†︸ ︷︷ ︸
L†OLρ

−1

2
OL†Lρ− 1

2
OρL†L︸ ︷︷ ︸
L†LOρ


= tr

2κ

L†OL− 1

2
(OL†L+ L†LO︸ ︷︷ ︸

{L†L,O}

)

 ρ


= 2κ

〈(
L†OL− 1

2
{L†L,O}

)〉
(A.5)

Finally, we can write:

∂t〈O〉 = −i〈[O, H]〉+ 2κ

〈(
L†OL− 1

2
{L†L,O}

)〉
(A.6)



Appendix B

Rotating frame

The rotating frame is a generalization of the Heisenberg and interaction pictures [10]

which is widely used in quantum optics in order to deal with time dependent Hamiltonians

[36]. Consider a system described by a density matrix ρ̃ and let St be a time dependent

unitary operator, S†tSt = StS
†
t = 1, where 1 stands for the identity matrix. We assume

that the system evolves according to the von Neumann equation under a time dependent

Hamiltonian H̃(t),

∂tρ̃ = −i[H̃(t), ρ̃]. (B.1)

We move to the rotating frame by definig a new density matrix as,

ρ = Stρ̃S
†
t , (B.2)

taking the time derivative of Eqn.(B.2) and noting that ∂t(StS
†
t ) = ∂t(St)S

†
t+∂t(S

†
t )St = 0,

which leads to ∂t(St)S
†
t = −∂t(S†t )St, it is straightforward to show that the new density

matrix also evolves according to a von Neumann equation

∂tρ = −i[H(t), ρ] (B.3)

where the the new Hamiltonian is,

H(t) = i∂t(St)S
†
t + StH(t)S†t (B.4)
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Eqn.(B.3) is general. By making a smart choice of St we may obtain a time independent

H(t). In the next section we show the details for the KBM of the main text.

B.1 Kerr bistability model in the rotating frame

The time dependent Hamiltonian of the KBM is,

H̃ = ωca
†a+ iE (e−iωpta† − eiωpta) +

U

2
a†a†aa, (B.5)

and the goal is to obtain a time independent hamiltonian. We define the unitary operator

rotating with the pump frequency as,

St = eiωpta
†a (B.6)

using Eqn.(B.6) with the Baker–Campbell–Hausdorff (BCH) formula,

eλABe−λA = B + λ[A,B] +
λ2

2!
[A, [A,B]] +

λ3

3!
[A, [A, [A,B]]] + ... (B.7)

one finds that,

StaS
†
t = e−iωpta

Sta
†S†t = eiωpta†

(B.8)

Finally, using Eqns.(B.8), (B.4) and the fact that St is an unitary operator we obtain the

time independent Hamiltonian Eqn.(5.2),

H = (ωc − ωp)a†a+ iE (a† − a) +
U

2
a†a†aa, (B.9)

where in the main text we defined the detuning ∆ = ωc − ωp.
But the model obeys a Lindblad master equation, so we have to study the action of St

in the dissipator D(ρ̃), again using Eqns.(B.8) and the unitarity of St it is straightforward

to verify that,

StD(ρ̃)S†t = D(Stρ̃S
†
t ) = D(ρ). (B.10)
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With this we have that the Lindblad master equation in the rotating frame is Eqn.(5.4)

of the main text.



Appendix C

Linearization

Linearization is a procedure in which the basic idea is to approximate a nonlinear

system by a linear one. We are interested in things that evolves with time. Our interest

remain in two dimensional systems, but the results studied here are easy to generalize to n

dimensions. For more details on this method we refer to Ref. [119].

Consider a system of two differential equations,

dtx(t) = f(x, y),

dty(t) = g(x, y).

(C.1)

The equilibrium, or fixed point of this system corresponds to the constant solution for x(t)

and y(t). Let (x0, y0) be the equilibrium point, then f(x0, y0) = g(x0, y0) = 0.

Suppose f(x, y) is a well behaved function. We want to know its behavior in the

neighborhood of the equilibrum (x0, y0). From calculus the tangent plane approximation

(linearization) of f(x, y) at this point we have,

f(x, y) ≈ f(x0, y0) + ∂xf(x0, y0)(x− x0) + ∂yf(x0, y0)(y − y0) + ... (C.2)
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Using Eqn.(C.2) it is possible to rewrite Eqn.(C.1) as


dtx = f(x, y) = f(x0, y0)︸ ︷︷ ︸

=0

+∂xf(x0, y0)(x− x0) + ∂yf(x0, y0)(y − y0)

dty = g(x, y) = g(x0, y0)︸ ︷︷ ︸
=0

+∂xg(x0, y0)(x− x0) + ∂yg(x0, y0)(y − y0)

(C.3)

Now, we define u = x−x0 and v = y− y0, this gives us, since x0 and y0 are just constants

dtu = dtx and dtv = dty. With these new variables the system takes the form,

dtu = ∂xf(x0, y0)u+ ∂yf(x0, y0)v

dtv = ∂xg(x0, y0)u+ ∂yg(x0, y0)v

(C.4)

which can be written in matricial notation as,

dt

u
v

 =

∂xf(x0, y0) ∂yf(x0, y0)

∂xg(x0, y0) ∂yg(x0, y0)

u
v

→ dt~ξ = J~ξ (C.5)

Where J is the Jacobian matrix and ~ξ is the column vector. Eqn.(C.5) is the linear

approximation of the orignal problem and has the simple solution ~ξ(t) = eJt~ξ(0), where

~ξ(0) is the initial condition.

An important question to answer is: How well does this approximation work? If the

real parts of both eigenvalues are nonzero, then the behavior of the system (C.1) near

(x0, y0) is qualitatively the same as the behavior of the linear approximation (C.5).

Suppose we have eigs(J) = {λ+, λ−} and the eigenvectors associated are ~v+, ~v−.

Then, the solution can be written as

~ξ(t) = eλ+t ~v+ + eλ−t ~v− (C.6)

Hence, there are three possible solutions, that depends on the eigenvalues. They are:

1. λ+ > 0 and λ− > 0, this solution is unstable, because ~ξ(t) explodes as t→∞ ;

2. λ+(−) > 0 and λ−(+) < 0, this is a saddle point;

3. λ+ < 0 and λ− < 0, this is a stable solution, because ~ξ(t)→ 0as t→∞ .



Appendix D

Vectorization

The vectorization is a linear transformation which converts a matrix into a column

vector. Take three matrices A,B and C, the main property of the vectorization is the

following [64],

Vec(ABC) = (CT ⊗ A)Vec(B) . (D.1)

We will use this procedure to solve an "operator-eigenoperator" equation of the form,

∂tρ = L ρ (D.2)

In Eqn.(D.2), ρ is the density matrix and L is the Louvillian superoperator. Using

Eqn.(D.1) we can transform Eqn.(D.2) into an eigenvalue-eigenvector equation,

∂tVec(ρ) = Vec(L ρ) = λVec(ρ) (D.3)

Applying it to a Lindblad equation,

∂tρ = L ρ = −i[H, ρ]+D(ρ) = −i(Hρ−ρH)+2κ

[
LρL† − 1

2
(ρL†L+ L†Lρ)

]
(D.4)

112



APPENDIX D. VECTORIZATION 113

yields, 

Vec(Hρ1) = (1T ⊗H)Vec(ρ)

Vec(1ρH) = (HT ⊗ 1)Vec(ρ)

Vec(LρL†) = [(L†)T ⊗ L]Vec(ρ) = [L∗ ⊗ L]Vec(ρ)

Vec(1ρ(L†L)) = [(L†L)T ⊗ 1]Vec(ρ)

Vec((L†L)ρ1) = [(1T ⊗ (L†L)]Vec(ρ)

For instance, if we are dealing with a dephasing dissipator,

D(ρ) =
λ

2
(σzρσz − ρ)

the final equation will be

Vec(D′(ρ)) =
λ

2
(Vec(σzρσz)− Vec(ρ))

=
λ

2
((σTz ⊗ σz)− 1)Vec(ρ)

=
λ

2
((σz ⊗ σz)− 1)Vec(ρ)



Appendix E

Details of the numerical simulations

In this appendix we present some convergence/sanity checks of the numerical simula-

tions that enabled us to obtain the entropy production and flux rate at the NESS and during

the quench protocol.

We have the Liouvillian corresponding to the master equation (5.4) (with the scaling)

as

L (ρ) = −i
[
H0 + iε

√
N(a† − a), ρ

]
+ 2κ

(
aρa† − 1

2
{a†a, ρ}

)
. (E.1)

The steady-state equation,

L (ρ) = 0, (E.2)

is then transformed into a eigenvalue/eigenvector equation by making use of the vector-

ization procedure, explained in Sec.D. Then, ρ is the eigenvector of L̂ associated with

the eigenvalue 0. To carry out the calculation, we decompose ρ in the Fock basis, using a

sufficiently large dimension nmax for the Fock space to ensure convergence (see table E.1

and Fig.E.1).
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N interval nmax

N ≤ 10 60

N ≤ 35 220

N ≤ 55 300

N ≤ 80 450

N ≤ 100 520

Table E.1: Truncated dimension of the Fock space given N : For each interval of N on
the left column, the truncated dimension of the Fock space was defined by the values on
the right column. Convergence was ensured by comparing the numerical results of the
NESS with the exact values as given in Ref. [3].

E.1 NESS convergence analysis
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Figure E.1: Convergence test for the truncated dimension given N : Plot of the sec-
ond moment 〈a†a〉/N at the vicinity of criticallity for different values of truncated di-
mension nmax as shown in panel (a). The black dashed line stands for the exact solution
of Ref. [3], while the dots are the numerical results obtained from vetorization for differ-
ent dimensions. The plots are for: (a) N = 40 (b) N = 41 (c) N = 43 (d) N = 45 (e)
N = 47 (f) N = 50
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We found that for N > 40 our numerical procedure did not match the exact results

in the critical region as can be seen in Fig.E.1, that is why all of our numerical results

presented in the main text goes up to N = 40 only. The truncated dimension of the Fock

space were chosen as showed in Tab.E.1 for all numerical computations.

E.2 Convergence analysis and sanity check: quench dy-

namics

To obtain the entropy flux Φt = 2κ〈a†a〉t we simply evolved the initial state in time, as

described in the main text Sec. 6.2, and computed the trace with with the state ρt, for each

step of time 〈a†a〉t = tr
{
a†aρt

}
. In order to ensure the convergence of the simulations

for the quench, we defined a control parameter δ and compared the results between N

and N + δ. The control parameter could take the values δ = 0 and δ = 5. This small

contribution to N should not modify the results and that is precisely what is verified in

Fig.E.2.
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Figure E.2: Convergence analysis of the total flux: It was fixed N = 40. The plots are
for two different values of the control parameter δ = 0 and δ = 5, as shown in panel (a).
The quenches are from εi = 0.5 to (a) εf = 0.6 (b) εf = 0.8 (c) εf = εc − 0.01 (d) εf = εc
(d) εf = εc + 0.01 (e) εf = 1.1, (f) εf = εp − 0.01 (g) εf = εp (h) εf = εp + 0.01. Other
parameters were fixed as in Fig.6.3.

As a sanity check we test if after the quench dynamics the sum of the contributions of

the entropy production rate matches the NESS entropy flux rate,

dS

dt
= 0 → ΠJ + Πu = Φext, (E.3)

this behavior can be verified in Fig.E.5.

Given a matrix ρ we locate the Husimi Q-function and construct discretized surface

grid as a xy-plane where µ = 〈a〉 = x+ iy. This way Q(µ, µ̄)→ Q(x, y). The Q-function

is approximately centralized around µ, we compute the standard deviation in x and y
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direction, we choose the number of standard deviations "nstd" in both directions and the

number of points of the grid "ngrid" so that the Q-function is null in the borders. To do so

we use the following identities,

〈aa†〉 =

∫
d2µ |µ|2Q(µ, µ̄) (E.4)

=

∫
dxdy (x2 + y2)Q(x, y) = 〈x2〉+ 〈y2〉 (E.5)

and,

〈aa〉 =

∫
d2µ µ2Q(µ, µ̄) (E.6)

=

∫
dxdy (x2 + y2 + 2ixy)Q(x, y) = 〈x2〉 − 〈y2〉+ 2i〈xy〉 (E.7)

Hence, for instance 〈x〉 = <µ and 〈x2〉 = (2〈aa†〉 + 〈aa〉 − ¯〈aa〉)/4. This yields

var(x) =
√
〈x2〉 − 〈x〉2. This procedure gives the region of integration {xi, xf}×{yi, yf}

and the spacing in each direction ∆x,∆y. The code that locates the Husimi Q-function is

shown in Fig. E.3.

In[ ]:= LocateHusimi[ρ _, ngrid _:20, nstd _:6] := Module{aveA, aveAAd, aveAA, aveX, aveY, aveX2, aveY2, stdX, stdY, xi, xf, yi, yf, Δx, Δy},

aveA = Chop@Tr[a.ρ];
aveAAd = Chop@Tr[a.a.ρ];
aveAA = Chop@Tr[a.a.ρ];

aveX = Re[aveA];

aveY = Im[aveA];

aveX2 =
2 aveAAd + aveAA + aveAA

4

// Chop;

aveY2 =
2 aveAAd - aveAA - aveAA

4

// Chop;

stdX = aveX2 - aveX2 ;

stdY = aveY2 - aveY2 ;

xi = aveX - nstd stdX;

xf = aveX + nstd stdX;

yi = aveY - nstd stdY;

yf = aveY + nstd stdY;

Δx = First@Differences@linspace[xi, xf, ngrid ];

Δy = First@Differences@linspace[yi, yf, ngrid ];

{xi, xf, Δx, yi, yf, Δy}

;

Figure E.3: Code 1: Locate Husimi Q-function.

Once we localize the Q-function, we compute the components of Πt for each step of

time, where the state is ρt by the following steps:
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1. We choose the number of points in the surface grid "ngrid" and a number of standard

deviations "nstd" we use to center the Husimi Q-function. These numbers remain

constant for a given quench. We locate the Husimi Q-function in order to have the

region of integration aforementioned;

2. With the region of integration we compute the values of ΠJ and Πu, using the

formulas of the main text. The code of the function Q-Entropy Calculator is shown

in Fig. E.4;

QEntropyProdCalculator[{xi _, xf _, Δ x _}, {yi _, yf _, Δ y _}, ρ _] :=

Module{nmax = Length[ρ] - 1, α, inner1, inner2, aarho, arho, αvecmod, xrange, yrange, J2overQ, Q, ΠJandU, ΠJ, DαsQ, D2αsQ, ΠJtemp, Utemp, ΠU},

xrange = range[xi , xf , Δ x] + 10-15;

yrange = range[yi , yf , Δ y] + 10-15;

arho = a.ρ;
aarho = a.arho;

ΠJandU = Table
α = x + ⅈ y;

αvecmod = Quiet@Chop@TableExp-Abs[α]2  2
αn

n !

, {n, 0, nmax};

Q =
1

π
αvecmod.ρ.αvecmod;

inner1 =
1

π
αvecmod.arho.αvecmod;

inner2 =
1

π
αvecmod.aarho.αvecmod;

DαsQ = -α Q + inner1;

D2αsQ = -α DαsQ - α (inner1) + ( inner2);

IfAbs[Q] < 10-15, {0, 0}, 
Abs[inner1]2

Q

, (α)2
Q D2αsQ - (DαsQ)2

Q

- (α)2
Q D2αsQ - (DαsQ)2

Q




, {y, yrange}, {x, xrange};

ΠJ = Chop@Total@Flatten[Δ xΔ y ΠJandU〚All, All, 1〛];

ΠU = Chop@Total@Flatten[Δ xΔ yΠJandU〚All, All, 2〛];

{ΠJ, ΠU}


Figure E.4: Code 2: Entropy calculator.

3. These steps are repeated for each step of time.

The parameters of the quench dynamics simulations were chosen as shown in Tab. E.2.
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εf Nstd NGrid tf
0.6 6 35 20
0.8 6 35 20
εc − 0.01 6 35 50
εc 6 35 50
εc + 0.01 6 35 50
1.1 8 74 110
εp − 0.01 7 65 80
εp 7 65 80
εp + 0.01 7 65 80

Table E.2: Parameters for the numerical entropy production computation: "Nstd"
stands for number of standard deviations chosen to locate the Husimi Q-function and
"NGrid" is the number of points of the Husimi grid. Finally, tf is the final time chosen
for the final εf .
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Figure E.5: Sanity check : The plot shows that (ΠJ +Πu)/N → Φext/N after the quench
dynamics. The values of N are shown in panel (a). The order of the quenches and other
parameters are as in Fig.E.2



APPENDIX E. DETAILS OF THE NUMERICAL SIMULATIONS 121

Figure E.6: Husimi Q-function contour plot: We plot the contour of the Husimi Q-
function during the time evolution of the quench (εi, εf ) = (0.5, εc). In the upper row
we set N = 1 and time (a) t = 1, (b) t = 6.5, (c) t = 15, while in the lower row we set
N = 40 and time (d) t = 1,(e) t = 6.5,(f) t = 15. The frames are x = <µ and y = =µ.
Other parameters are as in Fig.E.2

In Fig. E.6 we observe the evolution of the Husimi Q-function at certain times as given

by the aforementioned algorithm, for N = 1 and N = 40. We note that it is always

centralized and zero in the borders as required to computed the integrals of the entropy

production rate numerically. It holds for all the quenches shown in Chap. 6.
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The physics of driven-dissipative transitions is currently a topic of great interest, particularly in quantum
optical systems. These transitions occur in systems kept out of equilibrium and are therefore characterized
by a finite entropy production rate. However, very little is known about how the entropy production behaves
around criticality and all of it is restricted to classical systems. Using quantum phase-space methods, we put
forth a framework that allows for the complete characterization of the entropy production in driven-dissipative
transitions. Our framework is tailored specifically to describe photon loss dissipation, which is effectively a
zero-temperature process for which the standard theory of entropy production breaks down. As an application,
we study the open Dicke and Kerr models, which present continuous and discontinuous transitions, respectively.
We find that the entropy production naturally splits into two contributions. One matches the behavior observed
in classical systems. The other diverges at the critical point.

DOI: 10.1103/PhysRevResearch.2.013136

I. INTRODUCTION

The entropy of an open system is not conserved in time,
but instead evolves according to

dS(t )

dt
= �(t ) − �(t ), (1)

where � � 0 is the irreversible entropy production rate and
� is the entropy flow rate from the system to the environ-
ment. Thermal equilibrium is characterized by dS/dt = � =
� = 0. However, if the system is connected to multiple
sources, it may instead reach a nonequilibrium steady state
(NESS) where dS/dt = 0 but � = � � 0. NESSs are there-
fore characterized by the continuous production of entropy,
which continuously flows to the environments.

In certain systems a NESS can also undergo a phase transi-
tion. These so-called dissipative transitions [1–3] represent the
open-system analog of quantum phase transitions. Similarly
to the latter, they are characterized by an order parameter and
may be either continuous or discontinuous [4–6]. They are
also associated with the closing of a gap, although the gap
in question is not of a Hamiltonian, but of the Liouvillian
generating the open dynamics [7,8]. The features emerging
from the competition between dissipation and quantum fluctu-
ations have led to a burst of interest in these systems in the last
few years [6–38], including several experimental realizations
[39–45].

Given that the fundamental quantity characterizing the
NESS is the entropy production rate �, it becomes natural
to ask how � behaves as one crosses such a transition, such

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

as, i.e., what are its critical exponents? Is it analytic? Does
it diverge? Surprisingly, very little is known about this and
almost all is restricted to classical systems.

In Ref. [46] the authors studied a continuous transition in
a two-dimensional (2D) classical Ising model subject to two
baths acting on even and odd sites. They showed that the
entropy production rate was always finite, but had a kink at
the critical point, with its derivative presenting a logarithmic
divergence. A similar behavior was also observed in a Brow-
nian system undergoing an order-disorder transition [47], the
majority vote model [48], and a 2D Ising model subject to an
oscillating field [49]. In the system of Ref. [49], the transition
could also become discontinuous depending on the parame-
ters. In this case they found that the entropy production has a
discontinuity at the phase coexistence region. Similar results
have been obtained in Ref. [50] for the dissipated work (a
proxy for entropy production) in a synchronization transition.

All these results therefore indicate that the entropy produc-
tion is finite across a dissipative transition, presenting either
a kink or a discontinuity. This general behavior was recently
shown by some of us to be universal for systems described by
classical Pauli master equations and breaking a Z2 symmetry
[51]. An indication that it extends beyond Z2 was given in
Ref. [52] which studied a q-state Potts model.

Whether or not this general trend carries over to the
quantum domain remains an open question. Two results,
however, seem to indicate that it does not. The first refers
to the driven-dissipative Dicke model, studied experimentally
in Refs. [39,40]. In this system, the part of the entropy
production stemming from quantum fluctuations was found
to diverge at the critical point [45]. Second, in Ref. [53]
the authors studied the irreversible work produced during a
unitary quench evolution of the transverse field Ising model.
Although being a different scenario, they also found a diver-
gence in the limit of zero temperature (which is when the
model becomes critical). Both results therefore indicate that

2643-1564/2020/2(1)/013136(9) 013136-1 Published by the American Physical Society
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FIG. 1. Typical driven-dissipative scenario portraying an optical
cavity with a nonlinear medium subject to an external pump E and
photon losses occurring at a rate κ .

quantum fluctuations may lead to divergences of the entropy
production in the quantum regime. Whether these divergences
are universal, and what minimal ingredients they require,
remains a fundamental open question in the field.

The reason why this issue has so far not been properly
addressed is actually technical: most models explored so far
fall under the category of a driven-dissipative process, where
dissipation stems from the loss of photons in an optical cavity
[54] (see Fig. 1). The problem is that photon losses are
modeled effectively as a zero-temperature bath, for which
the standard theory of entropy production yields unphysical
results (it is infinite regardless of the state or the process)
[55,56].

This “zero-temperature catastrophe” [57,58] occurs be-
cause the theory relies on the existence of fluctuations which,
in classical systems, seize completely as T → 0. In quantum
systems, however, vacuum fluctuations remain. This was the
motivation for an alternative formulation introduced by some
of us in Ref. [59] and recently assessed experimentally in [45],
which uses the Wigner function and its associated Shannon
entropy as a starting point to formulate the entropy production
problem. This has the advantage of accounting for the vacuum
fluctuations, thus leading to a framework that remains useful
even when T → 0.

This paper builds on Ref. [59] to formulate a theory which
is suited for describing driven-dissipative transitions. Since
these transitions are seldom Gaussian, we use here instead the
Husimi Q function and its associated Wehrl entropy [56,60].
Our focus is on defining a consistent thermodynamic limit
where criticality emerges. This allow us to separate � into
a deterministic term, related to the external laser drive, plus
a term related to quantum fluctuations. The latter is also
additionally split into two terms, one related to the nontrivial
unitary dynamics and the other to photon loss dissipation. We
apply our results to the Dicke and Kerr models, two paradig-
matic examples of dissipative transitions having a continuous
and discontinuous transition respectively. In both cases, we
find that unitary part of � behaves exactly like in classical
systems. The dissipative part, on other hand, is proportional
to the variance of the order parameter and thus diverges at the
critical point.

II. DRIVEN-DISSIPATIVE SYSTEMS

We consider a system described by a set of bosonic
modes ai evolving according to the Lindblad master

equation

∂tρ = −i

[
H0 + i

∑
i

Ei(a
†
i − ai ), ρ

]

+
∑

i

2κi

(
aiρa†

i − 1

2
{a†

i ai, ρ}
)

, (2)

where H0 is the Hamiltonian, Ei are external pumps, and κi

are the loss rates for each mode (see Fig. 1). The second term
in Eq. (2) is the typical Lindblad dissipator describing one-
photon losses of a cavity. The results below hold for arbitrary
times in the dynamics, although most of our interest will be in
the NESS, defined as the fixed point dρ/dt = 0.

We work in phase space by defining the Husimi func-
tion Q(μ, μ̄) = 1

π
〈μ|ρ|μ〉, where |μ〉 = ⊗

i |μi〉 are coherent
states and μ̄ denotes complex conjugation. The master Eq. (2)
is then converted into a quantum Fokker-Planck (QFP) equa-
tion [61],

∂t Q = U (Q) +
∑

i

(
∂μi Ji(Q) + ∂μ̄i J̄i(Q)

)
, (3)

where U (Q) is a differential operator related to the uni-
tary part (see Appendixes A–C for examples) and Ji(Q) =
κi(μiQ + ∂μ̄i Q) are irreversible quasiprobability currents as-
sociated with the photon loss dissipators.

As our basic entropic quantifier, we use the Shannon
entropy of Q, known as Wehrl’s entropy [60],

S(Q) = −
∫

d2μ Q ln Q. (4)

This quantity can be attributed an operational interpretation
by viewing Q(μ, μ̄) as the probability distribution for the
outcomes of a heterodyne measurement. S(Q) then quantifies
the entropy of the system convoluted with the additional noise
introduced by the heterodyning [62,63]. As a consequence,
S(Q) � S(ρ), with both converging in the semiclassical limit.
We also mention that the Wehrl entropy has the unique advan-
tage of being well defined for any quantum state, since Q � 0.
This is in contrast with the Wigner entropy, which can become
imaginary if the Wigner function is negative.

Next, we differentiate Eq. (4) with respect to time and
use Eq. (3). Employing a standard procedure developed for
classical systems [64], we can separate dS/dt as in Eq. (1),
with an entropy flux rate given by

� =
∑

i

2κi〈a†
i ai〉, (5)

and an entropy production rate

� = −
∫

d2μ U (Q) ln Q +
∑

i

2

κi

∫
d2μ

|Ji(Q)|2
Q

. (6)

The entropy flux is seen to be always non-negative, which
is a consequence of the fact that the dissipator is at zero
temperature, so that entropy cannot flow from the bath to
the system, only the other way around. As for � in Eq. (6),
the last term is the typical dissipative contribution, related
to the photon loss channels and also found in [59]. The
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extension to a finite temperature dissipator is straightforward
and requires only a small modification of the currents Ji [59].
The new feature in Eq. (6) is the first term, which is related
to the unitary contribution U (Q). Unlike the von Neumann
entropy, the unitary dynamics can affect the Wehrl entropy.
This is due to the fact that the unitary dynamics can already
lead to diffusionlike terms in the Fokker-Planck Eq. (3), as
discussed, e.g., in Ref. [65].

III. THERMODYNAMIC LIMIT

The results in Eqs. (5) and (6) hold for a generic master
equation of the form (2), irrespective of whether or not the
system is critical. We now reach the key part of our paper,
which is to specialize the previous results to the scenario of
driven-dissipative critical systems. The first ingredient that is
needed is the notion of a thermodynamic limit. For driven-
dissipative systems, criticality emerges when the pump(s)
Ei become sufficiently large. It is therefore convenient to
parametrize Ei = εi

√
N and define the thermodynamic limit

as N → ∞, with εi finite. In driven systems 〈ai〉 always scales
proportionally to Ei, so that we can also define 〈ai〉 = αi

√
N ,

where the αi are finite and represent the order parameters of
the system.

The parameter N , representing the thermodynamic limit,
can therefore be thought of as being proportional to the
number of photons in the pump which, in turn, is roughly the
number of photons in the cavity. Thus, criticality in driven-
dissipative models occur when the number of photons be-
comes very large. From a theoretical point of view, however,
N is to be viewed as knob allowing one to tune the model
towards a critical behavior.

This combination of scalings implies that at the mean-field
level (ai → 〈ai〉) the pump term Ei(a

†
i − ai ) in (2) will be

O(N ); i.e., extensive. We shall henceforth assume that the
parameters in the model are such that this is also true for H0

in Eq. (2) (see below for examples).
Introducing displaced operators δai = ai − αi

√
N , the en-

tropy flux (5) is naturally split as

� = �ext + �q = N
∑

i

2κi|αi|2 +
∑

i

2κi〈δa†
i δai〉. (7)

The first term is extensive in N and depends solely on the
mean-field values |αi|. It is thus independent of fluctuations.
The second term, on the other hand, is intensive in N . In fact, it
is proportional to the variance of the order parameter 〈δa†

i δai〉
(the susceptibility) and thus captures the contributions from
quantum fluctuations.

We can also arrive at a similar splitting for the entropy
production (6). Defining displaced phase-space variables
νi = μi − αi

√
N , the currents Ji in the QFP Eq. (3) are split as

Ji = √
NκiαiQ + Jν

i (Q), where Jν
i = κi(νiQ + ∂ν̄i Q). Substi-

tuting in (6) then yields

� = �ext + �u + �d = N
∑

i

2κi|αi|2 −
∫

d2ν U (Q) ln Q

+
∑

i

2

κi

∫
d2ν

|Jν
i (Q)|2

Q
. (8)

This is the main result in this paper. It offers a splitting of
the total entropy production rate into three contributions with
distinct physical interpretations. The first, �ext, is extensive
and depends solely on the mean-field values αi. It therefore
corresponds to a fully deterministic contribution, independent
of fluctuations. Comparing with Eq. (7), we see that

�ext = �ext, (9)

a balance which holds irrespective of whether the system is in
the NESS. Hence, this contribution does not affect the system
entropy: At the mean-field level, all entropy produced flows to
the environment.

The second and third terms in Eq. (8) represent, respec-
tively, the unitary and dissipative contributions to �. These
two terms account for the contributions to the entropy produc-
tion stemming from quantum fluctuations. This becomes more
evident in the NESS (dS/dt = 0), where combining Eqs. (1)
and (9) leads to

�u + �d = �q. (10)

The two terms �u and �d therefore represent two sources for
the quantum entropy �q in Eq. (7). We also note in passing
that while �d � 0, the same is not necessarily true for �u,
although this turns out to be the case in the examples treated
below.

IV. KERR BISTABILITY

To illustrate how the different contributions to the entropy
production in Eq. (8) behave across a dissipative transition, we
now apply our formalism to two prototypical models. The first
is the Kerr bistability model [11,26,54], described by Eq. (2)
with a the single mode a and Hamiltonian

H0 = �a†a + u

2N
a†a†aa, (11)

where � is the detuning and u is the nonlinearity strength.
This model has a discontinuous transition.

The NESS of this model and the terms in Eq. (8) were
computed using numerically exact methods. Details on the
numerical calculations are provided Appendix B and the main
results are shown in Fig. 2. In Figs. 2(a) and 2(b) we plot
�u and �d for different sizes N . As can be seen, �u has a
discontinuity at the critical point when N → ∞. Conversely,
�d diverges. The critical behavior in the thermodynamic limit
(N → ∞) can be better understood by performing a finite size
analysis [Figs. 2(c) and 2(d)], where we plot �u and �d/N vs
N (ε/εc − 1) for multiple values of N . Surprisingly, we find
that the behavior of �u matches exactly that of the classical
entropy production in a discontinuous transition [49,51,52].
We also see from Fig. 2 that �u is negligible compared to
�d . As a consequence, in view of Eq. (10) the dissipative
contribution �d will behave like the variance of the order
parameter 〈δa†δa〉, which diverges at the critical point. This
is clearly visible in Fig. 2(d), which plots �d/N .

V. DRIVEN-DISSIPATIVE DICKE MODEL

The second model we study is the driven-dissipative Dicke
model [39,40]. It is described by Eq. (2) with a mode a,
subject to photon loss dissipation κ , as well as a macrospin
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FIG. 2. Entropy production in the discontinuous transition of the
Kerr bistability model [Eq. (11)]. (a), (b) Unitary and dissipative
contributions �u and �d for N = 30 (black-solid) and 10 (blue-
dashed). (c), (d) Finite-size analysis showing a data collapse of �u

and �d/N vs N (ε/εc − 1) for multiple values of N (from 10 to 40 in
steps of 5). The critical behavior of �u matches that of the classical
entropy production. �d , on the other hand, behaves similarly to
〈δa†δa〉 and thus diverges at the critical point. Other parameters were
κ = 1/2, � = −2, and u = 1.

of size J = N/2. The Hamiltonian is

H0 = ω0Jz + ωa†a + 2λ√
N

(a + a†)Jx, (12)

where Ji are macrospin operators. This model does not need
a drive E since the last term can already be interpreted as a
kind of “operator valued pump” (as it is linear in a + a†).
In fact, this is precisely how this model was experimentally
implemented in a cold-atom setup [39]. The model can also be
pictured as purely bosonic by introducing an additional mode
b according to the Holstein-Primakoff map Jz = b†b − N/2
and J− = √

N − b†bb. It hence falls under the category of
Eq. (2), with two modes a and b.

Since this is a two-mode model, numerically exact results
are more difficult. Instead, we follow Refs. [39,40,45] and
consider a Gaussianization of the model valid in the limit of N
large. Details are provided in Appendix C and the results are
shown in Fig. 3. Once again, the unitary part �u of the entropy
production [Figs. 3(a) and 3(b)] is found to behave like the
mean-field predictions for classical transitions [46–52]. It is
continuous and finite, but presents a kink (the first derivative
is discontinuous) at the critical point λc =

√
ω0(κ2 + ω2)/ω.

The dissipative part �d , on the other hand, diverges at λc.
This was indeed already shown experimentally in Ref. [45].
In fact, the behavior of �d at the vicinity of λc is of the form

�d ∼ 1

|λc − λ| , (13)

FIG. 3. Entropy production in the continuous transition of the
driven-dissipative Dicke model [Eq. (12)]. (a), (b) �u and d�u/dλ

vs λ. This part of the entropy production is continuous, but
has a kink (discontinuous first derivative) at the critical point
λc = √

ω0(κ2 + ω2)/ω. (c) �d vs λ showing a divergence at λc.
(d) log10 �d vs log10 |λc − λ| at the vicinity of λc. The points
correspond to simulations, whereas the straight lines are fits with
slope −1, showing that �d diverges as in Eq. (13). Other parameters
were ω0 = 0.005, ω = 0.01, and κ = 1.

as confirmed by the analysis in Fig. 3(d). Similarly to the Kerr
model, �u is much smaller than �d so that the latter essen-
tially coincides with 2κ〈δa†δa〉 in the NESS [cf. Eq. (10)].
The divergence in (13) thus mimics the behavior of 〈δa†δa〉.

VI. DISCUSSION

Understanding the behavior of the entropy production
across a nonequilibrium transition is both a timely and impor-
tant question, specially concerning driven-dissipative quan-
tum models, which have found renewed interest in recent
years. This paper provides a framework for computing the
entropy production for the zero-temperature dissipation ap-
pearing in driven-dissipative models.

We then applied our formalism to two widely used models.
In both cases we found that one contribution �u behaved
qualitatively similar to that of the entropy production in
classical dissipative transitions. The other, �d , behaved like a
susceptibility, diverging at the critical point. Why �u behaves
in this way, remains an open question. Driven-dissipative
systems have one fundamental difference when compared to
classical systems. In the latter, energy input and output both
take place incoherently, through the transition rates in a master
equation. In driven-dissipative systems, on the other hand, the
energy output is incoherent (Lindblad-like) but the input is
coherent (the pump). A classical analog of this is an electrical
circuit coupled to an external battery E . For instance, the
entropy production in a simple RL circuit is �RL = E2/RT

013136-4



QUANTUM FEATURES OF ENTROPY PRODUCTION IN … PHYSICAL REVIEW RESEARCH 2, 013136 (2020)

[66] where R is the resistance and T is the temperature. If we
consider an empty cavity with a single mode a and H0 = 0,
Eq. (6) predicts �cavity = 2E2/κ . Notwithstanding the sim-
ilarity between the two results, one must bear in mind that
the RL circuit still contains incoherent energy input. Indeed,
�RL diverges as T → 0. The cavity, on the other hand, relies
solely on vacuum fluctuations. This interplay between thermal
and quantum fluctuations highlights the need for extending
the present analysis to additional models of driven-dissipative
transitions. In particular, it would be valuable to explore mod-
els which can be tuned between classical (e.g., for large T )
and quantum (T = 0) transitions.
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APPENDIX A: PROPERTIES OF �u

The entropy production rate in Eq. (6) of the main text has
a term proportional to the unitary dynamics,

�u = −
∫

d2μ U (Q) ln Q, (A1)

which depends on the differential operator U (Q), representing
the unitary contribution to the QFP Eq. (3). Written in this
way, the physics behind this term is not immediately transpar-
ent. To shed light on this, we focus here the case of a single
mode. The Hamiltonian may then always be written in normal
order as

H0 =
∑
r,s

Hrs(a
†)ras, (A2)

for some coefficients Hrs. The thermodynamic limit hypothe-
sis used in the main text is that H0 should be O(N ) at the mean-
field level (ai → 〈ai〉). This implies that Hrs = hrsN1−(r+s)/2,
where the hrs are independent of N . For instance, the coeffi-
cient multiplying a†a†aa should scale as 1/N [as in Eq. (11)].
We may thus write (A2) as

H0 = N
∑
r,s

hrs

(
a†

√
N

)r(
a√
N

)s

. (A3)

The corresponding phase-space contribution U (Q) can be
found using standard correspondence tables [61] to convert
the master equation term −i[H0, ρ] into a corresponding
differential operator for Q. The result is

U (Q) = −iN
∑
r,s

hrs

N (r+s)/2
{μ̄r (μ + ∂μ̄)s − μs(μ̄ + ∂μ)r}Q.

(A4)

Normal ordering is convenient as it pushes all derivatives to
the right. We now change variables to ν = μ − α

√
N and

expand the result in a power series in N .
This yields, to leading order,

U (Q) = −i
√

N
∑
r,s

hrsα
s−1ᾱr−1(sᾱ∂ν̄ − rα∂ν )Q

− i
∑
r,s

hrs
αs−2ᾱr−2

2

[
s(s − 1)(ᾱ)2

(
2ν∂ν̄ + ∂2

ν̄

)
− r(r − 1)α2(2ν̄∂ν + ∂2

ν

)+2rs|α|2(ν̄∂ν̄−ν∂ν )
]
Q

+O(1/
√

N ). (A5)

The remaining terms in the expansion are at least O(1/
√

N )
and thus vanish in the limit N → ∞. This expression may be
further simplified by introducing the constants

ξ1 = −i
∑
r,s

hrs αs−1ᾱrs, (A6)

ξ2 = −i
∑
r,s

hrs αs−2ᾱrs(s − 1), (A7)

ξ11 = −i
∑
r,s

hrs αs−1ᾱr−1rs. (A8)

Then, since hrs = h∗
sr , we can write (A5) as

U (Q) =
√

N (ξ1∂ν̄ + ξ̄1∂ν )Q + 1
2

[
ξ2

(
2ν∂ν̄ + ∂2

ν̄

)
+ ξ̄2

(
2ν̄∂ν + ∂2

ν

)+ 2ξ11(ν̄∂ν̄ − ν∂ν )
]
Q + O(1/

√
N ).

(A9)

This is the leading-order contributions of the unitary dynamics
to the Fokker-Planck equation. The important point to notice
is the existence of diffusive terms (proportional to the second
derivative ∂2

ν and ∂2
ν̄ ). This is a known feature of the Husimi

function.
We now plug Eq. (A9) into Eq. (A1). Integrating by parts

multiple times and using the fact that the Husimi function
always vanishes at infinity, we find that the only surviving
terms are

�u = 1

2

∫
d2ν

Q
[ξ2(∂ν̄Q)2 + ξ̄2(∂νQ)2], (A10)

which provides the leading-order contribution to �u. In the
limit N → ∞ this is the only contribution which survives.

APPENDIX B: SOLUTION OF THE KERR
BISTABILITY PROBLEM

In this section we provide additional details on the solution
methods used to study the entropy production in the Kerr
model [Eq. (11) of the main text]. The NESS of this model
can be found analytically using the generalized P function
[54]. This includes all moments of the form 〈(a†)ras〉, as well
as the Wigner function [67]. While the Husimi function can
in principle be found numerically from the Wigner function,
we have found that this is quite numerically unstable due to
the highly irregular nature of the latter. Instead, it is easier
to simply find the steady-state density matrix ρ numerically
using standard vectorization techniques (as done, e.g., in
Ref. [26]).
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1. Numerical procedure

The numerical calculations were performed as follows.
We define the Liouvillian corresponding to the master
equation (2) as

L(ρ) = −i[H0 + iε
√

N (a† − a), ρ]

+ 2κ
(
aρa† − 1

2 {a†a, ρ}). (B1)

The steady-state equation,

L(ρ) = 0, (B2)

is then interpreted as an eigenvalue/eigenvector equation: ρ

is the eigenvector of L with eigenvalue 0. To carry out the
calculation, we decompose ρ in the Fock basis, using a
sufficiently large number of states nmax to ensure convergence.

From ρ we then compute the Husimi function and the cor-
responding integrals numerically using standard integration
techniques. The Husimi function is obtained by constructing
approximate coherent states

|μ〉 = e−|μ|2/2
nmax∑
n=0

μn

√
n!

|n〉.

A grid of the Husimi function Q(μ, μ̄) can then be built to be
subsequently integrated numerically. Derivatives of Q do not
need to be computed using finite differences. Instead, one may
notice that, for instance,

∂μ̄Q = −μQ + 1

π
〈μ|aρ|μ〉, (B3)

with similar expressions for other derivatives. Finally, conver-
gence of the numerical integration can be verified by com-
puting moments 〈(a†)ras〉 of arbitrary order from the Husimi
function and comparing with the exact results of Ref. [54].

2. Bistable behavior

For fixed κ , U , and � < 0, the NESS of Eq. (B1) presents
a discontinuous transition at a certain critical value εc. This
transition is related to a bistable behavior of the model at the
mean-field level. For finite N the steady state of (B1) is unique
[54]. However, as shown recently in Ref. [26], in the limit
N → ∞ the Liouvillian gap between the steady state and the
first excited state closes asymptotically in the region between

ε± =
√

n±[κ2 + (� + n±u)2] and

n± = −2� ± √
�2 − 3κ2

3u
. (B4)

From a numerical point of view, however, this causes no
interference since all computations are done for finite N ,
where the NESS is unique.

3. Unitary contribution to the quantum Fokker-Planck equation

The unitary contribution U (Q) appearing in Eq. (4) of
the main text can be obtained using standard correspondence
tables [61] and reads

U (Q) = (iμ� − E )∂μQ − (iμ̄� + E )∂μ̄Q + iu

2N

{
2|μ|2(μ∂μQ − μ̄∂μ̄Q) + μ2∂2

μQ − μ̄2∂2
μ̄Q

}
. (B5)

When plugged into Eq. (A1), the terms proportional to � and
E vanish. The only surviving terms are

�u = iu

2N

∫
d2μ

Q
[μ2(∂μQ)2 − μ̄2(∂μ̄Q)2]. (B6)

Substituting μ = α
√

N + ν yields a leading contribution of
O(1) which, of course, is the same as that which would be
obtained using Eq. (A10) with r = s = 2.

APPENDIX C: SOLUTION OF THE
DRIVEN-DISSIPATIVE DICKE MODEL

Here we describe the calculations for the driven-dissipative
Dicke model [Eq. (12) of the main text]. We consider only
a single source of drive and dissipation (E, κ ) acting on the
optical cavity mode a. The full master equation is then

dρ

dt
= −i[H, ρ] + 2κ

[
aρa† − 1

2 {a†a, ρ}], (C1)

with

H = ω0Jz + ωa†a + 2λ√
N

(a + a†)Jx. (C2)

Since this system involves two modes, direct solution by
vectorization becomes computationally too costly. Instead, we
tackle the problem using Gaussianization. The calculations

are done in detail in Refs. [39,40,45]. Here we simply cite the
main results and adapt the notation to our present interests.

1. Mean-field solution

We start by looking at the mean-field level by introducing
〈a〉 = α

√
N , 〈J−〉 = βN , and 〈Jz〉 = wN . For large N we then

get

dα

dt
= −(κ + iω)α − iλ(β + β∗), (C3)

dβ

dt
= −iω0β + 2iλ(α + ᾱ)w, (C4)

dw

dt
= iλ(α + ᾱ)(β − β∗), (C5)

which are independent of N , as expected. Angular momentum
conservation also imposes w2 + |β|2 = 1/4, which leads to
two choices, w = ± 1

2

√
1 − 4β2.

At the steady state this implies that β∗ = β,

α = − 2iλβ

κ + iω
, (C6)

and

−β
√

1 − 4β2 = ±λ2
c

λ2
β, (C7)
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where λc = 1
2

√
ω0
ω

(κ2 + ω2) is the critical interaction in the
absence of any external drives. The ± sign in Eq. (C7) stems
from the two choices w = ± 1

2

√
1 − 4β2 respectively. The

minus solution in Eq. (C7) always yields the trivial result
β = 0. The plus solution, on the other hand, can be nontrivial
when λ > λc. For this reason, we henceforth focus on the
solution of

β
√

1 − 4β2 = λ2
c

λ2
β, (C8)

which yields either β = 0 or β ∈ [0, 1/2]. Moreover, this
solution corresponds to w = − 1

2

√
1 − 4β2, so that the spin

is pointing downwards.

2. Holstein-Primakoff expansion

Next we introduce a Holstein-Primakoff expansion

Jz = b†b − N

2
, (C9)

J− =
√

N − b†b b (C10)

and expand

a = α
√

N + δa, b = β̃
√

N + δb, (C11)

for α and β̃ independent of N . The constant β̃ can be related
with β = 〈J−〉/N by expanding Eq. (C10) in a power series in
1/N , resulting in

β̃

√
1 − β̃2 = β, (C12)

which has two solutions

β̃± =
√

1 ±
√

1 − 4β2

2
. (C13)

Which solution to choose is fixed by imposing that
Eq. (C9) should also comply with 〈Jz〉 = w

√
N and w =

− 1
2

√
1 − 4β2. This fixes β̃− as the appropriate choice. It is

also useful to note that β̃2
+ + β̃2

− = 1 and β̃−β̃+ = β.
In terms of the expansion (C11) the operator Jz in Eq. (C9)

becomes

Jz = N

2

√
1 − 4β2 +

√
N β̃−(δb + δb†) + δb†δb. (C14)

We similarly expand J− in Eq. (C10), leading to

J− = Nβ +
√

N β̃+

[
δb − 1

2

β̃2
−

β̃2+
(δb + δb†)

]

− β̃−
2β̃+

[
δb†δb + (δb + δb†)δb + β̃2

−
4β̃2+

(δb + δb†)2

]

+O(1/
√

N ). (C15)

Substituting Eqs. (C14) and (C15) into Eq. (C2) we find, to
leading order, the quadratic Hamiltonian

H = ω̃0δb†δb + ωδa†δa + λ̃(δa + δa†)(δb + δb†)

− ζ (δb + δb†)2, (C16)

where

ω̃0 = ω0 − λ(α + ᾱ)
β̃−
β̃+

, (C17)

λ̃ = λβ̃+

(
1 − β̃2

−
β̃2+

)
, (C18)

ζ = λ(α + ᾱ)

2

β̃−
β̃+

(
1 + β̃2

−
2β̃2+

)
. (C19)

3. Stabilization of the solution

The Gaussianization procedure above explicitly already
takes the limit N → ∞. Because of this, it turns out that on
order to obtain a stable steady state, it is also necessary to
add a small dissipation to δb. Here we do so in the simplest
way possible, as a zero-temperature dissipator. We therefore
consider the evolution of the Gaussianized master equation

dρ

dt
= −i[H, ρ] + 2κD[δa] + 2γD[δb], (C20)

where D[L] = LρL† − 1
2 {L†L, ρ}. The value of γ was actu-

ally determined experimentally in [45] and is more than six
orders of magnitude smaller than κ . One must therefore use
a nonzero value, but the value itself can be arbitrarily small.
In Fig. 3 of the main text, we have used γ = 10−3κ simply to
ensure numerical stability.

4. Lyapunov equation

Once Gaussianized, we can study the steady state by solv-
ing for the second moments of δa and δb. Define quadrature
operators

δqb = δb + δb†

√
2

δpb = i√
2

(δb† − δb), (C21)

with identical definitions for δqa and δpa. The Hamiltonian
(C16) then transforms to

H2 = ω̃0

2

(
δq2

b+δp2
b

) + ω

2

(
δq2

a + δp2
a

) + 2λ̃δqaδqb − 2ζ δq2
b.

(C22)

Next define the covariance matrix (CM)

σi j = 1
2 〈{Ri, Rj}〉, R = (δqb, δpb, δqa, δpa). (C23)

Since both the Hamiltonian and the dissipator are Gaussian
preserving, the dynamics of σ is closed and described by a
Lyapunov equation,

dσ

dt
= Aσ + σAT + D, (C24)

where

A =

⎛
⎜⎜⎝

−γ ω̃0 0 0
4ζ − ω̃0 −γ −2λ̃ 0

0 0 −κ ω

−2λ̃ 0 −ω −κ

⎞
⎟⎟⎠ (C25)

and D = diag(γ , γ , κ, κ ).
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The assumption that the state of the system can be Gaus-
sianized allows us to write down the Husimi function of the
NESS, which has the form

Q = 1

π
√|σ + I4/2| exp

{− 1
2 rT(σ + I4/2)−1r

}
, (C26)

where r = (xb, yb, xa, ya) are the phase-space variables corre-
sponding to the quadrature operators R in Eq. (C23) and I4

is the identity matrix of dimension 4. All integrals appearing
in Eq. (8) will then be Gaussian and can thus be trivially
computed.
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