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The second law

 The 1st law puts heat and work on similar footing and says that, in
principle, one can be interconverted into the other.

 For a system coupled to two baths, for instance, we have:

= OO
dt_ h C

 Not all such processes are possible, however: l

 This is the purpose of the 2nd law. «




The 2nd law deals with entropy.
* Entropy, however, does not satisfy a continuity equation.

There can be a flow of entropy from the system to the environment, which is given
by the famous Clausius expression Q/T.

But, in addition, there can also be some entropy which is spontaneously produced
In the process. The entropy balance equation thus reads

ds . ’
_=Z+&+%
dt T, T
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The quantity Y is called the entropy production rate.

The second law can now be formulated mathematically as:

> >0



Why entropy production matters

 1stand 2nd laws for a system coupled to two baths: @

Carnot’s statement of the 2nd law

“The efficiency of a quasi-static or reversible Carnot cycle depends only on the
temperatures of the two heat reservoirs, and is the same, whatever the working
substance. A Carnot engine operated in this way is the most efficient possible

heat engine using those two temperatures.”

» Entropy production is therefore the reason the efficiency is smaller than Carnot:




Entropy and information

* In information theory, entropy acquires a different interpretation.

« S =amount of ignorance (lack of information) one has about the system.

 If the system is described by a set of states n = 1,2,3,..., each with probability p,, the
Shannon entropy is defined as

S =— anlnpn

« The quantity —In p, is called the “surprise” of the state:

* It measures how surprised we are to observe the system in state n.
e Ifp,~1— —Inp, ~ 0 (no surprise at all)
« Ifp,~0—= —Inp, > 1 (huge surprise)

e Entropy is thus the “average surprise”. &



* To have a concrete example, consider a particle which can be found in 1 of 2
sides of a box:

* Suppose we have some ignorance about the system:
* We do not know which side the particle is.
 Let (pp, p;) be the probabilities of finding it on the left or on the right.

* Consequently, the “state” of the particle (i.e., left or right) has some entropy
associated to it:

S =—=prlnpg—p Inp;
e e.g. maximum ignorance: pp = p; = 1/2 and thus

S=In2



Information erasure

* Consider now the following procedure:

* Irrespective of the initial

state, the final state is always
® ® “left”:

(pR’pL) — (091)

o
] * Hence the final entropy is
Zero:

] ) §=0
.| |

* We call this information
erasure because any initial
information about where the
particle was is now forever
lost.

®
||




Landauer’s principle

 Landauer’s principle states that there is a fundamental heat cost associated with
information erasure.

* To erase information one must pay an energy bill:

« ASgis the change in entropy of the system

« AQy is the amount of heat flowing to the environment

 Landauer’s bound: minimum heat cost for erasing information.

» Forinstance, if AS¢ =0 —In2, we find
AQr>TIn2

 Landauer worked for IBM. In computing terms, this is the energy cost required to
erase one bit of information.



Information is physical

 Landauer’s principle is often used to argue that “information is physical”.

* Information is physical because information is stored in physical systems and
communicated using physical systems.

* Information theory is thus not purely mathematical.

* Landauer’s principle also highlights a fundamental irreversibility of physical
Processes:

« If AS¢ > 0then AQy > — T'AS¢ does not impose any restrictions.

e There is no energy cost to acquire information.

 But there is an energy cost to erase it.



Landauer’s principle is a
consequence of the 2nd law



Landauer from the 2nd law

* Recall the 2nd law for a system coupled to a single bath:

« | changed the sign of Q/T here because QS = — QE

 We integrate over some interval of time, leading to

AQy

 This looks exactly like Landauer’s principle:

|t is a direct consequence of the 2nd law 2 > 0.




Microscopic formulation of Landauer’s principle

* But this is tricky because:

 Landauer’s bound is defined for the Shannon entropy and for systems of
arbitrary size, such as a single bit.

 The second law uses the thermodynamic entropy and holds only for
macroscopic bodies.

To connect the two universes we must construct a microscopic theory of

thermodynamics that is capable of extending the 2nd law to the microscopic
domain.

In this talk | will focus on the quantum version, as it encompasses the classical
theory as a particular case.

* This is the theory we call Quantum Thermodynamics.



Entropy production in quantum systems

* All information about a quantum system is contained in its density
matrix p. PE
* Entropy is now quantified by the von Neumann entropy: [/

S(p) = —tr(pInp)

 We consider two quantum systems, S and E (the “environment”) in
arbitrary states p¢ and pg.

S and E can have any size: generalization of the bath concept.
* The two then interact with a unitary U, leading to
PsE = U(PS®PE)UT
* This is the quantum version of a system interacting with a bath.

* What is the entropy production?



 The dynamics is unitary and so in principle one could say it is reversible.

e Indeed, if all of ng IS accessible, everything would be reversible.

* “Irreversibility” depends on which degrees of freedom become inaccessible after
the interaction.

* There are many possibilities:
e System-bath correlations become, in practice, inaccessible.

Any changes we make in the bath may also not be recoverable.

If measurements are done in the system, quantum coherence may also be lost.

e etc.

 Each of these features can be gauged using a certain information-theoretic
quantifier.

M. Esposito, K. Lindenberg, C. Van den Broeck, “Entropy production as correlation between system and
reservoir”. New Journal of Physics, 12, 013013 (2010).

G. Manzano, J. M. Horowitz, J. M. R. Parrondo, “Quantum fluctuation theorems for arbitrary environments:
adiabatic and non-adiabatic entropy production” ,Physical Review X, 8, 031037 (2018).



The choice of entropy production which is closest to the classical formulation is:

= =1I(S: E)+D(pg| | pp)
where

I'(S : E) = S(pg) + S(pr) — S(pgg) = SE correlations
D(pr| | pg) = tr(pgIn pp — ppIn pr) = change in the bath

This formula can be taken as a general definition of entropy production for an
arbitrary system+bath interaction process.

 The system and bath can have any size.
 Their states are arbitrary, except that they start in any (product) state.
* They interact with an arbitrary unitary U.

Assuming that the bath is in a thermal state, one finds:



* Inthe last 5 years there have been several papers which generalized/improved
Landauer’s original result:

J. Goold, M. Paternostro and K. Modi, Phys. Rev. Lett. 114, 060602 (2015).

G. Guarnieri, S. Campbell, J. Goold, S. Pigeon, B Vacchini and M. Paternostro,
NJP, 19, 103038 (2017).

S. Lorenzo, R. McCloskey, F. Ciccarello, M. Paternostro and G. M. Palma,
Phys. Rev. Lett., 115, 120403 (2015).

P. Strasberg, G. Schaller, T. Brandes and M. Esposito, Phys. Rev. X., 7, 021003
(2017).

S. Campbell, G. Guarnieri, M. Paternostro and B. Vacchini, Phys. Rev. A., 96,
042109 (2017).
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Troubleat 7 — 0O



Troubleat7 — 0

e Landauer’s bound becomes trivial in the limit 7T — 0O:

 Allit says is that the heat cost for erasure is non-negative. But otherwise, it is
independent of the amount of erasure.

 Take, as an example, spontaneous emission:
* To erase information about an atom, we must emit a photon.

* Energy therefore was emitted. But the bound does not capture it.

T >0 T =0
AQ; AQg

" o

[070775270
A S S
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A tighter Landauer bound

 Now | would like to show how it is possible to derive a modified bound, which:
e |Is always tighter than the original.

 Tends to it at high temperatures.

 But yields non-trivial information when 7" — 0.
* Landauer’s bound stems from the positivity of:
E=I(S:E)+Dpgllpg 20
* Instead, we focus only on the positivity of:

I'S:E)>0



Derivation

 The initial bath state is thermal.
- Butits final state p, = trg(pgy) is not.

- Define a reference thermal state p(7") which is thermal, but at a temperature 7" such
that

tr{ Hppp(T") } = tr{Hgpp} = EL(T)
 From the MaxEnt principle S(pz(T")) > S(py) so that
AS¢+ ASI > AS + AS;,
=I'(S: E)
>0

e Thus

AS¢ + ASI > 0

* This is the 1st result we will need.



Next define the functions

T T
Q(T") = AQy = JCE(T)dT and ST = AS}Eh = J Ce0) dr
T
T T

Here C(T') is the equilibrium heat capacity of the bath.

We may then write

At = §(T') = $(@'(AQy)
Plugging this in AS¢ + ASEh > () we then finally get

S(@ ' (AQp) > — ASq

Finally, inverting & and @, we get:

AQg > Q(S™'(—=ASy))



About this modified bound

e QOur new bound is:
AQp > Q(S™'(—ASy))
e Itisidentical in spirit to Landauer’s original bound (same assumptions).

 Landauer’s is universal because it assumes only 1 thing: that the bath is
thermal and has a temperature 7.

« Compared to Landauer, we require only one additional piece of information: the
bath equilibrium heat capacity Cy(T).

* However, our bound is always always tighter.

* Requires a bit more info, but is also always better.



Applications



Cavity QED

 Consider a 2-level atom interacting with an optical cavity field via the Rabi model:

hw
H = hwa'a + 70 + fg(a + aT)a

 The atom is the system and the cavity is the bath.
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Waveguide QED

Next consider the emission of the atom into a 1D waveguide of length L.

 The waveguide is characterized by a continuum of modes with dispersion relation
@, = ck. Hence

ha)k ﬂ'L )
EeT) = zk: ebor — 1 12th

« Similarly, the entropy can be found to be

S(T) = 27
EX2 6hic
e Thus
RY Ye 5
AQy > — TAS; 4+ ——AS
L

« The first term is the original bound; it vanishes when 7" — 0

e But the 2nd remains.



Heat capacity examples

 We can also provide explicit forms for the bound by assuming different scalings
for the bath’s heat capacity.

e WefocusonT = 0.

»  Phonons: Cr = aT?

34/3 (—ASS)4/3
4 al’3

AQp 2

«  Gapped system (e.g. BCS superconductor): Cr = be 1

(—ASy)
In(—b/ASy)

AQp >0



Summary

 Landauer’s bound AQ, > — TAS provides a fundamental link between
thermodynamics and information.

 The bound is powerful because it is universal.

 Assumes minimal information about the system and process.

e But it trivializes when T — 0.
 |n this talk | showed how one can derived a modified bound which
* Is always tighter than the original.

* Tends to it at high temperatures.

e Yields non-trivial information when T — 0.

* The bound has exactly the same spirit as the original and assumes only 1
additional ingredient: knowledge of the bath's heat capacity.
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Extra slides



Flow of heat

e The 2nd law reads

Qh Qc
Y = T T, = 0
 But if there is no work involved,
Qc — _Qh
1 1 :
= — >
by (Tc Th>Qh >0

e Heat flows from hot to cold.

Clausius’ statement of the 2nd law

“Heat can never pass from a colder to a warmer body without some other change,
connected therewith, occurring at the same time.”




Work from a single bath

* Finally, suppose there is only one bath present: @
W= —Qn
. Qn W
= —n———= — >
> 1}, Ty, — 0

* Positive work (in my definition) means an external agent is doing work on the
system.

Kelvin-Planck statement of the 2nd law

“It is impossible to devise a cyclically operating device, the sole effect of which

is to absorb energy in the form of heat from a single thermal reservoir and to
deliver an equivalent amount of work.”




Information content

Suppose you have an object in your hand, such as a coin or a deck of cards.
 What is the information content of this object?

e (all afriend:

The two of you share some background information to make information
possible (like establishing what a “coin” is).

But your friend does not know the state of the object (e.qg. if the coin is Head
or Tails).

Information content = size of the set of instructions that your friend requires to be
able to reconstruct the state of the object.

M. B. Plenio, V. Vitelli, “The physics of forgetting: Landauer’s erasure principle and information theory”,
Contemporary Physics 42, 25 - 60 (2001).



 We can understand Landauer’s principle using basic thermodynamics.

« The particleisanideal gassopV =T

The work in an isothermal
compression is

V2
W=— [pdV: TInV,/V,
Vl

Minimum work is when one
compresses up to the middle of

the partition, so V|, = 2V,

The energy of the particle U(T)
remains constant, so this work
must be converted into heat:



Maxwell demon

Seem to violate the 2nd law.

(a) (b) Demon determines position of atom
o | _—. ® &S;/
Demon memory
(d) (c) Demon inserts piston
() o
~_ -

Gas expands converting heat from reservoir to work

Bennet used Landauer’s
principle to solve this
paradox:

There is no energy cost
for the demon to acquire
information.

* But there is an energy
cost to erase it!

Kelvin-Planck statement of the 2nd law

“It is impossible to devise a cyclically operating device, the sole effect of which is to
absorb energy in the form of heat from a single thermal reservoir and to deliver an

equivalent amount of work.”




Thermal case

 Let us check that we indeed recover the standard expressions when the bath is thermal.

e Since the dynamics is unitary

S(pie) = S(ps ® p) = S(ps) + S(pp)

e Whence
I'(S: E) = S(pg) + S(pp) — S(pgg)

= S(pg) + S(pr) — S(pg) — S(pE)

= ASg + AS;

* The entropy production will then be

X = AS¢+ S(pgp) — S(pp) + D(pg| | pp)



Opening up the last terms:
S(pp) — S(pg) + D(pp| | pp) = — tr(pg Inpg) + tr(pg In pg)
+ir(pp In p — ppIn pp)
= tr{ (pg — pp)In pg |

This result is still general. Now we assume that the bath is in a thermal state
e_ﬂHE

Zg

PE =

This is then seen to be the heat entering the bath:
tr{(PE — PE)IHPE} = pAQp = ﬁ((HE>’ — <HE>)
Whence:



