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Thermodynamic analysis of quantum error-correcting engines
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Quantum error-correcting codes can be cast in a way which is strikingly similar to a quantum heat engine
undergoing an Otto cycle. In this paper, we strengthen this connection further by carrying out a complete
assessment of the thermodynamic properties of four-stroke operator-based error-correcting codes. This includes
an expression for the entropy production in the cycle which, as we show, contains clear contributions stemming
from the different sources of irreversibility. To illustrate our results, we study a classical three-qubit error-
correcting code, well suited for incoherent states, and the nine-qubit Shor code capable of handling fully quantum
states. We show that the work cost associated with the correction gate is directly associated with the heat
introduced by the error. Moreover, the work cost associated with encoding and decoding quantum information
is always positive, a fact which is related to the intrinsic irreversibility introduced by the noise. Finally, we
find that correcting the coherent (and thus genuinely quantum) part of a quantum state introduces substantial
modifications related to the Hadamard gates required to encode and decode coherences.
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I. INTRODUCTION

Quantum error-correcting codes (QECCs) protect qubits
from detrimental noise by redundantly storing quantum states
in multiple parties [1]. The basic idea is illustrated in Fig. 1.
An environment induces noise in a system S, which is mod-
eled as a quantum channel EH , as in Fig. 1(a). In order to
protect it, the state of the system is encoded into a larger
Hilbert space by introducing additional ancillas. Both system
and ancillas are now susceptible to the noise process. But by
applying appropriate correction measures, one may mitigate
this noise at the expense of making the final state of the
ancillas more mixed [Fig. 1(b)].

The connection between QECCs and thermodynamics has
been discussed for quite some time in connection with Lan-
dauer’s erasure and Maxwell’s Demon [2,3]. However, an
interesting connection is that with quantum heat engines
(QHEs) [4,5]. This becomes accurate in the case of operator
error correction [6–8], where no syndrome measurements are
required. The diagram in Fig. 1 is then seen to be entirely
analogous to a quantum heat engine undergoing an Otto cycle
[9,10]: The “working fluid” is composed of both system and
ancillas. The encoding, decoding, and correction steps are the
unitary strokes, involving the expenditure of work without any
heat flow. The noise term represents the action of the hot bath.
And, finally, the recycling step where the states of the ancillas
are reset represents the cold bath.

In view of this striking similarity, one is naturally led to
ask how far this connection can be pushed. Of course, in
the end, the goal of a QECC is entirely different from that
of a QHE. Efficiency, for instance, has nothing to do with
work extraction, but with the ability of the code to correct
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the error. Notwithstanding these fundamental differences, an
analysis of a QECC from a thermodynamic perspective is still
illuminating, as it allows one to address the roles of heat and
work in the error-correcting process. Particularly interesting
is the question of what the work cost is for encoding and
decoding quantum information, as compared to the cost for
applying an error correction. For instance, is it possible to
successfully apply an error correction and still extract useful
work from the machine? Or does the success of the QECC
necessarily involve the expenditure of work by an external
agent?

With these motivations in mind, in this paper we put forth
a complete thermodynamic characterization of QECCs imple-
mented using the operator error-correction scheme [6,7]. We
begin by considering the general thermodynamic properties,
including a reformulation of the first and second laws for the
specific QECC scenario. Next we apply these results to two
representative examples. The first is a three-qubit classical
error correction, capable of correcting incoherent states. The
second is the fully quantum nine-qubit Shor code, which can
simultaneously handle both incoherent and coherent states.

II. FORMAL FRAMEWORK

In this section, we provide a general characterization of the
thermodynamic properties of the QECC in Fig. 1. We begin
by describing the basic strokes of the cycle and then move
on to characterize it in terms of the first and second laws of
thermodynamics.

A. Description of the cycle

We assume the main system S is a qubit with computational
basis |0〉, |1〉 and Hamiltonian HS = �

2 (1 − σ S
z ) (so that |0〉

is the ground state). The code involves coupling the system
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FIG. 1. Typical error-correcting scenario. (a) A state ρS is sus-
ceptible to error, described by a quantum channel EH (ρS ). (b) In order
to protect it, ρS is first encoded into ancillas A. After both undergo
individual errors EH , the state of the system is decoded from S + A
and a set of correction measures is applied, leading to a final state ρ ′

S

for the system. This procedure makes the ancillas dirty, which must
then be recycled if they are to be used again. (c) The code is con-
sidered successful (at the ensemble level) whenever it mitigates the
role of the noise, which means D(ρ ′

S, ρS ) < D(EH (ρS ), ρS ), where D
is any distance measure. This, of course, will be the case only if the
effect of EH is sufficiently small.

with a set of ancillas, which we shall henceforth assume to be
identical, with Hamiltonian HAi = ω

2 (1 − σ Ai
z ). The ancillas

are always prepared in the ground state |0〉, so that the global
initial state of N ancillas is ρA = |0〉〈0|⊗N . Below, when
convenient, we shall assume for simplicity that ω = �.

In this paper, we will consider four-stroke codes, each of
which we now explain in detail. The first stroke is the encod-
ing stroke, where the system density matrix ρS is encoded in
the ancillas by means of a unitary Ue,

ρ
(1)
SA = Ue(ρS ⊗ ρA)U †

e . (1)

The second stroke is the error (noise) stroke, where both
S and A are subject to local noise channels. In order to
highlight the correction with thermodynamics, we consider
the noise generated by the generalized amplitude damping
(GAD) channel,

EH (ρ) =
4∑

k=1

MkρM†
k , (2)

where

M1 =
√

1 − f

(
1 0
0

√
1 − γ

)
, M2 =

√
1 − f

(
0

√
γ

0 0

)
,

M3 =
√

f

(√
1 − γ 0

0 1

)
, M4 =

√
f

(
0 0√
γ 0

)
. (3)

Here, γ ∈ [0, 1] is the coupling strength and f is the excited-
state probability (Fermi-Dirac distribution). If f = 0, the map
will target the ground state |0〉. Since S and A have different
frequencies, we will use the notation fx = (eβH x + 1)−1, with
x = �,ω and βH being the temperature of the hot bath. Error
correction is mostly successful when the noise strength γ �
1, which we shall assume throughout this paper. Moreover,
following customary treatments of error correction, all results
for specific codes will be presented in terms of a power series,
only to leading order in γ . The state after the second stroke

will be

ρ
(2)
SA = ES

H ⊗ E⊗N
H

(
ρ

(1)
SA

)
. (4)

The third stroke is the decoding and correction operation.
This will again be described by a unitary Udc, which, in
general, cannot be split as the product of two unitaries for
decoding and correction. The state after the third stroke will
be

ρ
(3)
SA = Udcρ

(2)
SA U †

dc. (5)

Finally, the fourth stroke is the recycling stroke, where the
ancillas interact with a cold bath and nothing is done to the
system. This stroke can also be viewed as the action of a
GAD (2), but with γ = 1 and f = 0. However, this is not
necessary since its effect is simply to reset the state of the
ancillas. Hence, after the fourth and final stroke, the global
state will be

ρ
(4)
SA = ρ

(3)
S ⊗ ρA, (6)

where ρ
(3)
S = trA ρ

(3)
SA is the state of S after the fourth stroke

and ρA was the initial state of the ancillas. We call attention
here to the fact that, in general, the final state of the system
after a cycle will be different from the initial cycle. This,
of course, is precisely the goal of a QECC. However, it is
somewhat unconventional from a thermodynamic perspective.
In the language of thermodynamics, this would actually cor-
respond to a transient operation of the engine. If the process
was repeated multiple times, the system would reach a steady
state, where the engine would no longer be able to correct
anything.

B. Error-correcting efficiency

For conciseness, we shall denote ρ ′
S = ρ

(3)
S = ρ

(4)
S as the

final state of the system after one cycle. Thus, from a global
perspective, the input state of the engine is ρS ⊗ ρA and the
output state is ρ ′

S ⊗ ρA. We therefore see that, in general,
the engine’s operation is not cyclic (i.e., it has not reached
a limit cycle). This, actually, is precisely what quantifies the
efficiency of the error-correcting code, as the goal of the
engine is to have ρ ′

S as close as possible to ρS .
Motivated by this, one can define the efficiency of the

QECC as follows. Let D(ρ, σ ) denote any proper distance
measure between quantum states [11,12]. To address the suc-
cess of a QECC, one must compare ρ ′

S with the state EH (ρS ),
which one would obtain if only the error map EH were to be
applied to the state. A QECC can be declared successful (at
the ensemble level) if

D(ρ ′
S, ρS ) < D(EH (ρS ), ρS ), (7)

since this implies that the effect of the noise was at least
partially mitigated by the code. Hence, a proper measure of
the efficiency of a QECC could be, for instance,

ηQECC = 1 − D(ρ ′
S, ρS )

D(EH (ρS ), ρS )
. (8)

This quantity is 1 when the correction is perfect, zero when
the correction has no effect, and negative when the code
actually makes things worse. It resembles the thermodynamic
efficiency, but is purely information theoretic. Below we will
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not need this specific form of the QECC efficiency in order
to construct the cycle’s thermodynamic. We have presented
it here simply to emphasize that the QECC efficiency is, in
general, not at all related to any thermodynamic efficiency.

C. First law of thermodynamics

The operations described by the four strokes in Eqs. (1)–(4)
are essentially implementing an Otto cycle [9,10]. Strokes 1
and 3 are unitary, involving the possible expenditure of work,
but without any exchange of heat. Similarly, strokes 2 and
4 are purely dissipative, involving only the exchange of heat
and no work. The expressions for the heat and work in each
stroke are thus easily calculated as the changes in energy
in each stroke, We = 	H10, QH = 	H21, Wdc = 	H32, and
QC = 	H43, where H = HS + HA is the total Hamiltonian
and 	Hi,i−1 = tr {H (ρ (i)

SA − ρ
(i−1)
SA )} is the total change in en-

ergy of each stroke.
The decoding and correction stroke (5) is described by a

unitary Udc, which can be decomposed as a riffling Udc =
U (1)

d U (1)
c U (2)

d U (2)
c . . ., where U (i)

d and U (i)
c represent decoding

and correcting steps, respectively. Based on this, the work
Wdc can also be split as Wdc = Wd + Wc, giving the individual
contributions from each part of the code.

The ancillas are reset after each stroke, but the system is
not. Hence, as a consequence, the first law of thermodynamics
reads

	US = We + QH + Wdc + QC, (9)

where 	US = tr {HS (ρ ′
S − ρS )} is the change in energy of

the system only. Since the total Hamiltonian is split as H =
HS + HA, the same may also be done for all heat and work
contributions. Thus, we may also write the first law as

	US = (
W S

e + QS
H + W S

dc

) + (
W A

e + QA
H + W A

dc + QA
C

)
,

(10)
where we used the fact that the heat to the cold bath only has
an ancilla part. But since the operations are all local and since
the state of the ancillas is reset, it follows that the last term
must be identically zero. Hence, the first law can be written
solely as a system-related quantity,

	US = W S
e + QS

H + W S
dc. (11)

D. Second law for the noise stroke

One can also write the second law of thermodynamics for
the QECC. The heating stroke 2 involves a standard finite-
temperature amplitude damping, for which the expression for
the entropy production is very well established [13–17] and
reads


H = 	S21 − βH QH � 0, (12)

where 	S21 = S(ρ (2)
SA ) − S(ρ (1)

SA ) is the change in von Neu-
mann entropy [S(ρ) = − tr(ρ ln ρ)] in stroke 2. The positivity
of 
H is a direct consequence of the data-processing inequal-
ity [18].

This expression can be manipulated so as to better high-
light the physical origins of the irreversibility associated with
the QECC cycle. Since stroke 3 is unitary, it follows that

S(ρ (2)
SA ) = S(ρ (3)

SA ). Moreover, we can write

S
(
ρ

(3)
SA

) = S(ρ ′
S ) + S

(
ρ

(3)
A

) − I (3)(S : A),

where I (3)(S : A) is the mutual information between the sys-
tem and ancilla in the state ρ

(3)
SA . Similarly, since the first

stroke is unitary, S(ρ (1)
SA ) = S(ρS ) + S(ρA) = S(ρS ), as the

ancillas are taken to be in a pure state. Therefore, the entropy
production (12) can be written as


H = 	SS + S
(
ρ

(3)
A

) − I (3)(S : A) − βH QH � 0. (13)

This is an important result. The first term is the total change
in entropy of the system, 	SS = S(ρ ′

S ) − S(ρS ). It is precisely
one of the goals of the QECC to minimize 	SS . The second
term in Eq. (13) is the entropy increase in the ancillas. As
a byproduct of the QECC, the ancillas become dirty, which
is precisely quantified by this term. Hence, S(ρ (3)

A ) will be
exactly the amount of entropy that has to be cleaned up in
the last recycling stroke.

The third term in Eq. (13) is the residual mutual infor-
mation that still remains between system and ancilla after
the decoding and correction stroke. In the limit of perfect
correction, the system would return to ρS , so that I (3)(S :A) =
0. Hence, I (3)(S :A) represents the shared information that
remained in the state ρ

(3)
SA which the correcting scheme was

unable to remove. This mutual information appears with a
negative sign, hence contributing to make the process more
reversible. The reason for this lies in the fact that before the
recycling stroke, I (3)(S : A) is still, in principle, accessible.
As we shall see below, once one includes the recycling stroke,
however, these correlations are irretrievably lost.

Finally, the last term in Eq. (13) is the heat flow to the
hot bath. Since QH = QS

H + QA
H , we may also write (13) more

symmetrically as


H = (
	SS − βH QS

H

) + (
S
(
ρ

(3)
A

) − βH QA
H

) − I (3)(S :A),

(14)

which is clearly split into two local contributions, plus a
genuinely nonlocal term.

E. Second law for the recycling stroke

One can similarly write the second law for the interaction
with the cold bath. In this case, however, an equation of the
form (12) would give diverging results, as βC = ∞. This
pathological behavior of the entropy production in the limit of
zero temperature is a known issue, which was discussed, for
instance, in Refs. [19–21]. To circumvent, one must provide
additional details on the environment interaction generating
the map. We therefore assume that each ancilla Ai is coupled
to a corresponding environment Ei (not necessarily qubits)
prepared in a pure state |0〉Ei , while the system S is not coupled
to anything. We assume in this stroke that the ancillas are fully
reset back to |0〉Ai , which means that each AiEi interaction
must have the form of a full SWAP. With this proviso, the
recycling stroke may be written as the map composition,

ρ
(4)
SA = E (A1 )

C ⊗ · · · ⊗ E (AN )
C

(
ρ

(3)
SA

)
, (15)

where

E (Ai )
C (ρ) = trEi

{
U SWAP

Ai,Ei

(
ρ ⊗ |0〉〈0∣∣

Ei

)(
U SWAP

Ai,Ei

)†}
(16)

042106-3



LANDI, DE OLIVEIRA, AND BUKSMAN PHYSICAL REVIEW A 101, 042106 (2020)

is the Stinespring dilation for a map acting only on ancilla Ai.
With this specific representation for the recycling stroke,

we can now propose a formula for the entropy production.
Namely, based on Refs. [13,16,17], we define the entropy
production as being only the mutual information between SA
and the cold environment E ,


C = I (SA : E ) = S
(
ρ

(4)
SA

) + S(ρ ′
E ) − S(ρ ′

SAE ), (17)

where ρ ′
SAE denotes the global state of system, ancillas, and

cold environment after the map, with ρ ′
E being the corre-

sponding reduced density matrix. Within the context of dilated
unitary maps, entropy production is often defined with an
additional term, proportional to the relative entropy between
the initial and final states of the environment [13]. In fact,
quite recently, this extra term was shown to be extremely
important in a large variety of models [22]. However, in the
case of zero temperature, it gives a diverging result since the
initial state of the environment is pure. The expression (17),
which is also discussed in [16,17], is a choice that does not
suffer from this pathology.

Since the global SAE dynamics is unitary, it follows that
S(ρ ′

SAE ) = S(ρ (3)
SA ) + S(ρE ) = S(ρ (3)

SA ). Moreover, we are as-
suming full thermalization so that S(ρ (4)

SA ) = S(ρ (3)
S ). And,

finally, again because of the assumption of full thermalization,
S(ρ ′

E ) = S(ρ (3)
A ). Therefore, we conclude that Eq. (17) may

also be written as


C = S
(
ρ

(3)
S

) + S
(
ρ

(3)
A

) − S
(
ρ

(3)
SA

) = I (3)(S :A). (18)

This result shows that the entropy production in the cold
stroke is simply the residual mutual information that was
developed between the system and ancillas in the previous
strokes, and which is lost due to the action of the cold bath.
This is the same residual mutual information that appears in
Eq. (14).

Combining Eqs. (14) and (18) then finally leads to a
formula for the total entropy production in the QECC engine,


 = 
H + 
C

= 	SS − βH QS
H + S

(
ρ

(3)
A

) − βH QA
H . (19)

Therefore, the total entropy production is found to contain
only local contributions, referring to the changes taking place
in the system and ancilla.

III. CLASSICAL ERROR-CORRECTING ENGINE

In the remainder of the paper, we apply our results to
two specific QECCs. To start, we consider the particularly
illuminating case of classical error correction. That is, we
first consider the protection of diagonal states (in the com-
putational basis) of the form

ρS = (1 − p)|0〉〈0| + p|1〉〈1|, p ∈ [0, 1]. (20)

This state can be regarded as classical as far as the am-
plitude damping channel is concerned since, in the sense
of einselection [23,24], the amplitude damping chooses the
computational basis as a preferred basis.

The effects of the amplitude damping on the state (20)
can be corrected by the three-qubit majority voting scheme
shown in Fig. 2(a). The encoding unitary Ue is composed of a

Encoding Hot Bath Decoding

EC

EC

Cold Bath

ρS

Correction

EH

EH

EH|0
|0
ρS

|0
|0

Ue Ud Uc

FIG. 2. The classical error-correcting algorithm capable of cor-
recting for diagonal states of the system.

double CNOT,

Ue = |0〉〈0|S ⊗ IA1 ⊗ IA2 + |1〉〈1|S ⊗ XA1 ⊗ XA2 , (21)

where X = σx is the Pauli operator. Moreover, the decoding
and correction unitary Udc in this case is factored into a
product of two terms, Udc = UdUc, with Ud = Ue and Uc being
a Toffoli gate.

All strokes can be computed using standard symbolic
algebra. We begin by considering the fidelity between the final
and initial states of the system, with and without the QECC.
In this case, we assume for simplicity that ω = �, so we can
set f� = fω ≡ f . If no QECC is applied, we find, to leading
order in the noise strength γ ,

F (EH (ρS ), ρS ) � 1 − γ 2

4(1 − p)p
( f − p)2. (22)

As expected, the fidelity is unity if p = f , in which case
the system already starts with the same population as the
environment. Conversely, if the QECC is applied to protect
the system, one finds that

F (ρ ′
S, ρS ) � 1 − 9γ 4

4(1 − p)p
[p(1 − 2 f ) − f 2(1 − 2p)]2.

(23)
We see that the leading term in the fidelity when the QECC
is applied now becomes ∼γ 4, as compared to γ 2 without the
QECC. This neatly shows how error correction behaves at the
ensemble level.

The formula for F (ρ ′
S, ρS ) when ω 
= � is more cumber-

some. However, here we discuss two limiting cases. First, if
the ancillas are gapless, ω → 0, we find

F (ρ ′
S, ρS ) = 1 − (3 − 2 f�)2γ 4 p

4(1 − p)
. (24)

On the other hand, if the ancilla’s gap ω is much larger than
T , we get

F (ρ ′
S, ρS ) = 1 − γ 4(1 + 4 f� − 6p)2

64p(1 − p)
. (25)

It is not easy, however, to compare these two limiting cases
with the resonant case (23). In fact, a numerical analysis
shows that depending on the values of p, f�, and γ , each of
the three fidelities can be larger than the other two. Or, putting
it differently, the question of which ancillary gap ω yields
optimal fidelity does not have a universal answer and depends
on the details of all involved parameters. For this reason, we
now return to the case ω = � for simplicity.
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FIG. 3. Efficiency for states with p = 0.01 (dash-dotted line),
p = 0.99 (dashed line), p = 0.5 (dotted line), and p = 0.25 (solid
line). For all cases, f = 0.2.

Let us now compute the efficiency defined in Eq. (8). As a
proper distance measure, we use the Bures distance squared,

D2(ρ, σ ) = 2(1 −
√

F (ρ, σ )). (26)

The efficiency (8), to leading order in γ , then becomes

ηQECC � 1 − 9γ 2

( f − p)2
[p(1 − 2 f ) − f 2(1 − 2p)]2. (27)

We see that error correction becomes problematic when p →
f , as in this case the effect of the channel becomes trivial, so
that there is no error to correct. Figure 3 shows the behavior
of the efficiency using Eq. (27).

Next we present the heat and work in each step, which
we divide into contributions from the system and from the
ancillas. The contributions referring to the system, again, to
leading order in γ , are

W S
e = 0, (28)

QS
H = γ�( f� − p), (29)

W S
d = 0, (30)

W S
c � −γ�( f� − p), (31)

whereas the contributions from the ancillas are

W A
e = 2pω, (32)

QA
H = 2γω( fω − p), (33)

W A
d � −2pω + 2γω[ f� + p(3 − 2 fω − 2 f�)], (34)

W A
c = 0, (35)

QA
C � −2γω[ f� + p(3 − 2 fω − 2 f�)] − 2γω( fω − p).

(36)

The physics behind each term is quite interesting. First, the
work We of the encoding stroke is only associated with the cost

of putting the two ancillas in the excited state with probability
p. Next, the heat that flows to the hot bath is proportional to
the population mismatch f� − p and fω − p. It may thus have
any sign depending on the initial value of p. Hence, it is very
well possible for heat to flow from SA to the hot bath, and not
otherwise.

Particularly interesting is now the analysis of the decoding
and correction strokes, Wd and Wc. The decoding work Wd

has a zeroth-order contribution from the ancillas, which is
minus the encoding work, 2pω. If there was no noise, then
the process would be entirely reversible. However, due to the
hot bath, a new contribution appears. This new contribution,
however, appears only in the ancilla, as W S

d = 0. Moreover,
this new term is always non-negative since positive tempera-
tures imply f ∈ [0, 1/2]. Hence, we see the total work of the
encoding and decoding process, We + Wd > 0. It costs work
to encode and decode information when this information is
scrambled by the GAD.

The correction work Wc, on the other hand, is seen to
be related only to changes in the system and is precisely
minus the heat flow QS

H between the system and hot bath.
As a consequence, the total work performed in one cycle,
Wtot = We + Wd + Wc, will be

Wtot = �γ (p − f�) + 2γω[p(3 − 2 fω ) + f�(1 − 2p)].

(37)

The second term is always non-negative, but the first term may
have any sign whatsoever. And the step responsible for this
is the correction stroke. Thus, while it always costs work to
encode and decode information, correcting the state may lead
to either a surplus or a deficit of work.

To linear order in γ , it follows that We + QH + Wd + Wc +
QC � 0. Referring to the first law in Eq. (9), this does not
mean that the process is cyclic. Instead, it means that the first
nonzero contribution to 	US is of the order of γ 2:

	US = γ 2�{ fω( fω + 4p − 2p fω )

+ 2 f�( fω + p − 2p fω ) − 3p}. (38)

Thus, even though heat and work are all of the order of γ ,
their net effect only contributes to the total change in energy
with a term of the order of γ 2.

IV. SHOR’S NINE-QUBIT CODE

The three-qubit error-correcting scheme considered in the
previous section is only capable of correcting diagonal states
in the computational basis. Coherences in this basis are not
correctly processed. A code which is capable of correcting
both incoherent and coherent contributions is Shor’s famous
nine-qubit code shown in Fig. 4 [25] (see [26] for the im-
plementation without syndrome measurements). This code is
quite similar in spirit to the classical code in Fig. 2. The
key difference, however, is that the coherent components of
ρS are also properly encoded due to the application of the
Hadamard gates H = 1√

2
(1 1
1 −1). Moreover, notice that now

the decoding and correction strokes get mixed together, which
we separate in Fig. 4 with different colors.
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FIG. 4. Shor’s nine-qubit code, capable of correcting both the
diagonal and the coherent parts of ρS against any kind of noise.

We consider a general quantum state of the system,
parametrized in the form

ρS =
(

p z
√

p(1 − p)
z∗√p(1 − p) 1 − p

)
, |z| � 1. (39)

The state is pure when |z| = 1. For simplicity, we shall also
assume that ω = �, as the calculations become much more
complex in this case.

The work and heat in each stroke, for the system and
ancilla, are

W S
e = �

2
(1 − 2p), (40)

QS
H = −γ�

2
(1 − 2 f ), (41)

W S
d � −�

2
(1 − 2p) + 3γ�

4
(1 − 2p), (42)

W S
c � −γ�

4
(1 + 4 f − 6p), (43)

and

rClW A
e = 4�, (44)

QA
H = −4γ�(1 − 2 f ) (45)

W A
d � −4� + 6γ�(2 − f ) (46)

W A
c � γ�(1 − 2 f ) (47)

QA
C � −9γ�. (48)

Several comments are worth making about these results, par-
ticularly when comparing them with the classical results in
Eqs. (28)–(36).

First and foremost, we see that all results are independent
of the coherences z in Eq. (39). The reason for this is twofold.
First, the GAD is a thermal operation and therefore processes
populations and coherences independently [20,27]. Second,
the Hadamard gates in the encoding and decoding strokes
(cf. Fig. 4) acts in a way such that z is not present in the
reduced density matrices of a single qubit. Hence, since all

FIG. 5. Shor’s code efficiency for different choices of initial pure
states for the system, with f = 0.2, (a) γ = 0.02, and (b) γ = 0.03.
The axes refer to different positions of the initial state in the Bloch
sphere.

thermodynamic quantities involve local Hamiltonians, z does
not appear at all in the thermodynamic aspects of the code.

Starting with the encoding stroke, we now see that it
requires work in both the system and ancillas to encode
information. Moreover, the work cost in the ancillas is entirely
independent of the state of the system: for input state ρS , it will
always cost the same amount, W A

e = 4�, to encode the data in
the ancillas (the work cost in the system still depends on p).
A similar, but perhaps even more surprising result is that the
heat to the hot bath, for both the system and ancilla, is entirely
independent of the state of the system (this state is exactly
true and not to leading order in γ ). The heat flow is simply
−γ�(1 − 2 f )/2 per qubit. This is again a consequence of
the dramatic influence of the Hadamard gates in Shor’s code,
which makes it so that after the encoding stroke, the reduced
density matrices of all qubits are simply the identity.

The work cost of decoding is similar to the classical case
[compare Eqs. (42) and (46) with Eqs. (30) and (34)]: there is
a zeroth-order contribution in γ , which is simply the reverse
of the encoding work (again representing the reversible part of
the process). We also see once again that the correction work
can have any sign, as in the classical case. And, finally, we
find that the heat to the cold bath is again entirely independent
of the state of the system.

On the other hand, the efficiency for the Shor correcting
code defined in Eq. (8) depends on the state, as shown in
Figs. 5, for pure states (|z| = 1), represented as points of the
Bloch sphere.

V. DISCUSSIONS AND CONCLUSIONS

The framework of operator error correction (Fig. 1) is
formally equivalent to the cyclic operation of a heat engine.
This is interesting since it offers an additional link between
thermodynamics and information. In this paper, we aimed to
explore this connection, by putting forth a thermodynamic
analysis of four-stroke codes, which parallel an Otto engine.
We emphasize, once again, that QECC and heat engines have
entirely different goals. In particular, for operation of a QECC,
the work cost is only a marginal concern, as this is marginal
compared to the energetics of any real experimental setup.
That being said, the directions in which energy flows are
indeed important. Our analysis shows, for instance, that heat
may very well flow from the system to the hot bath, something
which is counterintuitive. Indeed, this is a common miscon-
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ception: neither entropy nor heat have a well-defined sign.
What does have a well-defined sign is the entropy production,
given by Eq. (12).

Another interesting aspect of this thermodynamic analysis
is the interplay between the encoding and decoding work
costs. The decoding is always the reverse of the encoding
operation. But the effect of the noise channel in the middle
of the two steps makes the process irreversible, as it scrambles
information. As a consequence, there is always a work cost as-
sociated with the encoding and decoding steps. This therefore
provides a thermodynamic interpretation to an informational
task.

Finally, we mention an alternative perspective of the prob-
lem. In our formulation, the working fluid was taken to
be composed of both the system and ancillas, which then
interacted with a hot and a cold bath. Alternatively, one may

interpret the system only as the working fluid and the ancillas
as a finite-size cold bath. The problem with this formulation
is that the system would then interact twice with this cold
bath, which leads to questions related to non-Markovianity.
The formulation as presented here is more fitting of an actual
engine.
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