Solid State Physics 2 - Problem set 2
Professor: Gabriel T. Landi

1. Consider the Heisenberg ferromagnetic model in one dimension:

N
H = —JZ S Snt1 (1)

n=1

(a) Construct the Heisenberg equations of motion for each spin com-
ponent,
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where a = x,y, 2.

(b) Linearize the previous equations by assuming that we can replace
SZ ~ S. That is, we are looking for solutions which represent small
deviations from the fully magnetized state.

(¢) Show that you can solve your linearized equations using the ansatz
(8%) = Ae™*™n sin wit, (8¥) = A cos wt (3)
Find the dispersion relation w(k).

2. In this problem I want you to investigate the magnetic frustration in a
square lattice with antiferromagnetic interaction between nearest and
second nearest-neighbors. The Hamiltonian is

H=>J(R; - R))S;" S, (4)
1,J
where
J(+&) = J(+g) = J; > 0, JEE£g)=Jy >0 (5)

The reason why this system is frustrated is as follows: if we have
only the AFM nearest-neighbor interaction J;, then second nearest-
neighbors will tend to align ferromagnetically. But J, > 0 wants to
make second nearest-neighbors anti-parallel, so there is a competition
between the two terms.

(a) Find the tight-binding dispersion relation J(q).

(b) Find the vector @ which minimizes J(q) and discuss the cor-
responding magnetic configuration. The special point here is at
Jo = J1/2. Separate the analysis into Jo < J1/2 and Jy > J1/2.
Discuss the physics of these two regimes.



(c) Now consider specifically the case Jo = J;/2. Show that in this
case there is an infinite number of @ vectors which minimize J(q).
This means that at this point the ground-state is massively dege-
nerate and the system is magnetically frustrated.

. Consider the Landau free energy for a superconductor,
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where B = V x A is the magnetic field and, unlike in the lecture notes,
I'm using CGS units because I based this problem on Landau’s book
and I am too lazy to change to SI.

(a) Find the equations that minimize F. To do that, you need to use
some calculus of variations to vary the functional Fy, ¢v*, A;, Ay, A.]
(you should treat 1) and 1* as independent variables). Your equa-
tion for ¢ will look like a non-linear Schrodinger equation. But
the cool part is that the equation for A; will give you Maxwell’s

equations
4
VxB= %TJ (7)
but with a current which is given by
ieh , . 2¢2
J == (VY — V) — [y A (8)
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which is the expression for the probability current we get in quan-
tum mechanics.

(b) Suppose now that 1) is given by its equilibrium value, [¢)| = /—a/b.
Use this and substitute Eq. (8) into Eq. (7) to arrive at London’s
equation:

B
V:B = 5 (9)

where 0 is the London penetration depth. Compute it in terms of
a, b and the other fundamental constants and show that it diverges
at T'= T, (recall that a ~ (T — T¢)).

. In this problem I want you to study a model recently investigated
experimentally by Landig et. al. in Nature, 532 476 (2016). Their
system consists of a square lattice with K sites, each described by a
bosonic operator b;. The Hamiltonian is

US PN ~ T 1 UZ 2
H = {2nz(m — 1) — ,uni} - J;(blb] + bjbi) — f@ (10)
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where

O=> fi— Y (11)
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Except for the last term in Eq. (10), this Hamiltonian is exactly the
Bose-Hubbard Hamiltonian we studied in class. The new term is the
last one, which is a long range interaction between all sites in the
lattice. The idea is that we divide the square lattice into even (e) and
odd (o) sites, like a chess board. The operator © is the imbalance
operator: it measures the imbalance between the number of particles
in the odd sites and the number of particles in the even sites. The
energy term —%@2 therefore favors an imbalanced configuration.

Study this problem in the mean-field approximation. For the long-
range part, approximate

0% ~ 2(0)0 — (0)? (12)

For the hopping term, use the same mean-field approximation as in the
Bose-Hubbard model. But now introduce two order parameters . =
(b;) for i € e and 1, = (b;) for i € 0. Your model will therefore have
a total of 3 order parameters. Write down the effective Hamiltonian
within the mean-field approximation and show that it can reduced to a
system of two bosonic modes (recall that in the Bose-Hubbard model
we reduced our problem to a single bosonic mode. Now we have to
distinguish between even and odd sub-lattices, so we need two bosonic
modes). Challenge: construct the phase diagram numerically. See, for
instance, Dogra et. al., PRA, 94, 023632 (2016).



