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Abstract

Open quantum systems have been studied for a long time, and albeit there’s extensive
literature detailing its various aspects, the complexity of the dynamics dictated by the en-
vironment and by quantum correlations within the system make it so that much is still
unknown. The complexity introduced by quantum correlations instill highly non-trivial
features, so that computational simulations are a viable route in studying such systems,
which present, as it has been known for a long time, a myriad of rich, interesting phe-
nomena. In this dissertation we implement an open-system version of the density matrix
renormalization group, called oDMRG, suited for applications of thermal transport in
one-dimensional spin chains. We have successfully implemented a routine to treat a wide
range of systems. From the analytical results available for the XXZ model, a bench-mark
was made and our results are found to be in agreement with those of previous works, and
the simulations are viable in a common desktop computer. This dissertation puts forth
the basic tools of oDRMG and may be of use for a variety of future studies in quantum
transport and quantum thermodynamics.

Keywords: Transport Phenomena, The Density Matrix Renormalization Group, Open
Quantum Systems, Spin Chains, Computational Methods



Resumo

A fı́sica que rege a dinâmica de sistemas quânticos abertos tem sido estudada há bastante
tempo e, dessa forma, existe uma extensa gama de trabalhos sobre suas propriedades. No
entanto, a complexidade de tais sistemas é aumentada devido a suas caracterı́sticas iner-
entemente quânticas, bem como a interação com o ambiente, de forma que ainda há muito
a se descobrir. Essa complexidade torna propı́cio o uso de ferramentas numéricas para o
estudo de tais sistemas. Nesta dissertação nós implementamos um versão do algorı́timo
do grupo de renormalização da matriz densidade para sistemas abertos, a que chamamos
oDMRG, adequada para aplicações de transporte em cadeias uni-dimensionais. Tal rotina
consegue tratar um variada gama de sistemas. Usando os valores analı́ticos disponı́veis
para o modelo XXZ, nós testamos o código, e nossos resultados concordam com os de tra-
balhos anteriores. Adicionalmente, as simulações podem ser realizadas num computador
comum, não sendo necessário elevado poder de processamento. Essa dissertação estab-
elece, portanto, as ferramentas básicas do oDMRG e pode vir a ser usada para uma grande
variedade de estudos futuros em transporte e termodinâmica quântica.

Palavras-chave: Fenômenos de Transporte; O Grupo de Renormalização da Matriz
Densidade; Sistemas Quânticos Abertos; Cadeias de Spin; Métodos Computacionais.
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Chapter 1

Introduction

Usually, when studying the behaviour of quantum systems, one might look at an atom, a

harmonic oscillator, or even an electron trapped between two potential barriers. In reality,

this setup is not always factual, since the system might not be, as most of the time is not,

entirely isolated from everything else, being instead in contact with a certain portion of an

environment. For a more realistic approach, one should therefore consider open quantum

systems [1].

Coupling the system to an environment most likely guarantees that the problem being

dealt with will become more complicated. For the particular case of quantum systems

coupled to thermal baths, these complications would arise from non-locality, entangle-

ment between each subsystem, and the sorts of quantum effects that would create non-

trivial interactions between the particles. As there’s no classic analog to these kinds of

correlations [2], the study of these problems is novel and has many interesting new prop-

erties, namely in transport phenomena [3] and relaxation towards equilibrium [4], which

may attain for possible novel technologies[5] [6]. These can be perceived as many-body

effects, leading the study to the branch of quantum many-body problems.

As this implies, the problem at hand would be, then, a highly complex task in which a

number of interactions play a role in the dynamics, and although a small portion of these

problems may be actually treated analytically, usually via techniques such as Bethe-ansatz

or Yang Baxter [7] [8], trying to tackle most of them in this manner will eventually lead

to impossible tasks.

That’s why the state-of-the-art approach to these kinds of problems have steered to-

wards numerical simulations in the last years, and this trend is reinforced as the interest in

these systems steadily grow, given the prospect of possible technologies to be developed,

12



such as the recent proposition of quantum computation using cold trapped ions [5], or the

conception of a rectification-based diode [6] in the quantum framework.

As so, a wide array of simulation methods have surfaced, and have since then been

polished and excellently studied by many groups [9] [10] [11] [12]. Initially, approxi-

mations related to mean-field approaches, being the most trivial and less computationally

demanding, thrived. But a breakthrough followed, as the renormalization groups proved

themselves to be more elegant while not prohibitive to simulate and work with [13] [14].

These methods were, then, boosted by recent advancements in Tensor Networks us-

age, whose powerful information storage structures made possible to hasten simulations

even more. Particularly in the study of quantum systems, tensor networks pose a keen

ansatz and subsequent approximations. This is due to the notion that, even though quan-

tum systems description might take up exponential amounts of memory, which would in

turn augment the associated Hilbert Space, the physics of such problems might not occur

in the entirety of such space, but would instead take place in minor portions of it, which

is dictated by an area law [15]. By, therefore, shrewdly diminishing the Hilbert Space, a

simulation of its dynamics and important physical aspects might then, be possible, whilst

posing a good approximation for the actual thing. This new prospect has since shed new

light in the computational study of quantum systems, and important advancements and

results have become frequent.

One particular work has extended the available methods of the density matrix renor-

malization group to open quantum systems, while making acute use of tensor networks

representation techniques when describing the quantum state, in the form of a Matrix

Product State [12]. This new approach for such problems, proved to be extremely promis-

ing, in both the realm of simulation techniques, as well as the physics related to these sys-

tems. Our work has been, in this sense, to develop an implementation of such a technique

that is both reliable and easy to use, and also procedurally intelligent, aiming at lowering

the computational and memory costs when simulating open systems, while progressively

sharpening the physical properties guesses that might be of interest.

This work aims to implement such method by means of the open-source tensor library

ITensor [16], and by doing so, it aspires to help groups that lack the state-of-the-art numer-

ical tools to approach complicated problems relating to open quantum systems physics.

13



1.0.1 Dissertation overview

This dissertation verses over the previous works made on the subject of general simu-

lations of quantum systems, and then presents new results in the XXZ chain transport

coupled to two baths kept at different temperatures. In the following chapter, we revisit

the foundations of Open Quantum Systems with some examples and also look at how to

apply the concepts developed in the literature to our particular set of problems.

In chapter 3, we get into specifics of spin chains and the physics relating the coupling

to thermal baths. Some interesting results in the literature, as well as the questions yet to

be approached, are presented.

Chapters 4 and 5 both treat the simulation methods, namely with tensor networks in

chapter 4, and their applications on the density matrix renormalization group approach,

in chapter 5. Chapter 4 contains the foundations of Tensor Networks, and simple calcu-

lations done by the algorithms that were used in this work. Finally, chapter 5 contains a

brief overview of the DMRG history and its applications, as well as some more technical

results.

The remaining results are presented in chapter 6, where we present results for the

energy convergence to the non-equilibrium steady-state, flux spin convergence, magne-

tization and transport regimes, making full use of the developed algorithm to look the

physics of the XXZ-chain systems coupled to thermal baths.

14



Chapter 2

Open quantum systems

2.1 Lindblad master equations

In the case of closed systems, the system is isolated from every other possible interaction,

and as so, the time evolution is described by the action of unitary operators on the system.

However, for the case of open quantum systems, this isn’t optimal, as in such scenarios,

due to the fact that there’s some kind of environment associated, the system eventually

experiences dissipation, that is, it exchanges energy with the surroundings. Therefore it

is not possible to study these systems by unitary operators alone [1].

Instead, when looking at open systems, one might prefer looking at a master equation,

which states how the density matrix associated to that system changes over time, and by

coupling the environment on to the system. The dynamical equation of Lindblad is the

usual approach, with it being a broader look at the von Neumann equation,

dρ

dt
“ ´irH, ρs, (2.1)

which would describe the behaviour of the density matrix ρ of a closed system governed

by a Hamiltonian. Indeed, the case is a bit more complex, as our system is in contact with

baths. These baths are modeled following the dissipative effects of the environment, and

the equation 2.1 we had before receives a new term, and becomes

dρ

dt
“ ´irH, ρs `Dpρq, (2.2)

whereDpρq is called the Lindblad dissipator. The study of these dynamics mainly focuses

15



on the steady-state of the system, in this case a non-equilibrium steady state (NESS) due

to the presence of the environment. Its behavior in such case is illustrated in the example

that follows.

2.1.1 Dephasing noise

This is, indeed, the simplest example of a master equation acting on a qubit, whose Hamil-

tonian can be expressed as

H “
Ω

2
σz. (2.3)

Where the constant Ω relates to the energy gap in the system, and σz is the pauli-z matrix.

By looking at the master equation as in 2.20, with

Dpρq “
γ

2
pσzρσz ´ ρq, (2.4)

we reach
dρ

dt
“ ´irH, ρs `

γ

2
pσzρσz ´ ρq, (2.5)

Where the second term attains for the action of the environment. There’s different

ways to characterize such interactions, another one which will be approached in the next

session. In this particular case, the dissipator term γ is the coupling constant to the envi-

ronment, and as γ goes to zero, then the unitary dynamics are recovered.

Let us assume a general density matrix ρ parametrized as

ρ “

¨

˝

p q

q˚ 1´ p

˛

‚, (2.6)

and by plugging it back in Eq.2.5, we can derive time-independent functions for each

variable p and q. Doing the algebra we get a simple set of equations:

dp

dt
“ 0 Ñ p “ p0

dq

dt
“ ´piΩ` γq Ñ qptq “ q0e

´piΩ`γqt

(2.7)
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Therefore |q| shall decrease exponentially, dissipating the coherence of the system in the

measure of how strong the coupling with the environment is, which is what one would

expect, while the diagonal elements of the density matrix won’t change. After enough

time, the system will relax to a state without any coherence, which is just a statistical

mixture, meaning that the system loses its quantum features. This is portrayed in Fig.2.1.

p(t)

q(t)

0 2 4 6 8 10

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

t

Figure 2.1: Evolution of the populations pptq and coherence qptq in the Dephasing noise

example. One can see the exponential decrease in qptq while pptq remains constant. Pa-

rameters used: q0 “ 0.4,Ω “ 5, γ “ 1, p0 “ 0.5, f “ 0.5

This is an interesting look at how the environment is able to affect a certain system, as

in this case the quantum probabilities will then be changed into classical.

2.1.2 Amplitude damping at finite temperature

For a more complex case, let’s now look at the amplitude damping at finite temperature

example, which is described by the master equation:

dρ

dt
“ ´irH, ρs ` γp1´ fq

”

σ´ρσ`´
1

2
tσ`σ´, ρu

ı

` γf
”

σ`ρσ´´
1

2
tσ´σ`, ρu

ı

, (2.8)

17



where the σ` and σ´ are Pauli raising/lowering operators, and the factor γ is the coupling

strength between dissipator and qubit. Additionally, the value f plays the role of the

temperature in which the bath is. This kind of bath is the one we shall use in the study of

open XXZ chain. If we take the Hamiltonian to be, as in the previous example,

H “
Ω

2
σz, (2.9)

and if we define

DrLs “ LρL: ´
1

2
tL:L, ρu, (2.10)

then Eq. 2.8 can be cast into the form

dρ

dt
“ ´i

Ω

2
rσz, ρs ` γp1´ fqDrσ´s ` γfDrσ`s. (2.11)

Aditionally, one can again represent a general density matrix ρ as:

ρ “

¨

˝

p q

q˚ 1´ p

˛

‚, (2.12)

which can be combined with Eq.2.11, and will lead to a pair of equations,

dp

dt
“ γpf ´ pq Ñ pptq “ p0e

´γt ` fp1´ e´γtq

dq

dt
“ ´piΩ` γq

2
q Ñ qptq “ q0e

´piΩ`γ{2qt

(2.13)

In this case, besides decoherence, there’s also alteration in the populations, noted by the

alteration in pptq. This can be seem in Fig.2.2.

18
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Figure 2.2: Evolution of the populations pptq and coherence qptq in the amplitude damp-

ing example. One can see the exponential decrease in qptq and the alteration in pptq.

Parameters used: q0 “ 0.4,Ω “ 5, γ “ 1, p0 “ 0.5, f “ 0.1.

These two examples provide us with a glance of the dynamics of systems evolving

according to the Lindblad master equation, as well as how environment interactions may

affect these systems. To our particular implementation, the vectorization procedure is

quite important, as it will be used in the treatment of more complex systems which interest

us. After understanding this key concept, we shall revisit the amplitude damping example

using it.

2.2 Vectorization

The vectorization can be seen intuitively as a mapping procedure that takes a certain

Hilbert Space and maps it to another one. In a more useful way, it turns a projector

|siy xri| into a ket |siriy and generically, an operator into a vector, as the name implies.

This is done in order to make it possible to use the tensor network techniques, all of which

will be discussed in detail later 4. The following discussion is based around Ref.[17]. In
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matrices, vectorizing is as simple as stacking columns:

vec

¨

˝

a b

c d

˛

‚“

¨

˚

˚

˚

˚

˚

˚

˝

a

c

b

d

˛

‹

‹

‹

‹

‹

‹

‚

. (2.14)

And for any three matrices A, B, C, it is true that

vec(ABC) “ pCT
b Aqvec(B). (2.15)

This is an important property of the vectorization operation, which can be directly

verified. We’ll make use of it extensively throughout this work, with the objective of

reaching a vectorized version of ρ, since Eq.2.15 conveniently fits into the format of the

operators in the Lindblad master equation, as in 2.10, although it is smart to insert an

identity matrix around ρ in some cases.This leads us to three instances,

vec(AρC) “ pCT
b Aqvec(ρ),

vec(Aρ) “ vec(AρI) “ pI b Aqvec(ρ),

vec(ρC) “ vec(IρC) “ pCT
b Iqvec(ρ).

(2.16)

For instance, regarding the unitary term in the master eq., we have that

vec(rH, ρs) “ pI bH ´HT
b Iqvec(ρ). (2.17)

Additionally, the vectorization would read, regarding vectorial spaces, as follows

|iy xj| Ñ |jy b |iy . (2.18)

And if we decompose ρ in a canonical orthonormal basis, we can represent it with a tensor

decomposition:

ρ “
ÿ

ij

ρij |jy b |iy . (2.19)

Sequentially, regarding the master equation, it is possible to encompass the entire dynam-
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ics in a super-operator L, the Liouvillian. By doing this, defining

dρ

dt
“ ´irH, ρs `Dpρq “ Lpρq, (2.20)

we’d get
dρ

dt
“ Lpρq. (2.21)

And by means of vectorization, we reach

dρ

dt
“ Lpρq ÝÑ d |ρy

dt
“ L̂ |ρy , (2.22)

and after that, this problem can be seen as

d |ρptqy

dt
“ L̂ |ρptqy ÝÑ |ρptqy “ eL̂t |ρp0qy . (2.23)

If we, then, take λk to be the eigenvalues of L and take |xky and xyk| as respectively,

the right and left normalized eigenvectors, we have

L |xky “ λk |xky ,

xyk|L “ xyk|λk.
(2.24)

Let’s say both of these have dimension d. This leads us to

L “
pd2´1q
ÿ

k“0

λk |xky xyk| . (2.25)

And so, the solution of 2.23 can be written as

|ρptqy “

pd2´1q
ÿ

k“0

eλkt |xky xyk|ρp0qy . (2.26)

21



2.3 Properties of the Liouvillian and relaxation to the steady

state

It is important to look at the properties of the Liouvilian.By naively trying to solve Eq.2.23

as an eigenvalue/eigenvector problem, one may not obtain good results.

In the case of one-dimensional spin chains, for instance, the steady-state is unique, and

therefore, two interesting properties stand. One of the eigenvalues contained in λ0 must

be zero, and the others must be negative in order to obtain a stable solution. Together with

that, relating λ0 to the corresponding eigenvector, it must be true that

xy0 | ρp0qy “ 1, (2.27)

and therefore, we have that

|y0y “ vec(I)T . (2.28)

By plugging 2.28 back into 2.26, one can see that the steady-state is given by |x0y, and

we can re-write 2.26 with that in mind,

|ρptqy “ |ρssy `

pd2´1q
ÿ

k“1

eλkt |xky xyk|ρp0qy , (2.29)

and note that as the other eigenvalues λk, k ą 1 are negative, ρptq converges to ρss as t

increases.

Looking back at 2.23, in the steady-state we have that d|ρptqy
dt

“ 0, which leads us to

L |ρssy “ 0, (2.30)

confirming the fact that the steady-state is the eigenvector with eigenvalue 0 of the Liou-

villian.

Indeed, the matrices after vectorization will have higher dimensions that those in the

initial example 2.1.2, but they are sparse, and using specialized algorithms may lead to

satisfying results. Such approach is then used to compute the steady-state, and, as a mat-

ter of fact, is the most standard, but may become prohibitive depending on the system.
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The reason for that is that the system might, during its evolution to the steady-state, pass

through highly entangled states, extending itself over the Hilbert Space, which might be,

depending on the size of the system, huge. This compromises the reliability of this par-

ticular method of simulation, since the convergence is not always assured in a reasonable

amount of computational time, a problem we shall deal with later, in Sec.4.4.3. For now,

let us revisit the amplitude damping example, using the vectorization procedure.

2.4 Vectorized example - amplitude damping

We shall now revisit the example done in 2.1.2, but using vectorized analogs of operators

and density matrix. Indeed, as we had 2.8, by using the identities derived back in 2.16,

we can now perceive the master equation as

d vec(ρ)
dt

“ L vec(ρ), (2.31)

where

L̂ “ H ` γp1´ fqDrσ´s ` γfDrσ`s, (2.32)

with

Ĥ “ ´i
Ω

2

”

I b σz ´ σ
T
z b I

ı

, (2.33)

and

D̂rσ`s “
”

σT` b σ´ ´
1

2

`

I b pσ`σ´q ` pσ`σ´q
T
b Iq

˘

ı

, (2.34)

D̂rσ´s “
”

σT´ b σ` ´
1

2

`

I b pσ´σ`q ` pσ´σ`q
T
b Iq

˘

ı

. (2.35)

Note that we have taken vec(ρ) out of the mess of operators, and left it to be treated after

the operations with matrices are dealt with. If we recall the same density matrix as 2.12,

we have it as

vec(ρ) “

¨

˚

˚

˚

˚

˚

˚

˝

p

q˚

q

1´ p

˛

‹

‹

‹

‹

‹

‹

‚

, (2.36)
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and by calculating L with 2.32 and applying it back to |ρy 2.36 one is able to derive, as

before, the functions p and q as in 2.13

vec(ρ) “

¨

˚

˚

˚

˚

˚

˚

˝

p0e
´γt ` fp1´ e´γtq

q˚0e
piΩ`γ{2qt

q0e
´piΩ`γ{2qt

1´ p0e
´γt ` fp1´ e´γtq

˛

‹

‹

‹

‹

‹

‹

‚

(2.37)
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Chapter 3

Open quantum spin chains

3.1 One dimensional quantum spin chains

Spin chains have been widely studied since they can show interesting physical properties,

all the while being relatively simple regarding the physics. In a spin chain, electrons

interact along the lattice according to Pauli exclusion principle and Coulomb repulsion.

Tthese two factors can be seen as a competition between an exchange interaction and

hopping between sites. These models are regarded as good toy models as they account

for a myriad of properties. In this context, we have studied the variation in which there

are baths coupled one dimensional chains. We now shall make a quick review of these

models and discuss some results in the literature regarding its properties.

3.1.1 The XXZ model

In this work we have studied the spin-1/2 XXZ chain, whose particular Hamiltonian for a

chain composed of N sites reads1:

H “
N
ÿ

i“1

τpσxi σ
x
i`1 ` σ

y
i σ

y
i`1 `∆σzi σ

z
i`1q `

N
ÿ

i“1

hσi, (3.1)

where σx,y,zi are the Pauli matrices related to the site i. The parameter ∆ relates to the

anisotropy along the z axis (which gives this model the XXZ name). By setting, for

instance, ∆ “ 1, we recover the Heisenberg original XXX model, and by setting ∆ “ 0,

we get the so called XX model. The parameter h is the magnetic field acting on site i. And

1In this work we shall set both the Planck Constant (~), Boltzmann constant (kB) and Bohr Magneton
(µB) to 1.
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τ corresponds to the coupling between nearest neighbor sites. Without loss of generality,

we henceforth set τ “ 1, which therefore fixes the energy scale of the problem.

By exploring symmetries related to these chains, one is able to derive many interesting

properties. They are summarized in phase diagram of the system, found in figure 3.1.

Figure 3.1: Phase diagram of the XXZ model 3.1. Taken from Ref.[11]. Here B is the

magnetic field, which was labelled h in Eq.3.1.

If the magnetic field is set to zero, then the system goes from ferromagnetic at ∆ “

´1, to antiferromagnetic at ∆ “ 1. In the ferromagnetic phase the system is fully po-

larized along the z axis, as |Ò ... Òy or |Ó ... Óy. These are degenerate as there’s no

preferencial direction to which the spins will be set to. For the antiferromagnetic case,

the system ground state can be studied via the Bethe Ansatz method [7]. For ∆ P r´1, 1s

in between -1 and 1, the system is in the paramagnetic state, which has no preferred or-

der. Both the ferromagnetic and antiferromagnetic states are usually gapped, i.e., there

is an energy cost associated with creating an excitation. The same is not true for the

paramagnetic phase, which is gapless.

This behaviour changes with the presence of a magnetic field, since the spins have a

tendency to align parallel to it. There’s a critical field Bc that separates ordered and dis-

ordered phases, and it increases monotonically with ∆. The value Bc1 is the critical field

that separates the antiferromagnetic phase and the paramagnetic phase [18]. Aditionally,

the critical field that separates the paraferromagnetic and ferromagnetic case is given by

Bc2 “ 2τp1`∆q [11].
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3.2 Open systems - environments

Even though the closed scenario (i.e. no environment coupled to the system) might be

relatively simple to simulate when taking into account few electrons, it rapidly devolves

into complicated many-body problems. It becomes even more complicated when one tries

to take into account the interaction between the chain and thermal baths coupled to certain

sites. An example can be seen in Fig.3.2.

�� ��

Figure 3.2: A one-dimensional chain where hot and cold baths are coupled to the first and

last sites.

One can picture each bath as a multitude of spins set in the same manner, which

interact with one or more elements of the chains. Here we do this using the concept of

Lindblad master equations described in Eq.3.2. In particular, we focus on the so-called

local master equations, which are obtained by using local dissipators acting only on a

single site, which we assume have the form:

Djpρq “ γfj

„

σ´j ρσ
`
j ´

1

2
σ`j σ

`
j ρ´

1

2
ρσ`j σ

´
j



`

γp1´ fjq

„

σ`j ρσ
´
j ´

1

2
σ´j σ

`
j ρ´

1

2
ρσ´j σ

`
j



,

(3.2)

where the γ parameter relates to the coupling strength between the system and the bath.

The fj terms relate to the temperature in which the baths are held, being related to a

reservoir inverse temperature β by f “ tanh pβq, such that for f “ 1, T “ 0 and for
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f “ 0, T Ñ 8. As before, if we set the chain to be an XXZ, then the Hamiltonian is

H “
N
ÿ

i“1

pσxi σ
x
i`1 ` σ

y
i σ

y
i`1 `∆σzi σ

z
i`1q `

N
ÿ

i“1

hσi, (3.3)

For instance, when looking at a one-dimensional spin chain, with baths coupled to the

first and last sites, the Lindblad Equation takes this form

dρ

dt
“ ´irH, ρs `D1pρq `DNpρq ” Lρ, (3.4)

where L stands for the Liouvillean Super Operator, which encompasses the entire dynam-

ics of the system. This particular setup is interesting to our study on transport among the

chain, dictated by the baths coupled to each end of it.

3.3 Transport regimes on one dimensional systems

In this section we derive the operators that relate to the transport throughout the system

in the case of spin-1/2 XXZ chain. This is done in order to quantify how the environment

affects the chain. We also discuss some results in the literature, in which the transport is

mapped regarding different parameters.

The spin current for the model can be constructed by looking at the evolution of the

internal sites of the chain (k “ 2, . . . , N ´1). Since the dissipator only acts on sites 1 and

N , it then follows that
dσzk
dt

“ irH, σzks “ Jk´1 ´ Jk, (3.5)

where H is the Hamiltonian defined in Eq.3.1. Using only the algebra of the Pauli matrices

leads to

Jk “ 2xσxkσ
y
k`1 ´ σ

y
kσ

x
k`1y. (3.6)

Another important quantity studied is the magnetization at each site. It is given by

Mk “ 2xσzky, (3.7)

Both Eq.3.6 and Eq.3.7 attain for the transport properties of the system. As we now
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discuss, depending on ∆, γ and the fi, the chain can present different transport regimes.

3.3.1 Ballistic behavior for ∆ ă 1

By setting the anisotropy term ∆ “ 0, the XX chain system is recovered. For the setup in

3.2, that is, coupling a bath to the first and last site of the chain, we can reach an exactly

solvable prospect with the same Hamiltonian as 3.1 but with ∆ “ 0. This was first shown

in Ref.[19]. They found that the current has the form

J “
γ

1` γ2

f1 ´ fL
2

, (3.8)

And the magnetization is

M “
f1 ` fL

2
, (3.9)

with γ being the coupling term, as in 3.1, and f1 and fL relating to the temperature of the

baths interacting with site 1 and L.

This result therefore allows us to conclude that for ∆ “ 0, the transport regime is

ballistic, as the the values of flux 3.8 and magnon density 3.9 are independent on the

chain size. The same holds true for ∆ ă 1; the flux does not depend on the size of the

chain [20].

3.3.2 Diffusive behavior for ∆ ą 1

For values of ∆ larger than one, the regime is called diffusive, in which the transport

properties depend on the size of the chain according to J „ 1{N . This has been studied

by numerous works, and we focus on the discussion made at [21]. The Hamiltonian is

reformulated to be close to the Ising Hamiltonian,

H “

n´1
ÿ

j“1

εpσxj σ
x
j`1 ` σ

y
jσ

y
j`1q ` σ

z
jσ

z
j`1, (3.10)

with ε “ 1{∆.

By expanding up to order ε2, it is possible to derive the lowest order correction in the
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NESS. This is done by considering an expansion of the form:

ρ “
1

2N
pI ` µρ0 ` µερ1 ` µε

2ρ2 ` ...q. (3.11)

One can derive linear equations for ρ0, ρ1, ρ2. Interesting results regarding transport arise.

The authors show that, if the average magnetization profile is linear, the spin current

scales as 1{N , which means that the transport throughout the chain is diffusive. It is also

possible to derive a diffusion constant D,

D “ 2.95{∆, (3.12)

and it is noted that this agrees nicely with numerical results (Fig.3.3).

Figure 3.3: Noted dependence of the diffusion constant 3.12 related to ∆. Taken from

Ref.[21].

3.3.3 Anomalous transport for ∆ “ 1

The case ∆ “ 1 is special and exhibits anomalous transport. The transport in this case

becomes sensitive to the other parameters, h, γ and f . Depending on the values of these

parameters, one may find sub-diffusive transport, with J „ 1{N2 [22] as well as super-

diffusive transport, J „ 1{
?
N [21]. The complete phase diagram of this model is still

unknown and was part of the initial motivation for this dissertation.
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Regarding Eq.3.2, if we set f1 “ 1 and fN “ 0, and plug it back into Eq.3.4, then one

of the baths is a perfect magnon source, pumping in magnons in and out of the system at

the rate γ whereas the other acts as a perfect magnon sink, absorbing magnons at a rate

γ. In this case, it is possible to look at the problem analytically, with the aid of a matrix

product state(MPS) solution, as first started in Ref.[23] and later extended in Ref.[22]. By

making use of matrix product states, the paper found an interesting analytical result for

the spin flux between neighboring sites i and i` 1, given by

Ji “
2γ

γ2 ` h2

ZpN ´ 1q

ZpNq
, (3.13)

in which ZpNq “ pBNq0,0 is calculated exponentiating the matrix

pBqk,l “ 2|p´ k|2δk,l ` l
2δk,l´1 ` |2p´ l|

2δk,l`1, (3.14)

where k and l stand for the element indices and p is given by

p “
i

2pγ ´ ihq
. (3.15)

Using this result, the relation between flux and chain size was found to go with J „ 1{N2,

which is an interesting result notable in Fig.3.4.

Figure 3.4: An interesting composition in which the flux can be seen to change from

constant to dependent on N, after a certain threshold. Taken from Ref.[22]

.
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The results up until this point provide excellent benchmarking prospects for the sim-

ulations we shall discuss in the next chapters, given that the baths are perfect magnon

sources.

3.4 The problem at hand

The anomalous transport exhibited by the Heisenberg model (∆ “ 1) is extremely inter-

esting and still poorly understood. For ∆ ă 1 or ∆ ą 1 the system behaves, respectively,

ballistically or diffusively, independently of the other parameters. But for ∆ “ 1 the

results in Refs.[20] and [21] show that the regime may change depending on the other

parameters in the model. Moreover, the transport is neither ballistic nor diffusive, but

rather sub-diffusive or super-diffusive. Understanding this interesting effect was part of

the motivation for this dissertation.

Tackling this problem, however, is numerically challenging. The damping rate γ was

found in Ref.[21] to play a critical role in the transport properties, specially when γ ! 1.

In contrast, practically all numerical studies done so far with this model have taken an

arbitrary value γ “ 1, imagining that this was unimportant. Numerical studies of this

model using tensor networks, as will be described in the next chapter, usually make use

of a time-dependent evolution to reach the steady-state. For low values of γ, however,

extremely long times may be necessary, making the simulations inviable. The method

implemented in this dissertation was devised precisely to circumvent this difficulty.

To summarize, therefore, simulating the case ∆ “ 1 for different choices of h, γ and

fi constituted the main physical objective of this dissertation.
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Chapter 4

Tensors and tensor networks

4.1 The structure of the Hilbert space

Usually, quantum physics problems are studied using the concept of Hilbert space, which

is a rather abstract concept, although being mathematically well defined. In general lines,

the Hilbert Spaces are generalizations of euclidean spaces, and take into account vector

algebra for arbitrarily large dimensions. This is partly due to the fact that quantum states

are seen as superpositions of states. This fits nicely into the structure of a tensor, which is

the reason we choose to represent physical states with the help of tensor networks.

For a many-body problem, as we’ve discussed, the associated Hilbert space grows

fast, and therefore demands a lot of memory to be represented completely.

Figure 4.1: In a Hilbert space related to a certain system, even though it might be quite
extense, only small portions contain the physical states. Taken from Ref.[24].

However, despite being extremely large, not all of Hilbert space is typical; that is,

most physical states actually occupy only small regions of the full space (see Fig.4.1).

And therefore, it is possible for approximations to be efficient descriptions of the system
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without having to store it entirely [24]. This is the foundation behind the matrix product

state ansatz, as well as the following density matrix renormalization technique, which

aims to control the growth of the Hilbert space in a educated guess, as we’ll show.

4.2 Matrix product states

Before starting on to the matrix product states formulation, it is convenient to have a quick

look at the tensor entity. Tensors are sophisticated tools with a wide range of applications,

ranging from the cosmology calculations to the topological abstract mathematics to quan-

tum physics, with its use being especially computer friendly, in an era where simulation

power is key.

As so, in this work, the tensors, which are themselves generalizations of vectors in

arbitrarily large spaces, are generalized yet again, in what are called tensor networks.

This attains for huge gain in computational power, which is very welcome.

This is due to the fact that, in the quantum framework, the many body problem

presents even more of a challenge than its classical counterpart, as the Hilbert Space re-

lated to these systems scales up exponentially to the quantity of individual particles being

simulated.

What differentiates between tensors and scalars are the indices. The simplest of ten-

sors shall have one index, and it is an appropriate moment to introduce the diagrams which

we’ll use to illustrate the tensors. A rank-1 tensor A with a single index x1 can be seen

diagrammatically as follows in Fig.4.2.

�
�1

Figure 4.2: Simple tensor diagram of a rank-1 tensor. The node is index is depicted by
the black dash
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We can make it so that A now has two indices instead of one, x1, x2, as in Fig.4.3.

�
�1�2

Figure 4.3: Simple tensor diagram of a rank-2 tensor.

Note that this would add another line sticking out of the tensor container, which means

exactly that, another index. For a more interesting example, say we can re-write our toy-

tensor A as two different tensors, Bx1
y1

and Bx2
y1

, which would lead us to the diagram in

Fig.4.4.

=�
�1�2

∑
�1

�
�1

�1
�

�2

�1

Figure 4.4: Simple tensor diagram of a rank-2 tensor decomposition into two rank-2
tensors.

As we contract over the y1 index, we get A back from that. This example illustrates

the fundamental idea behind tensor networks; namely, representing high-rank tensors as

objects with internal structure, composed of contractions of lower order tensors.

Let us now consider a physical system composed (for concreteness) of N spin 1/2

particles. The most general pure state of this system may be written as

|Ψy “
ÿ

σ1,...,σL

ψσ1,...,σL |σ1, . . . , σLy, (4.1)

for some set of coefficients ψσ1,...,σL . The connection with tensors now comes from inter-

preting the vector of coefficients ψσ1,...,σL as a rank-L tensor.

Regarding to the particular simulation of quantum many body, the key concept is the

Matrix Product State (MPS), which will work as an ansatz. The set of coefficients in 4.1
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would be written as a set of tensors Aσ1x1A
σ2
x1,x2

...AσNxN´1
, as in

|Ψy “
ÿ

σ1,σ2,...σN
x1,x2,...,xN´1

Aσ1x1A
σ2
x1,x2

...AσNxN´1
|σ1σ2...σNy , (4.2)

Now there’s exactly the same example, just more complex, as we’re dealing with a phys-

ical state |Ψy, and in the same way, can be seen as a simple diagram [16] depicted in

Fig.4.5.

Figure 4.5: Pictoric diagram of a MPS state |Ψy.

With the central light-blue nodes representing the Tensors and the information that’s

stored within, and with the black dashes representing the indices. As before, when con-

necting two nodes, that particular index is being summed over [10]. In this depiction,

the physical indices (σ1, σ2, ..., σN ) are stick out without being summed over, while the

internal MPS indices (x1, x2, ..., xN´1)

4.3 Matrix product operators

A similar thing can be said about any particular operators, which can be perceived as an

Matrix Product Operator object (MPO), with the exact same structure, and one particular-

ity, the number of indexes it has[10].

Figure 4.6: Pictoric diagram of a MPO operator O.
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An MPO will have the general structure

O “
ÿ

σ1,...,σN
σ11,...,σ

1
N

x1,x2,...,xN´1

W σ1,σ11
x1

W σ2,σ12
x1,x2

...W
σN ,σ

1
N

xN´1 |σ1, ..., σNy xσ
1
1, ..., σ

1
N | , (4.3)

which is represented in Fig.4.6

Apart of the indices connecting over the nodes, the operator (for instance, the hamil-

tonian) associated with a system shall have twice the physical indexes in relation with the

MPS that represents the system. This makes sense, as these indices will be summed over

when calculating, for instance, an expected value.

This specific diagramatization scheme makes it especially intuitive to perceive the

calculations of expected values of operators, norms of quantum states and so on, as con-

tracting over indexes would just represent linking up black dashes in the same way. In

this sense, this also conveys the dimensionality of the result by looking at the final count

of dashes sticking out, as a non-contracted index. For instance, two of them sticking out

would mean the final result to be a rank-2 tensor.

4.4 Tensor network methods

Since the original work by Steven White [13], techniques derived from Renormalization

Groups formalism while using the Density Matrix have become the major methods for

the simulation of dynamics of Strongly Correlated Systems. This wasn’t always the case,

and some other methodologies are worth discussing, since they do provide valuable tools

as well.

4.4.1 Exponential time evolution

The usual setup derived from Eq.2.23 requires evolving the initial state of the given system

by exponentiating the Liouvillean and applying it over the initial state |ρp0qy iteratively,

as in

eLpt0`∆tq |ρp0qy “ |ρpt1qy . . . (4.4)
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Exponentiating a matrix and applying it onto a vector is not a quite demanding task

by itself, but some problems may surface while trying to get to the steady state, since the

highly non-local aspects of the systems of interest may deem the simulations unviable, as

the Hilbert space may easily and surely grows larger and larger.

4.4.2 Trotter time evolution

A workaround for specific scenarios, for instance, when there’s only at most nearest-

neighbour interaction, are the array of techniques related to Time Evolving Block Dec-

imation, whose most relevant branch is the Trotter time evolution, which samples the

name from the Suzuki-Trotter expansion. This method works mostly when the entangle-

ment present in the system is controlled and limited, as this, in turn, controls the Hilbert

Space dimension associated to the problem. In this framework, one might attempt a first

order Trotter decomposition by breaking up the Hamiltonian in local parts, which act on

one site at a time, as in

e´iHt “ e´ih1t{2 . . . e´ihLt{2e´ihpL´1qt{2 . . . e´ih1t{2 `Opt3q. (4.5)

The error of this aproximation is due to the non-commutativity of the local parts of

the Hamiltonians, and it will be of order t3. After breaking the Hamiltonian down to local

parts, it can be used to do a time evolution that is simpler to compute. This method can

be extended to Hamiltonians with finite range interactions. This is further discussed in

Ref.[25].

4.4.3 Tensor networks approach to ground state convergence

Althought being interesting methods, the limitations of each can become prohibitive and

hinder simulation efforts. A variational setup, then, becomes useful to deal with these

eigenvalues-eigenvectors problems. For a simple example, say one desires to find the

ground state energy associated with a certain Hamiltonian H and a certain state Ψ, fos

instance, composed of 4 sites.

E “
xΨ|H |Ψy

xΨ|Ψy
. (4.6)
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We want to calculate xΨ|H |Ψy, to a 4-site Ψ, where

|Ψy “
ÿ

σ1,σ2,
σ3,σ4

Aσ1Aσ2Aσ3Aσ4 |σ1, σ2, σ3, σ4y , (4.7)

“
ÿ

σ1,σ2,
σ3,σ4

ÿ

a1,a2,a3

Aσ1a1A
σ2
a1,a2

Aσ3a2,a3A
σ4
a3
|σ1, σ2, σ3, σ4y . (4.8)

To aid us, we insert (non-physical) indices connecting each of the matrices associated

with each site with the neighbouring sites matrices. A representation of it is depicted in

Fig.4.7.

�1 �2 �3 �4

�1 �2 �3

�4

Figure 4.7: MPS representation of a 4-site state |Ψy.

As for the Hamiltonian H, we have

H “
ÿ

σ1,σ2,σ3,σ4
σ11,σ

1
2,σ

1
3,σ

1
4

W σ1,σ11W σ2,σ12W σ3,σ13W σ4,σ14 |σ1, σ2, σ3, σ4y xσ
1
1, σ

1
2, σ

1
3, σ

1
4| , (4.9)

which can be represented as a Matrix Product Operator, found in Fig.4.8.

σ′

1
σ′

2
σ′

3
σ′

4

σ1 σ2 σ3 σ4

b1 b2 b3

σ4

Figure 4.8: MPO representation of a 4-site operator. In this case, a Hamiltonian.
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This Hamiltonian can be written more compactly as

H “
ÿ

σ,σ1,b

W
σ1,σ11
b1

W
σ2,σ12
b1,b2

W
σ3,σ13
b2,b3

W
σ4,σ14
b3

|σy xσ1| . (4.10)

And now, with both |Ψy and H at hand, we’re able to calculate xΨ|H |Ψy.

xΨ|H |Ψy “

«

ÿ

σ

pAσ1Aσ2Aσ3Aσ4q: xσ|

ff

˚

«

ÿ

σ1,σ2

´

W σ11,σ
2
1W σ12,σ

2
2W σ13,σ

2
3W σ14,σ

2
4

¯

|σ1y xσ2|

ff

˚

«

ÿ

σ3

´

Aσ
3
1 Aσ

3
2 Aσ

3
3 Aσ

3
4

¯

|σ3y

ff

. (4.11)

By focusing solely on the coefficients, disregarding the deltas which would appear, we

reach

ÿ

σ,σ1

pAσ1Aσ2Aσ3Aσ4q: ˚
´

W σ1,σ11W σ2,σ12W σ3,σ13W σ4,σ14

¯

˚

´

Aσ
1
1Aσ

1
2Aσ

1
3Aσ

1
4

¯

. (4.12)

And now, inserting the remaining indexes, there should be

xΨ|H|Ψy “
ÿ

σ,σ1

ÿ

a1,a2,a3

ÿ

b1,b2,b3

ÿ

c1,c2,c3

`

Aσ1a1A
σ2
a1,a2

Aσ3a2,a3A
σ4
a3

˘:
˚

´

W
σ1,σ11
b1

W
σ2,σ12
b1,b2

W
σ3,σ13
b2,b3

W
σ4,σ14
b3

¯

˚

´

Aσ
1
1
c1
Aσ

1
2
c1,c2

Aσ
1
3
c2,c3

Aσ
1
4
c3

¯

, (4.13)

which can then be regrouped as

xΨ|H|Ψy “
ÿ

a1,a2,a3,
b1,b2,b3,
c1,c2,c3

¨

˝

ÿ

σ1,σ11

Aσ1:a1
W

σ1,σ11
b1

Aσ
1
1
c1

˛

‚˚

¨

˝

ÿ

σ2,σ12

Aσ2:a1,a2
W

σ2,σ12
b1,b2

Aσ
1
2
c1,c2

˛

‚˚

¨

˝

ÿ

σ3,σ13

Aσ3:a2,a3
W

σ3,σ13
b2,b3

Aσ
1
3
c2,c3

˛

‚˚

¨

˝

ÿ

σ4,σ14

Aσ4:a3
W

σ4,σ14
b3

Aσ
1
4
c3

˛

‚˚

(4.14)
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Finally, those are renamed as follows

La1,b1,c1 “
ÿ

σ1,σ11

Aσ1a1W
σ1,σ11
b1

Aσ
1
1
c1

Ra3,b3,c3 “
ÿ

σ4,σ14

Aσ4a3W
σ4,σ14
b3

Aσ
1
4
c3

. (4.15)

By applying each local MPO to the respective MPS iteractively, we get the foundation of

the variational setup. This procedure can be diagramatically seem as in Fig.4.9.

L R

�1

�1

�1

�3

�3

�3

Figure 4.9: Diagrammatic representation of a step-by-step contraction of a 4-site operator

expected value of the Hamiltonian. Note how no indices are left after fully contracting

over all remaining indices.

By this exercise, we see how tensor treatment can be extremely useful for extensive

calculations. Luckily, we’re able to avoid such calculations by using the ITensor [16]

package, which manages the indices in such operations, not only intuitively, but efficiently

as well.
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4.4.4 Variational principle

It is important to note how the MPS applications can be used to find the NESS of a

quantum system. Let us suppose that a Hilbert space related to a certain system can be

said to satisfyH : |iy where i “ 0, ..., N ´ 1. We have that |Ψy “
ř

α Ψα |αy. The energy

of the ground state should be upper bounded by

Egs ď ε “
xΨ|H |Ψy

xΨ|Ψy
, (4.16)

which can be re-written to look as

ε xΨ|Ψy “ xΨ|H |Ψy . (4.17)

By taking the partial derivative in relation to Ψ:
α, we get that

„

B

BΨ:
α



ÿ

α,α1

xα|H |α1yΨ:
αΨα1 “ ε

ÿ

α

Ψ:
αΨα, (4.18)

which is equal to
ÿ

α1

Hαα1Ψα1 “ εΨα. (4.19)

Finally

H |Ψy “ ε |Ψy . (4.20)

4.5 The L:L Technique

For our particular setup in our implementation, instead of minimizing the energy by look-

ing at H |Ψy “ E |Ψy, we look at the dynamics of the equation dictated by the Lindblad

equation 3.4, in which we have a super-operator L conducting the evolution of a vector-

ized density matrix ρ.

L |ρy “ 0. (4.21)
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since L is not Hermitian, and thus its eigenvalues aren’t necessarily real, 4.21 is unfit to

simulations. However, by applying L: at both sides of 4.21, we get

L:L |ρy “ 0. (4.22)

This elegant idea was conceived in Ref.[12] and is extremely useful, as now the eigen-

values are not only real, but positive, and even more, the lowest one is zero. So when

looking at simulation results, one is able to see it converging to zero, should it work prop-

erly. Therefore, we effectively know which eigenstate we’re looking for, the one with

eigenvalue zero.
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Chapter 5

The density matrix renormalization
group

This chapter will verse over the Density Matrix Renormalization Group algorithm, as well

as our particular implementation for open quantum systems and the technical details on

how the code works.

The initial implementations of the DMRG, when facing infinite-sized systems, dealt

with the problem by analysing chains of increasing lengths, while truncating over the

Hilbert Space so the dimension that represented the system wouldn’t be prohibitive for

the simulation. The key of the algorithm is this truncation, called decimation procedure.

This lays on the assumption that the Hilbert space of the problem we are tacking is way

larger than the space in which the dynamics of interest resides [10].

Originally, the implementation was carried out by starting from a two-site system

which was divided naturally in two blocks, and then more sites were inserted between

then, with the decimation procedure following after that. Schematically, this can be seen

in figure 5.1.

Figure 5.1: The decimation procedure represented schematically for infinite sized chains

(left) and finite chains (right). Taken from Ref.[10]
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Then, by looking at the ground-state energy of the chain, which is given by 4.6, by

using an iterative sparse matrix eigensolver, one can find Ψ that minimizes the energy,

effectively reaching a ground-state approximation. This configuration receives more sites,

that are then taken into account for the calculation of the energy, and so on.

In its current state, such procedure is done by aid of an inconspicuous operation called

the Singular Value Decomposition, or SVD, for short. The SVD is a purely algebraic

tool, but it has a background in physics foundations, as it stands in the foundation of the

Schmidt decomposition, and it relates with the entanglement entropy of bipartite systems.

Let us take a look at how it works, and why it works.

5.1 Singular value decomposition

Any matrix T can be decomposed in 3, namely, U, S, V :, as

T “ USV :. (5.1)

Here, S is a diagonal positive matrix, that holds the singular values: S “ diagpσ1.σ2, . . . , σrq.

The number of singular values is the Schmidt rank of the matrix T. The matrices to the left

and to the right of S are usually called right and left orthogonal matrices as they satisfy,

respectively L:L “ 1, and R, RR: “ 1. Diagrammatically, one can perceive the SVD as

in Fig.5.2.

i j i j

v
T U S V

u

Figure 5.2: Diagrammatic representation of a SVD.

The SVD can be used to make low rank approximations of matrices. This is done by

taking, for instance, a matrix T, N ˆ N , which will have N2 entries, and instanciating it

with vectors of dimension N, say, u and v. By taking the outer product uv:, which also

has N ˆ N entries, but is so that the entries are all specified by two tensors of size N ,

which effectively ranks down the initial matrix. A matrix given by outer product u and v:
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is often called a rank-1[16]. For a simple example, may we look back at 5.1, which can

also be seen as, in regard of each entry of matrix T,

Tij “
r
ÿ

α“1

UiασαV
˚
jα. (5.2)

The matrix T can be written in terms of two generic column vectors uα and vα, as in

T “
r
ÿ

α“1

σαuαv
:
α, (5.3)

which means that T has been decomposed as a sum of r ď N terms of rank-1 matrices.

This can also yield a controlled approximation of T, in which we don’t sum over all the

singular values, but only a small number of them, so the problem is mapped into an

approximation of diminished dimension. This can be extremely useful, since taking the

sum over only one singular value, for instance, would map theN2 elements in a 2N space.

5.1.1 Schmidt decomposition

We shall now run over a simple example of how the SVD can be applied on to quantum

states study, and what does this approach tell us about entanglement. By considering two

qubits, we have

|Ψy “
c
?

2
p|00y ` |11yq `

d
?

2
p|01y ` |10yq, (5.4)

where |c|2 ` |d|2 “ 1 for normalization. By a simple parametrization, we can write

c “ cospφ{2q and d “ sinpφ{2q. By choosing either c or d, to be 1, we can recover the

Bell states, which are, for instance, maximally entangled. By choosing c “ d “ 1{
?

2 we

obtain a product state. We now express the state 5.4 as

|ψy “
ÿ

ij

ψij|i, jy, (5.5)

where the coefficients ψij are now interpreted as a matrix,

Ψ “
1
?

2

¨

˝

c d

d c

˛

‚. (5.6)
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We now perform an SVD of this matrix Ψ. The matrices U and V turn out to be the same

and are given by Haddamard gates:

U “ V “
1
?

2

¨

˝

1 1

1 ´1

˛

‚. (5.7)

The singular values matrix S, on the other hand, read:

S “
1
?

2
diagpc` d, c´ dq. (5.8)

Finally, this can be written in the Schimdt basis, as in

|Ψy “
pc` dq
?

2
|``y `

pc´ dq
?

2
|´´y . (5.9)

This is quite interesting, as the SVD makes it easier to see how entanglement works in

this particular system, way more easily to see as in 5.4. This calculation suggests that the

SVD is a valuable tool to look at the entanglement of systems more easily, and therefore

it helps us to re-write such problems so they are more easily treatable.

5.2 Tensor structures and the DMRG algorithm

As we have shown, the SVD is a powerful tool to treat physical systems. In our imple-

mentation, some particular properties are important. To understand these properties, let

us consider, as before, a simple 1D system of N spins, and recall that a general state reads

ψ “
ÿ

σ1,...,σN

cσ1,...,σN |σ1, ..., σNy . (5.10)

5.2.1 Left and right-canonical MPS ansatz

Looking at the coefficients cσ1,...,σN , we can write a d ˆ dN´1 matrix Ψ using the vector

of coefficients c, and by performing an SVD with such matrix, we would get

Ψσ1,...,σN “ cσ1,...,σN “ Uσ1,a1Sa1a1pV
:
qa1,σ2,...,σN . (5.11)
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Decomposing U into d vectors Lσ1 , so that Lσ1a1 “ Uσ1,a1 and by contracting S and V :

back together, we get

Ψσ1,...,σN “ cσ1,...,σN “
d1
ÿ

a1

Lσ1a1Ψa1,σ2,...,σN . (5.12)

This can now be repeated for the new set of coefficients Ψa1,σ2,...,σN so that Ψ is entirely

rewritten as matrices L, which can be summed over to recover Ψ, as in

cσ1,...,σN “
ÿ

a1,...,aN´1

Lσ1a1L
σ2
a1,a2

...LσNaN´1
. (5.13)

which is the decomposition of ψ into a matrix product state. We can rewrite our state as

|ψy “
ÿ

a1,...,aL

Lσ1Lσ2 ...LσN |σ1, ..., σNy (5.14)

As developed in Sec.4.2, this poses as a matrix product state representation of our initial

state Ψ, in this case, we chose to keep all the left-orthogonal matrices resulting from

repeated SVD’s while contracting back the singular values with the righ-orthogonal parts

of the decomposition. If we decompose a state completely using left-orthogonal matrices,

we will call the matrix product state left-canonical as in Ref.[10]. Such matrices have the

following property
ÿ

σl

Lσl:Lσl “ I (5.15)

A similar argument can be made if we decompose Ψ into a succession of right-orthogonal

matrices:

Ψσ1,...,σN “ cσ1,...,σN “
d1
ÿ

a1

Ψσ1,σ2,...,σN´1,aN´1
RσN
aN´1

“
ÿ

a1,...aN´1

Rσ1
a1
Rσ2
a1,a2

...RσN
aN´1

(5.16)

From which we reach

|ψy “
ÿ

a1,...,aN

Rσ1Rσ2 ...RσN |σ1, ...σNy (5.17)
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and, in turn, for the matrices R the following property applies

ÿ

σl

RσlRσl: “ I (5.18)

If we wish, we can decompose the set of coefficients c as an arbitraty combination of left

orthogonal and right orthogonal matrices, with the matrix containing the singular values

in the middle. Let’s say we re-write ψ with l left-orthogonal matrices and N ´ l right

orthogonal matrices, as in

|ψy “
ÿ

σ1,...,σl,...,σN

Lσ1a1 ...L
σl
al´2al´1

SRσl`1
alal`1

...RσN´1
aN´2aN´1

RσN
aN´1

. (5.19)

Diagramatically, this can be seen as in Fig.5.3.

�1 �2
��−1 ��

��−1��−2

��+1���1 �2

Figure 5.3: Diagramatic representation of a matrix product state composed of ` left-

canonical matrices and N ´ ` right-canonical matrices. Here, the blue nodes are the

left-canonical representation of the state, red nodes are the right-canonical parts, and the

orange diamond contains the singular values.

Alternatively, by contracting back the matrix that holds the singular values with a

neighboring matrix and performing a new SVD on the resulting matrix, one can ”move”

the diamond-shaped node left or right throughout the chain. The reason why one would

want to do that is that operations regarding only left/right-orthogonal matrices are triv-

ial, a consequence of properties 5.15 5.18 respectively. The position where the singular

values are calculated is called the orthogonality center, and it sets the only non-trivial

calculations to be made.

This is used by the DMRG algorithms to hugely speed up computations of local prop-

erties at every set of two sites, as contracting over two left normalized L-matrices or over
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two right normalized R-matrices simply yields a Kronecker delta, as denoted in Fig.5.4

��

�
′

�

Figure 5.4: As setting up trivial contractions like these, one can hugely speed up calcula-

tions. Taken from Ref.[10].

The technicalities within the tensor structures are extremely important to correlate

the physics to the numeric outline we’ve been stablishing. This is the foundation of the

DMRG.

5.2.2 DMRG: iterative sweeping over the chain

The DMRG algorithm, however, is not done by a single SVD, but instead a sequential set

of SVD’s with subsequent truncations. This sequence of SVD’s is called a sweep motion.

The routine runs throughout the chain, performing SVD’s and contractions to move the

orthogonality center to the left, or to the right, and turning the neighboring matrices into

left/right canonical. Up until this point, calculations can be exactly made. But as the

chain size L increases, the dimension of the singular value matrix also increases with

LˆL, and therefore it is not practical to look at the entirety of these matrices. To mitigate

this problem, the routine reduces the dimension of these matrices by truncating over the

smallest singular value(s). At this point, truncation error arises, as the payoff of having

a feasible numerical algorithm. The number of singular values taken into account in one

sweep is called the bond-dimension, as it dictates the dimension of the indices of the

square matrix containing the singular values.

A step in this procedure can be seen as a diagram in Fig.5.5.
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Figure 5.5: Sweep motion over the chain, from the left side to the right. The orange node

contains the singular values being extracted from the SVD, and the yellow/purple nodes

are left/right orthogonal, respectively. Taken from [26].

This effectively diminishes the dimension of the Hilbert Space in which the system

exists. As discussed in 4.1, this is a keen guess, as by truncating over the smallest singular

values, not much information of the system is lost. Additionally, as we discussed, the

left/right orthogonal matrices are trivial to work with, and by focusing all the information

in the singular value matrix S, applying an observable to the system is akin to applying

it to a single site, or pair of sites. This makes the DMRG-based algorithms very cost

effective, while incredibly useful for 1-dimensional systems.
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5.3 Details of implementation

5.3.1 Vectorization and the Hilbert space

The above algorithm was designed for pure states and aims at finding the ground state of a

given Hamiltonian. We now show how this very same idea can be generalized to compute

the NESS of an open quantum spin chain. For that to work, though, the system needs to be

vectorized, as the effective implementations that make use of DMRG routines excel when

trying to solve these problems as operators acting on to vectors. As we reached Eq.3.4,

we have a superoperator acting on a density matrix. And we therefore make use of the

vectorization procedure stablished in Sec.2.2. By using Eq.2.15, we get, respectively for

the Hamiltonian and for each term of the Dissipator:

• ´irH, ρs ÝÑ ´ipI bH |ρy ´HT b I |ρyq

• σ`ρσ´ ÝÑ pσ` b σ`q |ρy

• σ´σ`ρ ÝÑ pI b σ´σ`q |ρy

• ρσ´σ` ÝÑ pσ`σ´ b Iq |ρy

• σ´ρσ` ÝÑ pσ´ b σ´q |ρy

• σ`σ´ρ ÝÑ pI b σ`σ´q |ρy

• ρσ`σ´ ÝÑ pσ´σ` b Iq |ρy

This leads us from the dynamics associated to 3.1 to

´irH, ρs “ ´ipI bH ´HT
b Iq |ρy (5.20)

and the dissipative parcel from 3.2, by combining 2.34 and 2.35, to

Djpρq “

«

γfj

”

σ`j b σ
`
j ´

1

2
I b σ´j σ

`
j ´

1

2
σ`j σ

´
j b I

ı

` γp1´ fjq
”

σ´j b σ
´
j ´

1

2
I b σ`j σ

´
j ´

1

2
σ´j σ

`
j b I

ı

ff

|ρy . (5.21)
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After this procedure, these can be easily implemented and worked on with the tensor

network techniques. But there’s more than one way to look at the same Hilbert Space, as

we now discuss.

5.3.2 Rearranging the Hilbert space

As the non-locality that arrises from the presence of the environment poses a barrier to

simulations, there’s a need to vectorize the system of a one-dimensional chain in a smart

way, so that this problem is mitigated. Let’s look at how to do that effectively. Initially,

let us revisit the Hamiltonian

H “
N
ÿ

i“1

pσxi σ
x
i`1 ` σ

y
i σ

y
i`1 `∆σzi σ

z
i`1q `

N
ÿ

i“1

hσi, (3.3 revisited)

and the dissipatorsDj in Eq.5.21. Note that the Hamiltonian acts on each σj, σj`1 whereas

the dissipators act on σj, σ1j . Now say we have a system composed of multiple spins, let

us denote it as previously as

ρ “
ÿ

i,j

ρi,j |iy xj| . (5.22)

As discussed previously, we can write a vectorized version of ρ as

|ρy “
ÿ

i,j

ρi,j |jy b xi| , (5.23)

There is not one single way to vectorize ρ, as we will show. If we write the indices i and

j relating to the site operators σ1...σN , we can re-write Eq.5.22 as

ρ “
ÿ

i,j

ρσ1,...σN ,σ11,...,σ1N |σ1, ..., σNy xσ
1
1, ..., σ

1
N | . (5.24)

This can be perceived as in Fig.5.6.
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σ′

Nσ′

2
σ′

1

σ1 σ2
σN

ρ =

Figure 5.6: Each node has local information about each site. Upon contracting over the

horizontal, indices (non-identified in the figure) one recovers ρ.

Here, the part regarding σ1, ..., σN , σ
1
1, ..., σ

1
N can be seen as

|σ1, σ2..., σNy xσ
1
1, σ

1
2, ..., σ

1
N | “ |σ1y xσ

1
1| b |σ2y xσ

1
2| b ... |σNy xσ

1
N | , (5.25)

which can be either mapped to

|σ11y b |σ1y b |σ
1
2y b |σ2y b ... |σ

1
Ny b |σNy , (5.26)

or to

|σ11y b |σ
1
2y b ... |σ

1
Ny b |σ1y b |σ2y b ... |σNy . (5.27)

In the physical sense this makes no difference, the problem is the same, just mapped

differently. Although, if we map the system as in Eq.5.27, the vectorized version of ρ,the

interactions of the Hamiltonian are diagramatically depicted in Fig.5.7, the orange lines

representing where each part of the Hamiltonian act on.
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|ρ⟩ =

σ′
1 σ′

2 σ′
N

σ1 σ2 σN

HR

HL

Figure 5.7: Schematics of the local Hamiltonian interaction on a density matrix ρ if the

system is structured as in Eq.5.27. In this picture, it is akin to first neighbor interactions.

Where HR and HL are the portion of the Hamiltonian acting on the right and left part

of the vectorized version of the system. This means that, in this mapping, the Hamiltonian

acts locally in each pair of MPS. The dissipators, however, as noted in Eq.5.21, act on

each pair σjσ1j , which makes it highly non-local as σj and σ1j are separated by N ´1 sites,

making it a N ´ 1 neighbor interaction. This can diagramatically be seen in Fig.5.8.

|ρ⟩ =

σ′
1 σ′

2 σ′
N

σ1 σ2 σN

D1

D2

Figure 5.8: The structure of ρ, based around Eq.5.27 make it so that the dissipators act

highly non-locally.

On the other hand, if we structure ρ as depicted in Eq.5.26, the Hamiltonian would,

instead, act akin as a second neighbor interaction, as shown in Fig.5.9.

55
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��

Figure 5.9: Schematics of the local Hamiltonian interaction on a density matrix ρ if the

system is structured as in Eq.5.26. The dashed box shows how can one easily recover the

initial density matrix tensor, by contracting the two sites inside the box.

This means that the Hamiltonian acts slightly non-locally, being mapped as a second

neighbor interaction. The dissipators, however, act on each pair σ1 ÐÑ σ11, as depicted

in Fig.5.10.
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Figure 5.10: Schematics of the Dissipators acting on a density matrix ρ if the system is

structured as in Eq.5.26. The dashed box shows how can one easily recover the initial

density matrix tensor, by contracting the two sites inside the box.

The dissipators would act on each pair of sites, immediately next to each other, making

it akin to a first neighbor interaction.

If we were to derive the MPS of ρ following 5.27, we would be forced to use a 2L

sized chain when simulating, as there’s no way to simplify it. We will therefore call the

structure depicted in Fig.5.7 and Fig.5.8 2L formalism. As for Eq.5.26, which spans

the depiction in Fig.5.9 and Fig.5.10, we will call it the L formalism, as we are able

to contract each neighboring sites into a single tensor with two indices, σj, σ1j , therefore

recovering a L sized-chain.

As we will see now, the L formalism is usually better than the 2L formalism due to

the more localized nature of the dissipators.

L x 2L - Choosing the right Hilbert space structure

There are now two distinct ways to frame how the MPS ansatz will treat the system,

which we referred to as the 2L and L formalisms following Sec.5.3.2. A comparison of

both formalisms is shown in Fig.??, where we plot the NESS energy guess as a function

of the number of sweeps for different chain sizes.
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Figure 5.11: Ground state convergence L x 2L formalism comparison, for different spin

lenghts L. The parameters used in this set of simulations were γ “ 4, f1 “ 0.49, fL “

0.51, h “ 0,∆ “ 0.1.

For small sizes (L ď 50) both methods seem to converge, although the 2L formalism is

still slightly worse in comparison. The pay-off is that the L formalism takes comparatively

more time/sweep than the 2L, but as the chain size increases, it becomes harder to compute

the dissipators role in the dynamics if we use the 2L structure, and the NESS energy

guess is significantly worse compared to the L counterpart. The same is not true for the

L structure, where the NESS energy guess is more accurate in comparison, and presents

a smooth, controlled and constantly improving guess after each sweep. For open system

simulations, therefore, Eq.5.26 poses as a better guess, especially in the treatment of

bigger chains. In the following results, we have choosen to use the L formalism.
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Chapter 6

Numerical results

6.1 Initial state guess and the the warm-up routine

The ITensor library initializes a random configuration of spins upon creating the MPS

object. This makes it hard to benchmark one simulation against another, as they don’t

start in the same exact place. Additionally, not every MPS vector can represent a valid

physical state. For this reason every initial state is set up to be the identity vector, as it

satisfies the normalization condition, and is Hermitian.

After implementing the operators as MPOs and the Heinserberg chain as an MPS,

and then choosing a feasible physical state to start the simulation with, we then imple-

mented a warm up routine, in which the bond dimension in the simulation is the lowest

one possible, which is 1. Here, DMRG sweeps are made up to the point where the energy

before and after a sweep have converged to the same value under a 1% error which means

the bond-dimension 1 have saturated, and therefore the simulation cannot be significantly

improved further. This way, the number of sweeps in the warm-up routine depends from

simulation to simulation. This particular step yields for better simulation times, as low

bond dimensional sweeps are very easy to perform, since the computer has just one di-

mensional matrices to compute. This is also perceived as a better initial guess. We have

ran a set couple of routines to test how this affects the simulation. This is depicted in

Fig.6.1.
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Figure 6.1: Comparison of how the warm up routine sharpens the guess of the ground

state energy. Values used: L “ 10, γ “ 1, f1 “ 1, fL “ 0, h “ 0,∆ “ 1

By using the warm-up routine before letting the DMRG attain for bigger dimensions,

more singular values, one can have, in less computation time, better results, as the system

is slowly steered into a better guess of the ground state. This takes very little time, as

shown in Fig.6.2.
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Figure 6.2: Plots of both ground state energy and time taken by sweep per sweep. Values

used: L “ 10, γ “ 1, f1 “ 1, fL “ 0, h “ 0,∆ “ 1
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As the time it takes to sweep over the chain is minimal when the bond dimension

is one, it’s optimal to use it to a sharper initial guess, which can then be refined by the

algorithm.

6.2 Code implementation

We present snippets of the final version of the code developed by us, among with brief

explanations.

Initially, the code stablishes values for the size L of the chain, the coupling γ, the

temperatures f1 and fL of the baths in site one and L, the magnetic field acting over

the chain h and the anisotropy ∆, as well as the vectors used to store information of the

simulation. The input values L, γ, f1, fL, h,∆ are all decided by the user. Two more

technical values, the dimension of the bond used by the SVD 5.1 and the sweeps made

with such bond value by the DMRG routine 5.2, are determined by the algorithm to assure

convergence. If no constraint is set the code will run indefinetly, increasing the bond

dimension and sweeping indefinetely, trying to reach a more accurate configurations of

the NESS.

We have created the TwoSpinHalf() environment to structure the system indices in

the L formalism. Even though this formalism is, as discussed in Sec.5.3.2 better, we

have implemented the same version with the 2L counterpart structure. In that case, the

algorithm uses already implemented SpinHalf() function to create the sites containers.

After creating the indices, the MPS representation of the chain, ρL, is created by a built-in

function of the ITensor, with appropriate fitting indexes. This is represented in the code

that follows.

The Liouvillian L is then constructed following the desired input, as well as L:, and

the operator L:L is stored in M2.
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The functions LiouvConstruct L, LiouvDConstruct L were built with code-like ver-

sions of the instances stablished back in Sec.3.

A first step of simulations is run in the warm up routine Finally, a loop is set to run

through DMRG calculations, sharpening the guess of the NESS, as demonstrated below.

6.3 The bond-dimension and how to increase it

After each sweep, if the difference between the energy calculated after the sweep and the

energy calculated before it falls under 1% of the initial energy, the bond dimension is in-

creased by one. This means that the smaller bond-dimension has saturated its capabilities

of describing the system accurately. This can be seen as jumps in Figs.6.1 and 6.7.

It is important to note that inadvertently raising the bond dimension may deem the

simulation unviable, or make it diverge. For instance, observables that should be real may

have complex parts.

A simulation where this happens can be found in Figs.6.3 and .6.4.

In this set of simulations the parameters used were γ “ 1, f1 “ 1, fL “ 0, h “ 0,∆ “

1, and therefore, analytical values are available.
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Figure 6.3: Example the spin flux output of a simulation in which the bond dimension in-

creases uncontrolably. The spin flux, which is strictly real, in this simulation has a signif-

icant complex parcel, and it does not show signs of convergence. Instead, at sweep “ 50

it appears to diverge. In 6.3a the gray line represents the analytical value of the flux, in

this case, of p´0.0422982q. In 6.3b The grey line marks the zero, which is expected for

the complex part of it. Values used: L “ 30, γ “ 1, f1 “ 1, fL “ 0, h “ 0,∆ “ 1.
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Figure 6.4: Example of a simulation in which the bond dimension increases uncontro-

lably. As before, the magnetization which is also real, also has a significant complex

parcel.In both plots the magnetization was calculated at site s “ 15. In 6.4a the grey line

represents the analytical value of p´0.0496188q. In 6.4b the expected value is zero, as the

magnetization should be real. Values used: L “ 30, γ “ 1, f1 “ 1, fL “ 0, h “ 0,∆ “ 1.
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This particular simulation has clearly run out of control. The cause for this is the

unwise increments in the bond dimension. In this case, the initial bond dimension was

10 and after each sweep the bond-dimension was increased by 10. Upon correcting this,

much more satisfying results arise. They are compilled in Figs.6.5 6.6.
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Figure 6.5: Example of a simulation in which the bond dimension increases in a con-

trolled manner, attaining for good spin flux results. In this set of simulations the spin flux

converges nicely to the expected value (6.5a) and the complex part stay near zero (6.5b),

as one would expect. Values used: L “ 30, γ “ 1, f1 “ 1, fL “ 0, h “ 0,∆ “ 1.
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Figure 6.6: Example of a simulation in which the bond dimension increases in a controlled

manner, attaining for good magnetization results. In this set of simulations, the magne-

tization stays near the expected value and the complex part stay near zero, as expected.

Values used: L “ 30, γ “ 1, f1 “ 1, fL “ 0, h “ 0,∆ “ 1.
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Note that in both of these cases, only 60 sweeps were made, and thus it is not expected

a 30 sites simulation to fully converge. But the difference is clear. One should be careful

of the increments of the bond-dimension throughout the simulation. The routine in which

the bond dimension increases by increments of 10 also, as one would expected, takes way

longer to compute each sweep.

6.4 Convergence to the non-equilibrium steady state

Naturally, the first step after succefully implementing the algorithm is to see if it is work-

ing properly, and since that we pursue the eigenstate with eigenvalue zero as discussed,

we can actually pinpoint the convergence by calculating the energy after each sweep. For

instance, and for various spin-chains lengths, one can see that the NESS ground energy

converges nicely for sizes up to L “ 50.
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Figure 6.7: As the chain size increases, the algorithm naturally takes longer to converge.

The Y axis presents a log plot of the energy value. This set of simulations used ∆ “

0.5, γ “ 1, f1 “ 1, fL “ 0
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6.5 Analytical benchmarking, novel results

As discussed in Sec.3.3, when the anisotropy term is trivially 1, the analytical results can

be directly computed for specific conditions of the baths (f1 “ 1, fL “ 0), as in Refs.[22]

and [23]. We have plotted these values as well as the simulation spin flux (y) after each

sweep (x) in Fig.6.8.
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Figure 6.8: The analytical values are seen in dashed lines. The Y axis presents the average

spin flux throughout the chain. This set of simulations was made using L “ 25,∆ “

0.1, f1 “ 1, fL “ 0

For smaller and larger values of γ the simulation needs less than 200 sweeps to fully

converge. For intermediate values, however, it takes longer. In both cases a steady ap-

proximation to the analytical values is noted.

Additionally, by looking at the spin flux for different chain lenghts, we are able to see

the transition between the ballistic transports for L „ 10 to diffusive for L “ 15 onwards.

This is depicted in Fig.6.9.
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Figure 6.9: Varying flux for different lenghts of spin chain, up to L = 100. The blue line

follows the analytical results derived from Ref.[17]. This set of simulations was made

with γ “ 0.5,∆ “ 1, f1 “ 1, fL “ 0

The dependence of the spin flux with different γ, is also an interesting question. This

was approached in simulations depicted in 6.10.
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Figure 6.10: Varying flux for different values of γ. The solid lines follow the analytical

results derived from [17]. This set of simulations was made with ∆ “ 1, f1 “ 1, fL “

0, h “ 0

As there were also analytical results, it is a nice fit between the simulations and whats

expected.

These results are quite interesting for they provide a working, feasible implementation

of the DMRG technique in the framework of open systems.
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Chapter 7

Final remarks and next steps

In this work, we have developed a working and efficient algorithm, that requires no broad

computational power, based upon state-of-the-art results regarding numerical simulations

of one-dimensional open quantum systems. We have analysed the role that the vector-

ization procedure plays in how efficiently such simulations develop, as well as how the

numerical parameters control the accuracy of DMRG calculations, namely the sweeps

performed by the DMRG algorithm and the bond dimension used in the approximations.

We have benchmarked the code against available numerical results, and such bench-

marking proved the algorithm to be working as expected. We have implemented proce-

dures to diminish error by taking into account how to evolve the simulation, choosing

appropriate bond dimension values and an appropiate initial physical state to control the

evolution. Regarding the physics, we have been able to study systems of different sizes,

up to L “ 60 (althought the algorithm is also fully functional for bigger sizes, up to 200),

as well as different coupling factors γ. We have studied the spin flux in such cases, and

found it to be in agreement with the available literature. In this sense, our contribution

by this work makes it possible to study more complex combinations of parameters, which

is not achievable analytically. This prospect is quite exciting for us in both physical and

computational sense. Numerous scenarios may now be extended and studied effectively,

taking into account chain sizes, magnetic fields, different bath’s temperatures, coupling

factors and anisotropies configurations. We intend to probe these problems in the near

future.

Additionally, although not the focus of this work, we have also successfully imple-

mented a functional routine for the Trotter gates time evolution deriving it from the avail-

able ITensor code.
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To our knowledge, this is the first code broadly applicable and viable to large chain-

sizes developed by a group from Brazil in the study of open quantum systems. The code

is freely available upon request.

The XXZ system is extremely rich, and interesting new phenomena may be lurking in

the frontier of computational simulations. We hope that this work may be used to explore

this frontier further.
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