
PHASE-SPACE MEASURES OF 
IRREVERSIBILITY
GABRIEL T. LANDI

In collaboration with Jader P. Santos,  
Lucas C. Céleri and Mauro Paternostro

Paraty Quantum Information Workshop - 2017

arXiv:1706.01145 (PRL, 118.220601), 2017 
arXiv:1707.08946, 2017 



SUMMARY
• In thermodynamics, irreversibility is quantified by the entropy 

production. 

• Goal: to develop quantifiers of irreversibility for quantum systems in 
contact with a reservoir. 

• Idea: move to phase space (bosonic and spin coherent states) 

• Motivation:  

• Works at T = 0 (current approaches do not). 

• Extensible to multiple reservoirs.  

• Extensible to non-equilibrium baths (e.g. squeezing, dephasing). 

• Gives a microscopic interpretation of entropy production in terms 
of probability currents.



QUANTIFYING IRREVERSIBILITY

• The energy satisfies a continuity equation: 
 

• But the entropy does not:  
 
 

• Π is the entropy production rate 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STANDARD APPROACH
• Von Neumann entropy:  

• Entropy production rate:  

• Entropy flux rate:
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S = �tr(⇢ ln ⇢)
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Schnakenberg 1976, Spohn 1978, Breuer 2003, Deffner and Lutz, 2011
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EXAMPLE: QHO IN A COHERENT STATE
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)• Gaussian shape is 

preserved throughout:

⇢(0) = |µihµ| ! ⇢(t) = |µtihµt|

dS

dt
= 0 but ⇧ = � = 1

µt = µ e�(i!+�)t



PROPOSAL: WIGNER ENTROPY
• Instead of using the von Neumann entropy, we will use the 

Wigner function and consider entropic measures in phase space. 

• Consider a single bosonic mode and define:  
 

• We then define the Wigner entropy: 
 

W (↵,↵⇤) =
1
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Z

d2↵W (↵,↵⇤) lnW (↵,↵⇤)

• Note: It was shown in PRL 109, 190502 (2012) that for Gaussian 
states this coincides with the Rényi-2 entropy

S2 = � ln tr⇢2



QUANTUM FOKKER-PLANCK EQUATION

• In phase space we get:   

D(⇢) = �(n̄+ 1)
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J(W)  is an 
irreversible 

current
J(Weq) = 0



HOW TO DEFINE THE WIGNER 
ENTROPY PRODUCTION RATE

• Next we want to separate: 

• We did this in three equivalent ways 

1. Analogously to the standard formulation: 

2. Via a manual separation: Φ  should be linear in 
the currents and Π should be quadratic.  

3. As an average over stochastic trajectories.
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RESULTS

• As a result of this separation, we get:  
 

• For Gaussian states, the entropy production is always 
non-negative and zero only when J(W) = 0 (i.e., iff we 
are in equilibrium). 

• The entropy flux, on the other hand, becomes
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ENTROPY FLUX AND ENERGY FLUX

• Compare with the energy flux 
 

• Thus the entropy flux and energy flux will be related by  
  

• At high temperatures                           so we get  
 

• But now both Π and Φ remain finite at T = 0. 
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STOCHASTIC TRAJECTORIES AND 
FLUCTUATION THEOREMS

• We can also arrive at the same result using a completely 
different method.  

• We analyze the stochastic trajectories in the complex 
plane.  

• The quantum Fokker-Planck equation is equivalent to a 
Langevin equation in the complex plane:

dA

dt
= �i!A� �

2
A+

p
�(n̄+ 1/2)⇠(t)

h⇠(t)⇠(t0)i = 0, h⇠(t)⇠⇤(t0)i = �(t� t0)



• We can now define the entropy produced in a 
trajectory as a functional of the path probabilities 
for the forward and reversed trajectories:

⌃[↵(t)] = ln
P[↵(t)]

PR[↵⇤(⌧ � t)]

he�⌃i = 1

• This quantity satisfies a fluctuation theorem

⇧ =
hd⌃[A(t)]i

dt

• We show that we can obtain exactly the same formula for 
the entropy production rate if we define it as 



DEPHASING BATH
• We also considered the harmonic oscillator 

dephasing bath

D(⇢) = �
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2
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• For this bath, applying a similar procedure we find that 
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⇧ =
2

�

Z
d2↵

|↵|2
|I(W )|2

W
, � = 0

• Dephasing bath has no entropy flux: matches the idea of 
a unital map, as one for which the entropy only increases.



SQUEEZED BATH
• A squeezed bath can be represented by the 

dissipator

Dz(⇢) = �(N + 1)
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N + 1/2 = (n̄+ 1/2) cosh 2r

Mt = �(n̄+ 1/2)ei(✓�2!st) sinh 2r

• Example of a non-equilibrium reservoir.  

• Can be used to extend our ideas beyond the equilibrium 
paradigm.



• For the squeezed bath we find that the entropy 
production rate is given by 
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• The entropy flux rate is given by 
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ENTROPY PRODUCTION AND 
LOSS OF COHERENCE

arXiv:1707.08946, 2017 
Baumgratz, Cramer and Plenio, Quantifying coherence. PRL, 113, 
140401 (2014)



• Consider a system in contact with a bath, initially 
prepared in a non-equilibrium state.  

• The non-equilibrium free energy F = U - T S, may 
be written as 

F (⇢) = Feq + TS(⇢||⇢eq)

⇧ = � 1

T

dF

dt

• We can now define the entropy production rate as

• Since                       then F ≥ Feq S(⇢||⇢eq) � 0



• Next, choose as preferred basis the Hamiltonian 
basis (this is the basis imposed by the bath). 

• We may then separate

S(⇢||⇢eq) = S(p||peq) + C(⇢)

S(p||peq) =
X

n

pn ln pn/p
eq
n

C(⇢) = S(⇢d)� S(⇢)

• The non-eq. free energy then becomes:

F (⇢) = Feq + TS(p||peq) + TC(⇢)



• We therefore see that the entropy production 
separates into two terms 

• Entropy is produced because the system 
undergoes transitions in the energy levels in 
order to equilibrate with the bath. 

• But entropy is also produced because the bath is 
destroying coherences: ⇧ = ⇧d +⌥

⇧d = � 1

T

d

dt
S(p||peq) ⌥ = � 1

T

dC

dt

Note: entropy flux is not affected by coherences! � =
�E

T



PHASE SPACE VIEW OF 
DECOHERENCE

• Now we move once again to phase space and try to 
observe this effect in terms of microscopic currents.  

• For this we move to spin systems using spin coherent 
states for a spin J:

|⌦i = e��Jze�✓Jy |J, Ji

Q(⌦) = h⌦|⇢|⌦i
Wehrl entropySpin Husimi function

⌃ = �
Z

d⌦Q(⌦) lnQ(⌦)



DEPHASING BATH

• We start with the dephasing bath, which induces 
no population changes.

D(⇢) = ��

2
[Jz, [Jz, ⇢]]

⇧ =
�

2

Z
d⌦

|Jz(Q)|2

Q

• Again, there is no entropy flux: Φ = 0  

• As for the entropy production, we get:

Jz(Q) = �i@�Q



AMPLITUDE DAMPING

• For the amplitude damping, we have both processes 
(decoherence and energy level transitions).

D(⇢) = �(n̄+ 1)


J�⇢J+ � 1
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• We now get, for the entropy production rate
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2
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CONCLUSIONS
• Entropy production quantifies irreversibility. But 

you need to separate it from the entropy flux 
 

• Phase space formulation allows one to work at T = 
0 and work with non-equilibrium baths. 

• Π captures population changes and loss of 
coherence.
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