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SUMMARY

 In thermodynamics, irreversibility is quantified by the entropy
production.

« Goal: to develop quantifiers of irreversibility for guantum systems in
contact with a reservoir.

« |dea: move to phase space (bosonic and spin coherent states)
e Motivation:
« Works at T = 0 (current approaches do not).
« Extensible to multiple reservoirs.
« Extensible to non-equilibrium baths (e.g. squeezing, dephasing).

« Gives a microscopic interpretation of entropy production in terms
of probability currents.



QUANTIFYING IRREVERSIBILITY

« The energy satisfies a continuity equation:

d(H)
= —
dt "
« Butthe entropy does not:
dsS
—=11-9
dt

 [1is the entropy production rate

>0 and I =0 iff we are in equilibrium



STANDARD APPROACH “ _1_ o

dt
« Von Neumann entropy: S = —tr(pln p)
: d
« Entropy production rate: [E— —Eis(pH,Oeq)
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Schnakenberg 1976, Spohn 1978, Breuer 2003, Deffner and Lutz, 2011



EXAMPLE: QHO IN A COHERENT STATE
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PROPOSAL: WIGNER ENTROPY

o Instead of using the von Neumann entropy, we will use the
Wigner function and consider entropic measures in phase space.

« Consider a single bosonic mode and define:

1 * * *
Wi(a,a") = = /dz)\e_)‘o‘ 2 O‘tr{pe)‘aTA a}

T

« We then define the Wigner entropy:

o —/dzon(oz,oz*)ln W(a,a™)

Note: It was shown in PRL 109, 190502 (201 2) that for Gaussian
states this coincides with the Rényi-2 entropy
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QUANTUM FOKKER-PLANCK EQUATION

d,O : T
— = —iwla'a, p| + D(p) o
dt f e

D(p) = y(n+ 1) [apaT = %{aTa, p}] + 7 [ana - %{aa‘L, P}

* |n phase space we get:

W = —iw [8a* (a* W) — 604(on)} + D(W)
J(W) is an

D(W) = 00 J(W) + Do J" (W) irreversible

current

e [aW + (741 /2)8a*W]

2 J(Wey) =0




HOW TO DEFINE THE WIGNER
ENTROPY PRODUCTION RATE

dsS

 Next we want to separate: s L

« We did this in three equivalent ways

1. Analogously to the standard formulation:

d
1= —— S(W||W,
ZS(W[Weo)

2. Via a manual separation: @ should be linear in
the currents and 1 should be quadratic.

3. As an average over stochastic trajectories.



RESULTS

» As a result of this separation, we get:

0 2 [JW)”
H_’V(ﬁ+1/2)/d W

» For Gaussian states, the entropy production is always
non-negative and zero only when J(W) = 0 (i.e., iff we

are in equilibrium).

e The entropy flux, on the other hand, becomes

= +71/2 [W@ v ﬁ}



ENTROPY FLUX AND ENERGY FLUX

e Compare with the energy flux

@ = _ +W1 - [(a%) - n} O, =

(aTa) — ﬁ}

« Thus the entropy flux and energy flux will be related by

F
w(n +1/2)

o —

« At high temperatures w(n 4 1/2) ~ T so we get

D 5 o D 5
oA+ 1/2) T
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« But now both N and @ remain finite at T = 0.



STOCHASTIC TRAJECTORIES AND
FLUCTUATION THEOREMS

e We can also arrive at the same result using a completely
different method.

« We analyze the stochastic trajectories in the complex
plane.

« The quantum Fokker-Planck equation is equivalent to a
Langevin equation in the complex plane:

e . <
i —jwA — §A + \/y(n+ 1/2)&(t)

(@) =0,  (£@)&{)) =6t 1)



« We can now define the entropy produced in a
trajectory as a functional of the path probabilities
for the forward and reversed trajectories:

Pla(t),

Sla(t)] =ln 5

« This quantity satisfies a fluctuation theorem
(e77) =1

« We show that we can obtain exactly the same formula for
the entropy production rate if we define it as

(dx]A#)])

=
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DEPHASING BATH

e We also considered the harmonic oscillator

dephasing bath

2 ; :
D(p) = Ala'apa’a — Z{(a'a)®, p}

e For this bath, applying a similar procedure we find that

2 [ d*a |I(W)]?
Il = — ¢ =0
Al w2 W

T(W) = Ma(a* 8- W — 0By W)/2

e Dephasing bath has no entropy flux: matches the idea of
a unital map, as one for which the entropy only increases.



SQUEEZED BATH

« A squeezed bath can be represented by the
dissipator
D.(p) =v(N +1) [apcff = %{aTa, p}]

+yN ana—%{aa‘L,p}] N+1/2=(n+1/2)cosh2r

; 1 M, = —(7+ 1/2)e"9=2%s1) ginh or
—~v M, anaT L5 §{aTaT7p}]

o 1
—yM{ |apa — 5{%,/)}]
« Example of a non-equilibrium reservoir.

e Can be used to extend our ideas beyond the equilibrium
paradigm.



» Forthe squeezed bath we find that the entropy

production rate is given by

4 d? o

1_[:7(7_1%—1/2) W

T (W) = % aW + (N +1/2)8-W + M0, W

» The entropy flux rate is given by

@ = Jl - _cosh(zr)<afa> — 7 + sinh2(r)
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ENTROPY PRODUCTION AND
LOSS OF COHERENCE

arXiv:1707.08946, 2017

Baumgratz, Cramer and Plenio, Quantifying coherence. PRL, 113,
140401 (2014)



Consider a system in contact with a bath, initially
prepared in a non-equilibrium state.

The non-equilibrium free energy F = U - T S, may
be written as

F(p) = Feq +T5(p||peq)

Since S(pl|lpeq) > 0 then F = Feqg

We can now define the entropy production rate as

1 dF
T dt




» Next, choose as preferred basis the Hamiltonian
basis (this is the basis imposed by the bath).

« We may then separate

S(p||peq) = S(p||peq) + C(p)

S (p||peq) = an In p,, /py’

C(p) =S (pd) S(p)

« The non-eq. free energy then becomes:

F(p) = Feq + TS(p||peq) + TC(p)



« We therefore see that the entropy production
separates into two terms

e Entropy is produced because the system
undergoes transitions in the energy levels in
order to equilibrate with the bath.

« But entropy is also produced because the bath is
destroying coherences: 1 =11, + Y

1d 1 dC

H Xhch e T:

P

Note: entropy flux is not affected by coherences! & = ——



PHASE SPACE VIEW OF
DECOHERENCE

« Now we move once again to phase space and try to
observe this effect in terms of microscopic currents.

e For this we move to spin systems using spin coherent
states for a spin J:

G e e e

Q(2) = (o]} w— - [ d20(2) Q@)
Spin Husimi function Wehrl entropy



DEPHASING BATH

e We start with the dephasing bath, which induces
no population changes.

A
__2_[
e Again, there is no entropy flux: ® = 0

D(p) = Jz:[JzHOH

« As for the entropy production, we get:

2
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AMPLITUDE DAMPING

e For the amplitude damping, we have both processes
(decoherence and energy level transitions).

D(p) =1 +1) | JpJy - 21T T_p}

% 1
tyn | Jppd- — 1Jd-J4, p}

« We now get, for the entropy production rate

e
>
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/ dQ) | [2JQsinf + (cos@ — (2 + 1)) Q>
(27 + 1) — cos @

| sin” 0

LT (Q)12] (27 + 1) cosf — 1 COSQ}



CONCLUSIONS

« Entropy production quantifies irreversibility. But
you need to separate it from the entropy flux

as _

gt =

e Phase space formulation allows one to work at T =
0 and work with non-equilibrium baths.

k- &

e [1 captures population changes and loss of
coherence.
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