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Wigner entropy production and heat transport in linear quantum lattices
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When a quantum system is coupled to several heat baths at different temperatures, it eventually reaches a
nonequilibrium steady state featuring stationary internal heat currents. These currents imply that entropy is
continually being produced in the system at a constant rate. In this paper we apply phase-space techniques
to the calculation of the Wigner entropy production on general linear networks of harmonic nodes. Working in
the ubiquitous limit of weak internal coupling and weak dissipation, we obtain simple closed-form expressions
for the entropic contribution of each individual quasiprobability current. Our analysis highlights the essential
role played by the internal unitary interactions (node-node couplings) in maintaining a nonequilibrium steady
state and hence a finite entropy production rate. We also apply this formalism to the paradigmatic problem of
energy transfer through a chain of oscillators subject to self-consistent internal baths that can be used to tune the
transport from ballistic to diffusive. We find that the entropy production scales with different power law behaviors
in the ballistic and diffusive regimes, hence allowing us to quantify what is the “entropic cost of diffusivity.”
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I. INTRODUCTION

Entropy plays a fundamental role in both thermodynam-
ics and information theory. Unlike energy, entropy does not
satisfy a continuity equation; in addition to the exchange of
entropy with the environment, it can also be produced within
the system. This additional contribution is known as entropy
production and serves to gauge the irreversibility of a physical
process [1,2]. One can write the balance equation for the
entropy S(t ) of a system

dS(t )

dt
= �(t ) − �(t ), (1)

where �(t ) is the entropy-production rate and �(t ) stands for
the entropy flux from the system into the environment. As a
consequence of the second law of thermodynamics, �(t ) is
always non-negative and vanishes if and only if the system
is in equilibrium. When the system is allowed to relax in
contact with a single heat bath, it will generally reach thermal
equilibrium, so that dS/dt = � = � = 0. However, when
it is connected to multiple baths at different temperatures,
it will instead reach a nonequilibrium steady state (NESS)
where dS/dt = 0 but � = � � 0. The NESS is therefore
characterized by a finite entropy production rate �, which is
continuously converted into an entropy flux � and dumped
into the environment.
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The theory of entropy production is formulated differ-
ently depending on the type of stochastic process at hand.
For classical systems, approaches based on Onsager’s theory
of chemical kinetics [3–5], classical master equations [6,7],
or Fokker-Planck equations [8–12] have been widely used.
Conversely, for quantum systems the problem is usually for-
mulated in terms of Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) quantum master equations [13–17], repeated inter-
actions [18–27], quantum trajectories [28], and fluctuation
theorems [29,30], among others.

More recently, a formulation combining quantum phase-
space methods and Fokker-Planck equations has been put
forward [31–34] and applied to general nonthermal environ-
ments, such as squeezed, dephasing, and even photon-loss
reservoirs, that are often used in the description of optical
cavities and input-output theory [35]. This is in fact essential
if one wishes to have a complete assessment of entropy
production in controlled quantum experiments. In addition,
this framework allows us to identify irreversible quasiprob-
ability currents in phase space, which are the elementary
contributions ultimately responsible for the emergence of
irreversibility at the quantum level. However, the efforts so
far have been focused exclusively on systems connected to a
single reservoir and have not addressed the phenomenology of
NESSs. In this paper, we set out to fill this gap.

In particular, we study generic lattice systems of linearly
coupled harmonic nodes connected to various heat baths. To
describe the ensuing dissipative dynamics, we adopt a local
master equation [36,37]—which is accurate to lowest order
in the internode interaction strength [38]—and exploit its
simple structure. We obtain closed-form analytical expres-
sions for the steady-state irreversible entropy production and
entropy flux, broken down into the elementary contributions
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corresponding to individual dissipation channels. In addition,
we also obtain an expression which neatly illustrates the
essential role played by the unitary dynamics in sustaining the
irreversible entropy production, by enabling energy transport
through the lattice.

As an application, we study diffusive heat transport
through a harmonic chain connected to two reservoirs at each
end [39–43]. In addition, in order to switch between ballistic
and diffusive behavior, we introduce auxiliary self-consistent
reservoirs [44], that is, additional baths that inject noise in the
chain without affecting the energy transport, but nonetheless
causing decoherence. As is well known, this mechanism turns
an a priori ballistic transport, typical of harmonic lattices,
into a diffusive one [44–48]. Self-consistent baths lead to a
NESS current similar to that of dephasing baths, as studied,
for instance, in Refs. [39–41,49]. However, they have the
advantage that they lead to a Gaussian NESS (which is not
the case for dephasing). Using our results, we are then able
to split the total entropy production rate into a contribution
stemming from the physical reservoirs at the boundaries and a
second one, solely due to the self-consistent baths. We observe
that each contribution scales polynomially with a distinct
exponent. This then allows us to unambiguously associate the
later with the entropic cost of maintaining a diffusive profile
in the NESS.

This paper is structured as follows: We begin by describ-
ing our weakly interacting harmonic lattice systems and the
phase-space representation of the underlying (local) master
equation in Sec. II. We then introduce the central object of
our analysis—the Wigner entropy production—and carry out
its explicit calculation and discuss the rich physics under-
lying its neat decomposition into elementary contributions
(cf. Sec. III). Finally, Sec. IV discusses the application to
estimating the entropic cost of diffusivity. Conclusions are
summarized in Sec. V, and, in order to make this paper self-
contained, we also include a series of Appendices providing
further details on the calculations outlined in Sec. IV.

II. QUANTUM PHASE-SPACE METHODS

A. The model and the quantum master equation

We consider here a linear network of L harmonic oscilla-
tors with Hamiltonian HHH := HHH0 + HHH int, where the local part
is simply HHH0 := ∑L

k=1 Hkk aaa†
kaaak and HHH int = ∑

k �=� Hk,� aaa†
kaaa�

stands for the (linear) internode couplings. Here aaai denotes
the bosonic annihilation operator of the ith mode and, in what
follows, h̄ = kB = 1. Otherwise we impose no restrictions
on the structure of the network, shaped by the nonzero off-
diagonal matrix elements H�,k = H∗

k,� (Hkk = ωk).
If we let each mode interact weakly with a local heat bath,

the resulting dissipative dynamics can generally be described
by a Gorini, Kossakowski, Lindblad, and Sudarshan (GKLS)
quantum master equation of the form [17]

dρρρ

dt
= U (ρρρ ) +

L∑
k=1

Lk (ρρρ) + O(γ 2). (2)

Here U (ρρρ) := −i[HHH,ρρρ] and Lk stands for a dissipation
superoperator in the standard GKLS form [13,14]. Moreover,
γ := max{γ1, . . . , γL} equals the largest of the node-bath

coupling strengths γk , i.e., it carries the order of magnitude of
the dissipative interactions. Individually, each super-operator
Lk is O(γk ). In general, any of the “dissipators” Lk can act
globally on all nodes of the network. One may, however, make
the additional assumption of weak internal coupling between
the nodes, which leads to the local GKLS quantum master
equation [38]

dρρρ

dt
= −i[HHH,ρρρ] +

L∑
k=1

Dk (ρρρ) + O(λ γ ), (3)

where the local dissipators are given by

Dk (ρρρ) = γk (nk + 1)

(
aaakρρρaaa†

k − 1

2
{aaa†

kaaak,ρρρ}+
)

+ γknk

(
aaa†

kρρρaaak − 1

2
{aaakaaa

†
k,ρρρ}+

)
, (4)

with nk := (eωk/Tk − 1)−1 being the Bose-Einstein thermal
occupation of at temperature Tk and frequency ωk , and where
{·, ·}+ stands for anticommutator.

Care must be taken when using Eq. (3) to describe a multi-
partite open quantum system, since it is well known that going
beyond its range of validity might lead to thermodynamic
inconsistencies [37,38,50]. The parameter range in which the
many approximations underlying both global and local master
equations are satisfied has been critically (and extensively)
discussed in the literature [36,43,51–59]. Interestingly, local
master equations also arise naturally when considering certain
repeated-interaction models [24,43,59]. This picture enables a
thermodynamically consistent bookkeeping of all energy ex-
changes occurring in dissipative processes exactly described
by Eq. (3) [25,27]. In this paper, we remain on the safe side
by working well within the range of applicability of Eq. (3),
understood as a mere perturbative expansion of Eq. (2) to
lowest order in the internal couplings.

B. The Fokker-Planck equation

We now move from Hilbert space to the quantum
phase space. Introducing the displacement operator DDD(β̄ ) :=
exp (

∑L
k=1 βkaaa

†
k − β∗

k aaak ), the Wigner function of our L-mode
Gaussian state ρρρ can be written as [35]

W (ᾱ) := 1

π2L

∫
dβ̄ e− ∑

k (βkα
∗
k −β∗

k αk ) tr{ρρρ DDD(β̄ )}, (5)

where ᾱ and β̄ are 2L-dimensional complex vectors contain-
ing phase-space variables, i.e., ᾱ := (α1, α

∗
1 , . . . , αL, α∗

L )�.
The reason for choosing the Wigner representation lies in
the Gaussianity of ρρρ, which brings at least three advantages.
First, it is always strictly positive, which allows us to identify
the Wigner function as a quasiprobability distribution. The
second, it will depend only on the first- and second-order mo-
ments, which greatly simplifies the analysis (cf. Appendix A
for details). Finally, the corresponding Wigner entropy, to be
introduced below, can be related to the Rényi-2 entropy and
also satisfies the strong subadditivity inequality [60], hence
giving it a more physical appeal.

Using standard correspondence tables (see, e.g., Ref. [35])
one can turn Eq. (3) into the following Fokker-Planck
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equation:

∂tW = U (W ) +
L∑

k=1

Dk (W ), (6)

where the phase-space superoperator U (W ) represents the
unitary part of Eq. (3), while Dk (W ) stands for the dissipa-
tive contributions. In particular, the latter can be written as
divergences in the complex plane,

Dk (W ) = ∂kJk (W ) + ∂∗
k J ∗

k (W ), (7)

where ∂k := ∂/∂αk (∂∗
k := ∂/∂α∗

k ), and

Jk (W ) = γk

2
[αkW + (nk + 1/2)∂∗

k W ]. (8)

Equation (6) can be interpreted as a continuity equation
for W with Jk (W ) playing the role of irreversible quasiprob-
ability currents in phase space. In fact, these currents are
identically zero if and only if each oscillator is in local thermal
equilibrium,1 i.e., Jk (Weq) = 0 ∀k with

Weq =
L∏

k=1

W (k)
eq , W (k)

eq = e−|αk |2/(nk+1/2)

π (nk + 1/2)
. (9)

Since it is only in Weq that all the individual currents Jk (W )
vanish exactly, we shall adopt it as the reference state for
quantifying entropy-production rates and fluxes [31]. In this
limited sense, Weq would correspond to the thermal equilib-
rium state in the standard formulation.

Similarly, the unitary part U in Eq. (6) can be cast as

U (W ) =
L∑

k=1

[∂kAk (W ) + ∂∗
k A∗

k (W )], (10)

where, for our choice of Hamiltonian, the reversible
quasiprobability currents Ak (W ) are simply

Ak (W ) = i
L∑

�=1

Hk� α� W. (11)

III. WIGNER ENTROPY-PRODUCTION RATE

A. Individual dissipative contributions

We shall now decompose dS/dt as in Eq. (1) into an
entropy-production rate and the entropy flux. We base our
analysis in the Wigner entropy defined as

S(W ) := −
∫

dᾱ W (ᾱ) ln W (ᾱ). (12)

As shown in Refs. [31–34], for Gaussian systems this is
entirely equivalent to the standard approach based on von
Neumann entropy. Besides, the Wigner entropy offers several
advantages, as we shall see below.

1This follows directly from the fact that ρρρeq = ⊗
k ρρρ (k)

eq , with ρρρ (k)
eq =

exp ( − ωk aaa†
kaaak/Tk ), is the unique fixed point of the dissipative part

of the local master equation (3). Notice, however, that dρρρeq/dt �=
0, not even within the range of validity of the local approxima-
tion. Specifically, dρρρeq/dt = −i[HHH ,ρρρeq] = −i[HHH int,ρρρeq] = O(λ) �
O(λ γ ).

Differentiating Eq. (12) with respect to time and using
Eq. (6) yields

dS

dt
= −

∫
dᾱ

[
U (W ) +

∑
k

Dk (W )

]
ln W. (13)

Adding and subtracting
∑

k

∫
dᾱDk (W ) ln Weq, so as to intro-

duce our fiducial state Weq, gives

dS

dt
= −

∑
k

∫
dᾱDk (W ) ln (W/Weq)

−
∑

k

∫
dᾱDk (W ) ln Weq := � − �, (14)

where we have used the fact that the unitary dynamics U does
not change the Wigner entropy. The identification of the two
terms in this equation as an entropy production rate and an
entropy flux rate will be better justified once they are evaluated
explicitly, as we shall now do.

Inserting Eq. (7) in �, we can integrate by parts in each
variable. Noticing that the corresponding boundary terms
vanish due to the Gaussianity of W and Weq, we get

� =
∑

k

∫
dᾱ[Jk (W ) ∂k + J ∗

k (W ) ∂∗
k ] ln (W/Weq). (15)

Next, we rewrite the currents Jk (W ) in Eq. (8) as

Jk (W ) = γk

2
(nk + 1/2)W ∂∗

k ln (W/Weq), (16)

which allows us to express ∂∗
k ln (W/Weq) in terms of Jk (W )

and W . This leads to the decomposition � = ∑
k �k , where

�k = 4

γk (nk + 1/2)

∫
dᾱ

|Jk (W )|2
W

. (17)

As shown in Appendix C, further manipulations lead to a
compact expression in terms of the covariances of the system.
Similarly, the entropy flux decomposes as � = ∑

k �k with

�k = −
∫

dᾱ [Jk (W ) ∂k ln Weq + J ∗
k (W ) ∂∗

k ln Weq]. (18)

Making use of the identity∫
dᾱ α∗

k α�W = 〈aaa†
kaaa�〉 + 1

2
δk,�, (19)

we finally get the compact expression

�k = γk

nk + 1/2
(〈aaa†

kaaak〉 − nk ). (20)

Equations (17) and (20) constitute our first main result.
Their identification as entropy-production rate and entropy
flux, respectively, is based on several supporting arguments
and has been extensively debated in the past, in both the
quantum [31] and classical [8,12] contexts. First and foremost,
� is clearly non-negative and zero if and only if the currents
themselves vanish, which occurs only in the reference state
Weq. Second, the proposed entropy-production rate is an even
function of the irreversible currents whereas the entropy flux
is odd, in agreement with other studies based on Fokker-
Planck equations [8]. Finally and most remarkably, it can be
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shown that, within the framework of stochastic trajectories,
this expression satisfies integral fluctuation theorems [9,31].

Rather intuitively, we can also see that Eq. (20) is propor-
tional to the difference between the actual occupation of the
kth mode and the equilibrium occupation at the temperature
Tk of the local bath. Namely, if the mode “looks hotter” than
its local environment, one has �k > 0, i.e., entropy flows
from the system into the bath, as expected. Conversely, if
〈aaa†

kaaak〉 < nk, �k < 0 and entropy flows into the system. Note
that �k is, therefore, an inherently observable quantity [31].

For us, the most relevant feature of Eqs. (17) and (20)
is precisely that they provide the individual contribution of
each dissipation channel to the the total entropy-production
rate and entropy flux. In particular, from a classical viewpoint
[12] one can understand Eq. (17) as an average of the “phase-
space velocity” Jk (W )/W of each individual quasiprobability
current Jk (W ). Hence, the entropy production can be thought
of as weighted average of such mean velocities.

B. Role of the unitary dynamics in maintaining an NESS

Let us introduce the Wigner relative entropy (or Kullback-
Leibler divergence), defined as

S(W ‖Weq) :=
∫

dᾱ W ln (W/Weq), (21)

and calculate its rate of change using Eq. (6). This yields
d

dt
S(W ‖Weq) =

∫
dᾱ U (W ) ln (W/Weq)

+
L∑

k=1

∫
dᾱDk (W ) ln (W/Weq)

= −
∫

dᾱ U (W ) ln Weq − �, (22)

where we have used Eq. (14). In the long-time limit, the
stationarity condition dS(WNESS‖Weq)/dt = 0 entails

�(t → ∞) := �NESS = −
∫

dᾱ U (WNESS) ln Weq. (23)

This is our second main result: it illustrates the essential role
of the unitary internal dynamics in sustaining stationary heat
currents across the network, which, in turn, translates into a
finite rate of steady-state entropy production.

Inserting Eq. (10) for the unitary currents and using (19)
we also find that the last term in Eq. (23) can be written as

�NESS = −i
∑
k �=�

1

nk + 1/2
(Hk,� 〈a†

ka�〉 − H�,k 〈a†
�ak〉)

=
∑
k �=�

2

nk + 1/2
Im {Hk,� 〈a†

ka�〉}. (24)

We point to the fact that �NESS in Eq. (24) contains ex-
clusively off-diagonal elements Hk �=� and none of the local
components Hkk aaa†

kaaak; it is thus entirely due to the node-node
couplings. Introducing the energy currents jk,� defined by [43]

d〈aaa†
kaaak〉

dt
= i 〈[HHH, aaa†

kaaak]〉 :=
∑
� �=k

jk,�, (25a)

jk,� = −i Hk,�(〈aaa†
kaaa�〉 − 〈aaa†

�aaak〉) = − j�,k (25b)

allows us to cast Eq. (24) in the symmetric form

�NESS = 1

2

∑
k �=�

jk,�

(
1

nk + 1/2
− 1

n� + 1/2

)
. (26)

This result can be connected with Onsager’s theory of
irreversible thermodynamics [1,3]. Within this framework, the
entropy production is defined as the product of “fluxes” and
“affinities” (also called “generalized forces”). For instance,
the current of energy is related to the affinity 1/T so that, in
a classical scenario, the Onsager entropy production between
two bodies kept at temperatures TA and TB is given by � =
jAB (1/TA − 1/TB), where jAB stands for the energy current
from B to A. We see that Eq. (26) has the exact same math-
ematical structure, which is yet another consistency test for
our analysis. Moreover, notice that, due to the fact that we are
using Wigner entropies, the thermodynamic affinity related
to the current is not the inverse temperature, but rather the
inverse Bose-Einstein occupation n + 1/2. For high temper-
atures n + 1/2 ∝ T so that both frameworks coincide. How-
ever, our results hold true even in the limit of vanishingly low
temperature.2 We also remark that Onsager’s formula is valid
only close to equilibrium (linear response theory), whereas
Eq. (26) holds true for arbitrary nonequilibrium states. This is
a consequence of the Gaussianity of the problem.

Finally note that, as �NESS � 0, Eq. (26) implies that jk,�

has the same sign as 1/(nk + 1/2) − 1/(n� + 1/2); i.e., when
node k is hotter than node �, the local current jk,� flows from
k to �.

IV. APPLICATION: THE ENTROPIC
COST OF DIFFUSIVITY

In order to illustrate the usefulness of this framework, we
now apply it to a typical quantum transport problem. In partic-
ular, we show how to exploit it to quantify the irreversibility
associated with sustaining diffusive heat transfer through a
chain of harmonic oscillators.

Before describing the model further, let us briefly discuss
the notions of “ballistic” and “diffusive” transport. Consider
the NESS established when a system (of “length” L) is placed
between two reservoirs at different temperatures. This exhibits
a stationary heat current which, for small temperature gradi-
ents �T , can be fitted by j = κ �T/Lα , where α is an ex-
ponent that characterizes the phenomenological heat transport
law. Whenever α = 1 (i.e., Fourier’s heat conduction law) one
speaks of diffusive behavior. However, low-dimensional—
and usually integrable—quantum and classical systems can
display a ballistic heat flow [61–63], characterized by α = 0,
that is, a heat current that is independent of the system size.

Here we aim at understanding how the entropy-production
rate in the steady state relates to the heat transfer law, specif-
ically, considering the divide between diffusive and ballistic
heat conduction. To do so, we must adopt a model allowing
us to switch between these two regimes. In particular, our

2Always provided that the Markov approximation behind the mas-
ter equation (3) continues to hold. This is often seen as a high-
temperature limit.
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FIG. 1. Schematic diagram of our model: A one-dimensional chain comprising L identical harmonic oscillators of frequency ω linearly
coupled via nearest-neighbor interactions of (weak) strength λ is put in contact with two reservoirs kept at temperatures T1 and TL , respectively,
or, equivalently, occupations n1 and nL at frequency ω. To induce diffusivity, the system is augmented with L self-consistent reservoirs (one
for each site of the chain). The occupations for these reservoirs (ñk) is chosen so that, in the steady state, no energy is exchanged with them
and the heat current flows only between the physical reservoirs.

one-dimensional harmonic chain coupled to two different
reservoirs at each end would result in a ballistic NESS,
provided that its dissipative dynamics is well described by
Eq. (3). Obtaining diffusive behavior in general requires com-
plex interactions, which are seldom treatable analytically. An
alternative, widely used in the literature on quantum systems,
is to use dephasing baths acting locally on each site [39–41].
These baths introduce some noise while not compromising
the energy balance. As a consequence, they always lead to
diffusive transport.

The NESS for a dephasing model, however, is not Gaus-
sian, so that the results presented here would not apply.
Instead, we fix this problem by using the notion of “self-
consistent reservoirs” [39–41,44,49] (also called Büttiker
probes in the condensed matter literature). As the name sug-
gests, self-consistent reservoirs are baths that act on all sites,
but whose temperature are chosen self-consistently so that, in
the steady state, they do not exchange any energy with the
system, but only inject noise to cause decoherence [44]. Con-
sequently, heat flows only between the two physical reservoirs
at the ends of the chain (see Fig. 1). As shown in Appendix D,
the resulting equation of motion for the covariances is the
same for self-consistent and dephasing models although the
corresponding NESSs are different (i.e., they agree only up to
the second-order moments).

A. The model and its stationary solution

In what follows, we consider L resonant harmonic oscil-
lators in a one-dimensional lattice interacting weakly via the
linear Hamiltonian

HHH = ω

L∑
k=1

aaa†
kaaak + iλ

L−1∑
k=1

(aaa†
kaaak+1 − aaa†

k+1aaak ). (27)

As described above, the system is coupled to L + 2 baths,
out of which two are physical and the rest, auxiliary self-
consistent reservoirs. The master equation (3) then reads

dρρρ

dt
= −i[HHH ,ρρρ] + D1(ρρρ) + DL(ρρρ) +

L∑
k=1

D̃k (ρρρ ). (28)

Here all dissipators have the GKLS structure of Eq. (4). Those
of the physical baths have parameters γ1 = γL = γ , and the
corresponding occupations at frequency ω are n1 and nL. On
the other hand, the auxiliary baths all have dissipation rate

γ̃k = � and occupations ñk , calculated self-consistently so as
to satisfy ñk = tr{aaa†

kaaak ρρρNESS}. All objects denoted with tilde
refer to the auxiliary baths. In particular, notice the difference
between D̃1,L(ρρρ ), or ñ1,L, and D1,L(ρρρ) and n1,L.

The stationary state of Eq. (28) (i.e., ρρρNESS) can be found
analytically with the methods developed in Refs. [39–41,49].
For completeness, we give details of the calculation in Ap-
pendix D. We find that the only nonzero stationary covari-
ances in our chain are

〈aaa†
kaaak〉 = n1 + nL

2
+ n1 − nL

2

× � γ (L − 2k + 1) + γ 2(δ1,k − δk,L )

4λ2 + γ 2 + γ �(L − 1)
, (29a)

〈aaa†
kaaak+1〉 = γ λ (nL − n1)

4λ2 + γ 2 + γ � (L − 1)
. (29b)

Equations (29) have a rich physical interpretation. First,
setting � = 0 amounts to decoupling the self-consistent reser-
voirs from the chain. As already anticipated, in that case the
occupations 〈aaa†

kaaak〉 become independent of the index k (except
for k = 1 and k = L), which is the hallmark of a ballistic heat
transfer law [see Fig. 2(a)]. Conversely, if we choose � > 0
and sufficiently large L, the occupations converge to a linear
profile, which is expected for diffusive heat conduction in one
dimension. This is illustrated in Figs. 2(b)–2(d).

Furthermore, combining Eqs. (25b) and (29b) we can
compute the current between neighboring sites

jk,k+1 = 2λ2 γ (nL − n1)

4λ2 + γ 2 + γ �(L − 1)
:= j, (30)

which are all independent of k. Here we see once again
that if � = 0, the energy current becomes independent of L,
implying a ballistic transport. On the other hand, � > 0 yields
a diffusive heat current, scaling as ∼1/L. We remark that dis-
cussing the divide between ballistic and diffusive conduction
is meaningful only in the thermodynamic limit (i.e., L � 1),
where our model suffers an abrupt transition from a ballistic
profile to a diffusive one as soon as � becomes nonzero.

B. Entropy-production rate in the NESS

The total (Wigner) entropy-production rate can be readily
computed from Eqs. (26) and (30). Since the currents jk,k+1
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FIG. 2. Occupation profile 〈aaa†
kaaak〉 in the NESS ρρρNESS of Eq. (28)

as a function of the location k of the site on the chain for various
parameters. (a) Ballistic profile for � = 0 and varying λ. (b) Diffu-
sive profile for � = 10−6. (c) Same as (b) but for different values
of �, with fixed λ = 10−5. (d) Profile for different chain sizes L,
with fixed λ = 10−5 and � = 10−6. In all panels γ = 10−5. In panels
(a)–(c) L = 10.

are translationally invariant, all inner terms in the sum of
Eq. (26) vanish, and we are left with

�NESS = 2λ2 γ (nL − n1)

4λ2 + γ 2 + γ � (L − 1)

×
(

1

n1 + 1/2
− 1

nL + 1/2

)
. (31)

Note that this is always non-negative and zero only if n1 = nL,
in which case there is no current flowing through the chain.
We also remark that neither j nor �NESS depend on ñk . This
is an important consistency check, as our goal is precisely to
ensure that the auxiliary reservoirs do not modify the rate of
heat flow across the chain. Notice as well that �NESS scales in
size just like the rate of heat exchange j.

Importantly, exploiting Eq. (17) we are also able to sep-
arate the contributions of each dissipation channel to the
stationary entropy-production rate. More specifically, we can
split �NESS into one component stemming from the real reser-
voirs at the boundaries and another one coming from the aux-
iliary self-consistent reservoirs, that is, �NESS := �r + �sc.
Crucially, due to our approach to emulate the anharmonicity
leading to the diffusive profile, we can meaningfully identify
the self-consistent contribution �sc with the entropic cost of
steady-state diffusivity. Specifically, one has

�r =
∑

k=1,L

4

γ (nk + 1/2)

∫
dᾱ

|Jk (WNESS)|2
WNESS

, (32)

FIG. 3. Individual contributions to the total stationary entropy-
production rate from the real (red dots) and the self-consistent
reservoirs (blue squares), as a function of the system size L. Here
γ = 10−6, � = 10−7, λ = 3 × 10−7, n1 = 1, and nL = 2.

while the entropy production from the self-consistent reser-
voirs reads

�sc =
L∑

k=1

4

� (〈aaa†
kaaak〉 + 1/2)

∫
dᾱ

|J̃k (WNESS)|2
WNESS

,

(33a)

J̃k (WNESS) = �

2
[αkWNESS + (〈aaa†

kaaak〉 + 1/2) ∂∗
k WNESS],

(33b)

where we already used the fact that the occupations of the
self-consistent reservoirs are ñk = 〈aaa†

kaaak〉. The sum in Eq. (32)
comprises the terms k = 1 and k = L only, while that of
Eq. (33a) runs over all indices k ∈ {1, . . . , L}. As discussed
in Appendix E, Eqs. (32) and (33a) can be readily computed
from the covariances of the chain for arbitrarily large system
size, owing to the Gaussianity of our NESS.

In Fig. 3 we plot �r and �sc as a function of L in a loga-
rithmic scale. Interestingly, we see that the irreversibility asso-
ciated with the physical reservoirs is dominant only for small
system size. As the chain is scaled up �sc quickly surpasses
�r and adopts a distinct power-law-like decay �sc ∼ 1/L
for large L. On the other hand—and in the thermodynamic
limit—we observe that the contribution from the real baths
to the total steady-state irreversibility decays as �r ∼ 1/L2.
Looking back at Eq. (31), it is also noteworthy that, fixing
the temperature gradient, the ballistic irreversible entropy-
production rate �NESS(γ , � = 0) is larger than the diffu-
sive one �NESS(γ , � > 0), meaning that �r(γ , � = 0) >

�r(γ , � �= 0) + �sc(γ , � �= 0). The dependence on both γ

and �, although not explicit in Eqs. (32) and (33), arises from
WNESS.

We have thus seen that combining the ease of calculation
of the Wigner entropy production for Gaussian states with our
simple harmonic model to mimic diffusive heat conduction,
provides valuable insights into the relative weight of the
individual irreversible processes in the thermodynamic limit.

V. CONCLUSIONS

We have addressed the calculation of the irreversible
entropy-production rate using a quantum phase-space ap-
proach based on the Wigner entropy. In particular, we fo-
cused on networks of weakly interacting harmonic nodes with
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arbitrary connectivity and coupled to various reservoirs at
different temperatures. For this wide class of systems, we
were able to obtain simple and useful closed-form expressions
for both the Wigner entropy-production rate and the entropy
flux, solely in terms of the second-order moments of the sys-
tem. This is possible since we work with an overall harmonic
Hamiltonian, which preserves Gaussianity. In addition, we
could split the entropy-production rate and flux into contri-
butions stemming from individual quasiprobability currents
associated with each open decay channel, which enables one
to identify the irreversibility generated by a single bath in the
lattice. We also discussed how the internal coherent dynamics
plays a central role in generating steady-state irreversibility,
as it is the leading mechanism enabling energy transport
across the network. All of the above should be understood
as the leading (lowest-order) contribution in a perturbative
expansion in the node-to-node interaction strengths (i.e., the
limit of weak internal coupling), as it relies on the simple local
structure of the underlying quantum master equation. Finally,
we used our framework to better understand the interplay
between the various sources of irreversibility at play in diffu-
sive heat conduction through a harmonic chain. We mimicked
the anharmonicity required to establish the desired diffusive
profile by adding auxiliary (self-consistent) reservoirs to our
model. In turn, this allowed us to break down the total steady-
state irreversible entropy production into a contribution due to
the heat transport across the chain, and another one which can
be interpreted as the entropic cost of maintaining a stationary
diffusive transport.

As we have shown, this approach offers several advantages,
both practical and fundamental. From a practical standpoint,
the fact that Gaussian states can be fully characterized by
their covariance matrix allowing one to readily access any
entropic quantifier, even for very large system sizes. Second,
from a fundamental point of view, our approach allows for a
microscopic description of the problem of entropy production,
enabling the identification of irreversible quasiprobability
currents in phase space which are ultimately responsible for
the emergence of irreversibility. Moreover, the description
in terms of the Wigner function also allows us to take into
account both thermal and quantum fluctuations, remaining
valid even in the limit of very low temperatures, where the
standard von Neumann approach becomes problematic. More
generally, our framework can be readily adapted to quantify
irreversibility in nontrivial energy-conversion processes (e.g.,
refrigeration) implemented on small-scale quantum heat de-
vices. Indeed, networks of periodically driven and weakly
interacting oscillators are a suitable platform to generate the
required nonequilibrium states supporting useful continuous
quantum-thermodynamic cycles.
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APPENDIX A: THE COVARIANCE MATRIX FORMALISM

From R̄RR = (aaa1,aaa†
1, . . . ,aaaL,aaa†

L )T, we can define the 2L ×
2L covariance matrix (CM) Θ of our L-node network as

�i j = 1

2
〈{RRRi,RRR†

j}+〉 − 〈RRRi〉〈RRR†
j〉. (A1)

Hence, in our convention, the CM of system with L = 2 is

Θ =

⎛
⎜⎜⎜⎝

〈aaa†
1aaa1〉+ 1

2 〈aaa1aaa1〉 〈aaa1aaa
†
2〉 〈aaa1aaa2〉

〈aaa†
1aaa

†
1〉 〈aaa†

1aaa1〉 + 1
2 〈aaa†

1aaa
†
2〉 〈aaa†

1aaa2〉
〈aaa†

1aaa2〉 〈aaa1aaa2〉 〈aaa†
2aaa2〉 + 1

2 〈aaa2aaa2〉
〈aaa†

1aaa
†
2〉 〈aaa1aaa

†
2〉 〈aaa†

2aaa†
2〉 〈aaa†

2aaa2〉 + 1
2

⎞
⎟⎟⎟⎠.

(A2)

This ordering turns out to be more convenient for the problem
at hand. Indeed, Θ can be readily decomposed in terms of the
reduced covariance matrices

Ci j := 〈aaa†
jaaai〉 − 〈aaa†

j〉〈aaai〉, (A3a)

Si j := 〈aaaiaaa j〉 − 〈aaai〉〈aaa j〉. (A3b)

One can then readily verify that

Θ = 12L

2
+ C ⊗ σ+σ− + C� ⊗ σ−σ+ + S ⊗ σ+ + S∗ ⊗ σ−,

(A4)

where 12L is the 2L-dimensional identity matrix and σ± are
raising and lowering spin-1/2 matrices. In the NESS of the
problem discussed in Sec. IV, S is identically zero, so that one
needs only the reduced matrix C.

If the state of the system is Gaussian, the Wigner function
(5) is completely determined by the CM and the vector of
means μ̄ = 〈R̄RR〉, as

W (ᾱ) = 1

πL
√

det Θ
exp

{
−1

2
(ᾱ − μ̄)†Θ−1(ᾱ − μ̄)

}
. (A5)

In passing, it is also convenient to note that the inverse CM
Θ−1 can be written as

Θ−1 = 12L

2
+′ B ⊗ σ+σ− + B� ⊗ σ−σ+

+ P ⊗ σ+ + P∗ ⊗ σ−, (A6)

where B = [C − S (C−1)�S∗]−1 and P = −C−1 S B�. In
particular, if S = 0, as in Sec. IV, one simply gets B = C−1.

APPENDIX B: LYAPUNOV EQUATION

Since the dynamics is Gaussian preserving, the state can be
characterized at all times using only the CM Θ and the mean
vector μ̄, when starting from a Gaussian initial condition.
In particular, the dynamics of the CM can be cast as the
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Lyapunov equation

dΘ

dt
= W Θ + Θ W† + F, (B1)

where W and F are 2L × 2L matrices, which follow from the
underlying master equation. In the case of Eq. (3)

W = −iH ⊗ σ+σ+ + iH∗ ⊗ σ−σ+ − Γ

2
, (B2)

where Γ = diag (γ1, γ1, . . . , γL, γL ) is a 2L × 2L diagonal
matrix with the specified diagonal elements and H is the
matrix with elements Hk,� which determine the structure of
the network. In turn, the matrix F can be cast as F := f + Γ/2,
where

f = diag (γ1n1, γ1n1, . . . , γLnL, γLnL ). (B3)

Since the master equation (3) does not spontaneously
generate squeezing, it is possible to convert Eq. (B1) into
two separate equations for the reduced CMs C and S [cf.
Eqs. (A3)]. To accomplish this, one simply needs to exploit
the tensor structure of Eqs. (B2) and (B3) together with that
of Eq. (A4). This gives

dC
dt

= i[C, H] + {C, Γ}+ + f, (B4a)

dS
dt

= −i(SH∗ + HS) + {S, Γ}+. (B4b)

Interestingly, we see that, while the equation for C acquires
a clean structure, the equation for S becomes dependent on
whether or not the matrix H is real or complex. In this respect,
we note that the choice of phase in Eq. (27) is particularly
convenient, as it entails H∗ = −H and Eq. (B4b) acquires
the same structure as Eq. (B4a). We also remark that, while
Eq. (B4a) has an inhomogeneous term f, this is not present in
Eq. (B4b). As a result, in the NESS we get S = 0 whereas C
is the solution to

i[C, H] + {C, Γ}+ + f = 0. (B5)

APPENDIX C: ENTROPY-PRODUCTION RATE

The entropy production rate (17) can be written in terms of
the entries of the CM. We begin by substituting explicitly the
current (16) into Eq. (17), which yields

�k = �k − γk + γk (nk + 1/2)
∫

dᾱ W |∂k ln W |2. (C1)

Next, we substitute the explicit formula (A5) for the Gaussian
Wigner function in the logarithm and carry out the remaining
integrals to obtain

�k = �k − γk + γk (nk + 1/2) [Θ−1]2k,2k . (C2)

Although this is not as simple as the expression for the entropy
flux in Eq. (20), this closed formula for �k is equally useful.

APPENDIX D: NESS FROM THE MODEL IN SEC. IV

In this Appendix, we obtain the steady-state solution of
Eq. (28) from Sec. IV A. As discussed in Appendix B, this

translates into solving an equation with the structure (B5). In
our specific case, the matrix Γ takes the form

Γ = diag(γ + �,�, . . . , �, γ + �) := Γr + � 12L, (D1)

where the subindex “r” refers to quantities of the physical
reservoirs. Similarly, the elements of the matrix f in Eq. (B3)
becomes

f = γ diag(n1, 0, . . . , 0, nL )

+� diag(〈aaa†
1aaa1〉, 〈aaa†

2aaa2〉, . . . , 〈aaa†
LaaaL〉)

:= fr + � Cd, (D2)

where Cd is a matrix containing only the diagonal elements
of C, with all other entries being zero. We thus see that the
self-consistent reservoirs introduce the elements of C directly
into f. Equation (B5) then becomes

i[C, H] + {C, Γr}+ + fr + � (Cd − C) = 0. (D3)

Interestingly, this is precisely the same equation that appears
when one uses local dephasing to enforce diffusive heat
conduction (cf., e.g., Ref. [39–41]). We emphasize, however,
that the NESS is different in both models since dephasing is
not Gaussianity-preserving; i.e., they coincide only up to the
second-order moments.

The solution of Eq. (D3) was discussed in Refs. [39–41]
and yields a tridiagonal matrix of the form

C =

⎛
⎜⎜⎜⎜⎜⎝

〈aaa†
1aaa1〉 x
x 〈aaa†

2aaa2〉 x
. . .

. . .
. . .

x 〈aaa†
L−1aaaL−1〉 x

x 〈aaa†
LaaaL〉

⎞
⎟⎟⎟⎟⎟⎠,

(D4)

where x := 〈aaa†
kaaak+1〉 is given in Eq. (29b) and the occupations

are those of Eq. (29a).

APPENDIX E: CALCULATION OF �r AND �sc

FOR THE MODEL IN SEC. IV

Finally, we discuss how the above tools can be used to
facilitate the computation of the individual entropy production
rates for the real and the self-consistent reservoirs, Eqs. (32)
and (33). This is readily accomplished using Eq. (C2). For the
contribution to the real reservoir we get

�r =
∑

k=1,L

[�k + γ (nk + 1/2) [Θ−1]2k,2k] − 2γ , (E1)

where the entropy flux �k is given by Eq. (20). Similarly, the
entropy production rate due to the self-consistent reservoirs
evaluates to

�sc =
L∑

k=1

[� (〈aaa†
kaaak〉 + 1/2) [Θ−1]2k,2k] − L �, (E2)

where we have used the fact that the occupations of the
self-consistent reservoirs are ñk = 〈aaa†

kaaak〉, so that the corre-
sponding entropy fluxes �̃k are identically zero.
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