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Genuine multipartite correlations distribution in the criticality of the Lipkin-Meshkov-Glick model
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Correlations play a key role in critical phenomena. Quantities such as the entanglement entropy, for instance,
provide key insights into the mechanisms underlying quantum criticality. Almost all of our present knowledge,
however, is restricted to bipartite correlations. Some questions still remain unanswered, such as: What parcel of
the total correlations are genuinely k-partite? With the goal of shedding light on this difficult question, in this
paper we put forth a detailed study of the behavior of genuine multipartite correlations (GMC) of arbitrary orders
in the Lipkin-Meshkov-Glick model. We find that GMC of all orders serve to signal the second order quantum
phase transition presented in the model. Applying finite-size scaling methods, we also find the critical exponents

for some orders of correlations.

DOLI: 10.1103/PhysRevB.101.054431

I. INTRODUCTION

Phase transitions emerge from the complex correlations
developed between the microscopic constituents. Understand-
ing and characterizing these correlations has, therefore, al-
ways been a central problem in statistical physics. This is
particularly more so for quantum phase transitions, for which
one may employ concepts from quantum information theory.
For example, the divergence of the entanglement entropy as
one crosses the critical point is related to the underlying
conformal theory that dictates the universal properties of a
quantum phase transition [1]. This has led to several studies
aimed at characterizing entanglement in a variety of different
critical systems [2-6], including the first direct experimental
measurement of the entanglement entropy in a superfluid [7].

Most of our present knowledge on this subject, how-
ever, is restricted to bipartite correlations. The extension to
a multipartite scenario is highly nontrivial, for two main
reasons. The first is related to the factorial large number of
partitions that one can divide a system comprised of N parties,
making the problem difficult to analyze. The second is related
to the difficulties in constructing measures of genuine multi-
partite correlations (GMC) [8]. In a system with N parts, a
genuine correlation of order k < N represents the total
amount of correlations that cannot be obtained from clusters
of size smaller than k.

Hence, GMC should be able to quantify what part of the
total correlations is distributed between clusters of different
sizes. This has applications in, e.g., dimerization in aperiodic
spin chains [9] or the formation of strings in the Fermi-
Hubbard model [10]. GMC can therefore be a valuable tool
in our understanding of quantum criticality.
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The characterization of multipartite correlations in quan-
tum critical systems has thus far focused almost exclusively
in multipartite entanglement, which has been explored in a
variety of models [1,11-14]. The current available measures
of multipartite entanglement, however, are either ill defined or
too complex to be computed [15] (for a review on approaches
to characterize multipartite entanglement in many-body sys-
tems, see Ref. [16]). For this reason, such studies still remain
scarce.

More recently, Girolami et al. have put forth a formalism
for computing GMC which relies only on knowledge of the
quantum relative entropy (Kullback-Leibler divergence) [17].
The formalism accounts for both quantum and classical cor-
relations and is based on general distance-based concepts,
formalized in Ref. [18], thus making it much more tractable.
This framework has since been applied to GHZ [19] as well
as Dicke states [20].

In this work, we calculate genuine k-partite correlations in
the ground state of the Lipkin-Meshkov-Glick (LMG) model
by the framework presented in Ref. [17]. Also, we show
how is the distribution of correlations for a system of many
particles and that these correlations signal the already known
second order quantum phase transition (QPT). In addition, we
use a method of finite-size scaling (FSS) to find the critical
exponent of some orders k of correlations with emphasis on
the total correlation, the bipartite correlation, and the tripartite
correlation.

This work is organized as follows: In Sec. II is presented
the materials and methods, where we introduce the measures
used to calculate the genuine k-partite correlations, the LMG
model, its QPT, and the FSS theory. The analysis of the
genuine k-partite correlations, the verification that all orders
of k signal the second order QPT, and the achievement of
the critical exponents via FSS for total correlation, bipar-
tite correlation, and tripartite correlation, are presented in

©2020 American Physical Society


https://orcid.org/0000-0002-2614-2053
https://orcid.org/0000-0001-7805-2220
https://orcid.org/0000-0001-6411-3723
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.054431&domain=pdf&date_stamp=2020-02-21
https://doi.org/10.1103/PhysRevB.101.054431

ANTONIO C. LOURENCO et al.

PHYSICAL REVIEW B 101, 054431 (2020)

Sec. III. Finally, the conclusions and perspectives are left for
Sec. IV.

II. MATERIALS AND METHODS

A. Measures of genuine k-partite correlations

Consider an N-partite system described by the density ma-
trix py € D(Hy = H1 ® ... ® Hny), where each partition
pj = try;j(pn) is the state of the subsystem j, where try,;
indicates the trace over all partitions except j, such that p; €
D(Hp;p). It is important to emphasize that each partitioning
H;j) can also be a multipartite system, indeed the number of
subpartitions in each subsystem will be useful to define the
genuine correlations. Now, let us consider that the system has
m partitions {”z'-[k/,}'i”=1 and k; denotes the number of partitions

in each subsystem

Sk/. = {S[]], ey S[kj]}’

such that | k; = N.In our case each Sy;) is a qubit system.

One can define the set of genuine uncorrelated states for a
given order higher than k. In this way, it is possible to define
a specific partitioning considering an integer number 2 <
k < N and the coarse grained partitioning {H;, ® ... ® Hy,},
where each cluster Hk/. includes at most k subsystems [17].

Definition 1 (k-partite genuine product states). It is de-
fined a set of states that has up to k subsystems as

kj <k, ey

m

) = UN_®ak Zk =N, k=max{k;} {, (2)

where oy; is a subsystem of k; particles, this set contains all
the sets P with k¥’ < k, such that P, C P>... C Py_; C Py.
In order to calculate the GMC of order higher than k, it is
used the relative entropy as a pseudodistance
SN (py) = min S(onllo), 3)
oePy

where the minimization is taken over all product states o =
QL o1, € Py. The state o that minimizes S¥~V (py) will be
the product of the reduced states of py [8,17,21]. Therefore

SN (o) = S(onll ®, or,) 4)

=" S(px,) — S(ow)- 5)
i=1

For states with permutation symmetry Eq. (4) can be simply
written as

SN (on)
= [N/k1S(pr) + (1 = On  mod £,0)S(PN  mod k) — S(pn),
(6)
where | N/k] is the floor function, which is the greatest integer

less than or equal to N/k. The py mod 1 describe the subsystem
SN mod k- If we choose k =1,

SN (pn) = NS(o1) — S(pw) (7

describes the total correlations presented in the system.
The genuine k-partite correlations can be defined as the
difference between the correlations of order higher than

k — 1 — N and those of order higher than k — N
S on) = SN (o) = SN (o). ®)

Once the correlations of order higher than k — 1 encapsulates
those ones of order higher than k, the difference between
them returns only the genuine k-partite correlations. A nice
interpretation of the GMC of order k introduced above is that
the sum of all GMC gives the total correlation in the system,
SN (o) = Zgﬁ S*(pn), as can be verified from Eq. (8).

B. Lipkin-Meshkov-Glick model

The LMG model, as studied here, is a system composed
of N spins 1/2 fully connected with anisotropy controllable
by the parameter y and an external transversal magnetic field
h acting on it. This model has first and second order QPTs
depending on the values of the control parameters 2 and y.
Here, we limit our analysis to the cases in which y = 0.5
and the external field varies in the range 0 < h < 2. The
critical point at 7 = 1 signals a second order QPT. Such phase
transition has already been studied according to the quantum
information theory in Refs. [4-6,22-24]. The Hamiltonian of
the LMG is described by [4-6]

N

H:—]&VZ( J—}—yaa/) hZa;, ©)]
i<j i=1
where A is the ferromagnetic coupling factor, A =1 was
chosen for the sake of simplicity, and 0 are Pauli matrices
with « = x, y, z. Employing J, = Zf' 1 0’, the Hamiltonian
can be represented by collective spin operators as

A 2
H = —ﬁ(l+y)(J —N/2) —2hJ,

A 2 2
=T, (10)

with J being the total collective angular momentum, J, is its
projection along the z direction and J_ and Jy are collective
ladder operators of lowering and raising, respectively. The
ground state of the LMG model is a linear combination of
Dicke states, which are eigenstates of J* and J.,

PUM =JJ+D,M)y, J|J,M=M|JM), (11)

where J=N/2 and M =-N/2,—-N/2+1,....,N/2 —
1,N/2. Instead of |/, M), it will be used the following
representation of Dicke states |N,n.), in which n, is
the number of excited spins. The Dicke states are totally
symmetric by permutation of particles and can be represented
by

IN, n) = doPAOY T @ (1)), (12)

1

The sum is taken over all possible permutations of n, de-
scribed by the permutation operator P; and (fl\;) is the binomial
coefficient required to normalize the Dicke state. Therefore,
the ground state of the LMG model is

P, IN,n,), (13)
53

n,=0
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with P, being the amplitudes of probability of occurrence of a
Dicke state with n, excitations, which ones are obtained from
numerical diagonalization of the Hamiltonian in Eq. (10).

Quantum phase transitions of the LMG model

In Ref. [5], where by mean field approximation was de-
termined the phase diagram of the LMG model, the authors
show that for the region of 0 < i < 1 (broken phase), the
ground state of the system is double degenerated for y # 1,
for y = 1.0 the ground state is infinitely degenerated, and
for 1 < h < 2 symmetric phase the ground state is unique
for all y. The second order QPT in the LMG model occurs
due to the competition between the spins interaction and the
effect of the external field & applied over the spin chain.
When the external field is strong enough (h > 1), all the
spins begin to align with it so that the state of the system in
this phase has no correlations between the spins. For & = 0
and y = 0 the ground state of the system is described by a
GHZ-like state [6]. Even though we are using the anisotropy
parameter y = 0.5 for all of our calculations, the ground state
is still an approximation of the GHZ-like state, so the spins
are correlated. Some previous works in quantum information
theory used entanglement [4-6,22-27] and others correla-
tions [28-34] as order parameter to detect the second order
phase transition of this model. Furthermore, there are also
some previous works in quantum information that make use
of FSS [4,5,27,29-31,33,34] for the calculus of exponents in
the LMG model.

Since the LMG model is an infinity coordinated system,
because all particles interact with all others equally, the sys-
tem does not have the concepts of length and dimensionality
defined [35], such as made to study finite size scaling in others
systems. Then, the number of particles N is the only one
variable in the analysis of FSS exponents. Here, we analyze
the behavior of the genuine k-partite correlations near the
second order QPT.

The method to extract the exponent that we apply is the
following: we take the minimum derivative of k-partite cor-
relation and calculate the k-partite correlation at this point as
function of N, thus assuming that relation of correlation and N
obeys a power law, we take the logarithm of both variables and
we are able to get the exponent relate to the genuine k-partite
correlation.

III. RESULTS

In this section we calculate numerically the genuine k-
partite correlations across the QPT for some values of k. By
induction, we conclude that all orders of the genuine mul-
tipartite correlations signal the second order QPT at i = 1.
Following the same reasoning, we calculate critical exponents
for some genuine k-partite correlations and evidence that all
exponents are in the range [—1/2, 1/2].

From Eq. (6), we notice that to compute the multipartite
correlations of order higher than k, S¥~" (py), it is necessary
to calculate the reduced density matrix o = Try/xon from py.
For the ground state, which one is a superposition of Dicke
states, as in Eq. (13), we can do the Schmidt decomposition
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FIG. 1. Genuine k-partite correlations presented in the ground
state of the LMG model for N = 156, y = 0.5, and k = 2,3, 4, 13
as function of 4. In the phase in which 2 > 1 the spins are aligned to
the external field so that they are not correlated. The inset is a zoom
of the figure to a better visualization of the behavior of the GMC of
order k = 13 near the phase transition.

of the Dicke states [36,37] as

N L
|\IJ) = ZP,[{, Z)\[{, |L, le) ® |N —L,n, — le) s (14)
n,=0 1,.=0

where A;, = V (Z)nN) iz)(nN,l ), getting the reduced density ma-
trix from this state and tracing out |l,, L) we obtain the
reduced density matrix of k spins

N L

NG
= Y 3|

n,n=01e=0 (16

e

x (k,ny — L, s5)

Pnep*/ |k, ne — le>

n’ﬂ

where0 <n,— I, < N—L=kand0<n, -, <N—-L=
k. The coefficients P,, depend on the ground state of the LMG

Hamiltonian in Eq. (10).

A. Genuine k-partite correlations in the ground state of the
LMG model

We recall that the anisotropy parameter is fixed as y = 0.5
in all numerical analysis of the GMC of order k presented
in the ground state of the LMG model. In Fig. 1 and inset
it is possible to observe the behavior of the GMC of orders
k=72,3,4,13 for N = 156 spins. For i = 0 the ground state
of the LMG model is approximately a GHZ state [6], which
implies that the GMC can be described approximately by the
expression S* = [N/(k — 1)] — [N/k]. Also, as k increases
the genuine k-partite correlations decrease and become more
resistant to variations of the magnetic field. Such a tendency
also appears in Ref. [6] for the calculus of entanglement
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FIG. 2. The GMC of order higher than %, Sk=N as function of k
for N =200, y = 0.5, and & = 1. In (a) all integers values of k from
1 < k < N are considered, while in (b) only the values of £ which
satisfy the constraint N mod k = 0 are taken into account.

entropy, where partitions with higher number of particles, up
to half of the total number of particles, are more resistant to
changes in the field in the region 0 < & < 1.

Before we start the analysis between the GMC and the
second order QPT in the LMG model, we call the attention
to the behavior of the distance measure S*~V for different
values of k and its connection to the total number of spins N.
Figure 2(a) shows the distance S*~" for N = 200 and 1 = 1
as function of k. The distance is monotonically decreasing
with the block size k. For small values of k the decreasing
is smooth, but as k becomes comparable to N abrupt changes
occur in form of a ladder. Such an effect was already verified
for Dicke states in Ref. [20] and comes from the floor function
in Eq. (6), or equivalently, there is an unpaired block of k'
particles with k¥’ < k. On the other hand, in Fig. 2(b) we also
show the dependence of S*~V with k, but with the constraint
N mod k = 0. As can be seen, this is enough to remove the
role played by the floor function and consequently removing
the ladder behavior. This kind of imposition allow us to get the
critical exponents straightforwardly, since the unpaired blocks
cause abrupt changes in the GMC of order %.

B. Quantum phase transition and genuine k-partite correlations

Our first task is to show that all GMC of order k (1 < k <
N) are able to signal the second order QPT. For the sake of
simplicity we included the value k£ = 1, which means the total
correlations, see Eq. (7). In order to verify that the GMC signal
the QPT we calculate the first derivative of S¥ with respect to
the parameter 7 and show that in the thermodynamic limit it
is nonanalytic for some value of 4, named critical parameter
h.. This behavior is shown in Fig. 3, where we conclude that
the minimum value of dS* /dh (for k =1, 2, 3, N) occurs for
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FIG. 3. The first order derivative of the total correlations (k = 1)
and GMC of orders k = 2, 3, N as function of the external control
parameter /. The minimum value of the derivatives occurs for values
of h closer to i, = 1 as N increase.

some value of the control parameter A, which tends to k. =
1for N — .

This result is in agreement with Fig. 1 inset, where the
GMC of higher orders disappear faster after the phase transi-
tion i, = 1 and with Fig. 4 which explores the thermodynamic
limit. We observe that the same procedure has been performed
for other values of k not reported here, but which ones
corroborate the conclusion presented above. Therefore, the
GMC of order k are able to signal the already known second
order QPT in the LMG model [5].
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FIG. 4. Values of the control parameter 4 in which the first order
derivative of the total correlations and GMC of orders k = 2,3, N
are minimum as function of the number of spins in the system N.
The solid lines are logarithm fit of the points to show that in the
thermodynamic limit (N — 00 hp,) — he. = 1. The constraint N
mod 6 = 0 has been imposed for the curves with k = 2, 3.
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FIG. 5. The critical exponents are obtained from the angular
coefficients of the line for the total correlations and for the CGM
of order k = 2,3, N. For k = 2, 3 the constraint N mod 6 = 0 has
been imposed.

C. Finite size scaling exponent analysis of
genuine k-partite correlations

The application of the finite size scaling method to find
the exponents that govern the behavior of the order parameter
near the transition point can be made using different strategies.
Here, to compute the exponent of the genuine k-partite corre-
lations we take the minimum point A, of the first derivative
of the correlation as function of the number of particles N.
Then, the critical exponent « is obtained from the function
S¥(hmin) = AN®, where A is some constant. As the compu-
tational cost for the numerical calculations increases rapidly
with the number of particles N, we calculate the critical ex-
ponents extending N until 500 spins, i.e., our thermodynamic
limit in practice. The values of the exponents can vary a little,
becoming smaller with the increasing of N and when ruling
out the smaller values of N in the graph. The strategy used
here to obtain the critical exponents considers only the values
of N in which N mod k=0 and N mod (k—1)=0. As
mentioned before, the advantage of this procedure is that it
avoids sudden changes in the values of the GMC of order
k and consequently enable to obtain a well defined critical
exponent. However, as k increases fewer points remain in
the graphs to calculate the exponents. This method is applied
to obtain the critical exponents of the total correlations and
for correlations of order k = 2,3, N, as shown in Fig. 5.
Additional results for k = 4,5, N/4, N/2 are summarized in
Table I.  Although we did not test all possible values of
the critical exponents, it seems that they are confined in the
interval [—1/2, 1/2]. In literature we have found the critical
exponents for bipartite correlations only, being 1/3 for en-
tanglement entropy [6] and concurrence [23]. From Table I
we notice that for partitions of fixed size (k = 1, 2, 3,4, 5),
the critical exponent is positive, but when the partition size
increases with the number of spins (k = N/4, N/2, N), the

TABLEI. Critical exponents for different values of k of the GMC
S* vs h across the second order QPT in the LMG model.

k Critical exponent
1 0.508 + 0.001
2 0.313 £ 0.001
3 0.317 + 0.002
4 0.333 + 0.004
5 0.350 + 0.003
N/4 —0.377 £ 0.002
N/2 —0.4540 £ 0.0007
N —0.492 £ 0.003

critical exponent becomes negative. Also, the GMC across the
quantum phase transition diminish faster for higher orders of
k when it depends on N. In the particular case of the GMC
of order N it goes to zero at a rate greater than for the other
exponents. If we analyze the GMC of order k per particle
in the thermodynamic limit across the second order QPT,
limp_ oo S¥ (pN)/N = 0, it becomes null, as expected for the
classical world.

IV. CONCLUSIONS AND PERSPECTIVES

We analysed the genuine multipartite correlations in the
Lipkin-Meshkov-Glick model according to the measure intro-
duced by Girolami and coworkers [17]. Within this framework
we were able to calculate the genuine k-partite correlations
and show they behavior for different partition sizes. Also, we
verify that the genuine k-partite correlations signal the second
order quantum phase transition in the LMG model. Fur-
thermore, we obtained the critical exponents through finite-
size scaling analysis for the total correlations and genuine
multipartite correlations of order k = 2,3,4,5,N/4, N/2, N.
From that we observed that the genuine multipartite cor-
relations go to zero across the second order quantum
phase transition in the thermodynamic limit when the par-
tition size k increases with the number of particles of the
system.

As perspective for future works, it would be interesting
to certify if the critical exponents of the genuine multipartite
correlations of order k are confined in the range [—1/2, 1/2]
for all k. Likewise, the analysis of weaving, a measure of
correlation also proposed by Girolami et al. [17] which is
the sum of all genuine multipartite correlations, to see if it
is possible to gain additional information on the scalability
of the genuine multipartite correlations across the quantum
phase transition.
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