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Quantum features of entropy production in driven-dissipative transitions
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The physics of driven-dissipative transitions is currently a topic of great interest, particularly in quantum
optical systems. These transitions occur in systems kept out of equilibrium and are therefore characterized
by a finite entropy production rate. However, very little is known about how the entropy production behaves
around criticality and all of it is restricted to classical systems. Using quantum phase-space methods, we put
forth a framework that allows for the complete characterization of the entropy production in driven-dissipative
transitions. Our framework is tailored specifically to describe photon loss dissipation, which is effectively a
zero-temperature process for which the standard theory of entropy production breaks down. As an application,
we study the open Dicke and Kerr models, which present continuous and discontinuous transitions, respectively.
We find that the entropy production naturally splits into two contributions. One matches the behavior observed
in classical systems. The other diverges at the critical point.
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I. INTRODUCTION

The entropy of an open system is not conserved in time,
but instead evolves according to

dS(t )

dt
= �(t ) − �(t ), (1)

where � � 0 is the irreversible entropy production rate and
� is the entropy flow rate from the system to the environ-
ment. Thermal equilibrium is characterized by dS/dt = � =
� = 0. However, if the system is connected to multiple
sources, it may instead reach a nonequilibrium steady state
(NESS) where dS/dt = 0 but � = � � 0. NESSs are there-
fore characterized by the continuous production of entropy,
which continuously flows to the environments.

In certain systems a NESS can also undergo a phase transi-
tion. These so-called dissipative transitions [1–3] represent the
open-system analog of quantum phase transitions. Similarly
to the latter, they are characterized by an order parameter and
may be either continuous or discontinuous [4–6]. They are
also associated with the closing of a gap, although the gap
in question is not of a Hamiltonian, but of the Liouvillian
generating the open dynamics [7,8]. The features emerging
from the competition between dissipation and quantum fluctu-
ations have led to a burst of interest in these systems in the last
few years [6–38], including several experimental realizations
[39–45].

Given that the fundamental quantity characterizing the
NESS is the entropy production rate �, it becomes natural
to ask how � behaves as one crosses such a transition, such
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as, i.e., what are its critical exponents? Is it analytic? Does
it diverge? Surprisingly, very little is known about this and
almost all is restricted to classical systems.

In Ref. [46] the authors studied a continuous transition in
a two-dimensional (2D) classical Ising model subject to two
baths acting on even and odd sites. They showed that the
entropy production rate was always finite, but had a kink at
the critical point, with its derivative presenting a logarithmic
divergence. A similar behavior was also observed in a Brow-
nian system undergoing an order-disorder transition [47], the
majority vote model [48], and a 2D Ising model subject to an
oscillating field [49]. In the system of Ref. [49], the transition
could also become discontinuous depending on the parame-
ters. In this case they found that the entropy production has a
discontinuity at the phase coexistence region. Similar results
have been obtained in Ref. [50] for the dissipated work (a
proxy for entropy production) in a synchronization transition.

All these results therefore indicate that the entropy produc-
tion is finite across a dissipative transition, presenting either
a kink or a discontinuity. This general behavior was recently
shown by some of us to be universal for systems described by
classical Pauli master equations and breaking a Z2 symmetry
[51]. An indication that it extends beyond Z2 was given in
Ref. [52] which studied a q-state Potts model.

Whether or not this general trend carries over to the
quantum domain remains an open question. Two results,
however, seem to indicate that it does not. The first refers
to the driven-dissipative Dicke model, studied experimentally
in Refs. [39,40]. In this system, the part of the entropy
production stemming from quantum fluctuations was found
to diverge at the critical point [45]. Second, in Ref. [53]
the authors studied the irreversible work produced during a
unitary quench evolution of the transverse field Ising model.
Although being a different scenario, they also found a diver-
gence in the limit of zero temperature (which is when the
model becomes critical). Both results therefore indicate that
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FIG. 1. Typical driven-dissipative scenario portraying an optical
cavity with a nonlinear medium subject to an external pump E and
photon losses occurring at a rate κ .

quantum fluctuations may lead to divergences of the entropy
production in the quantum regime. Whether these divergences
are universal, and what minimal ingredients they require,
remains a fundamental open question in the field.

The reason why this issue has so far not been properly
addressed is actually technical: most models explored so far
fall under the category of a driven-dissipative process, where
dissipation stems from the loss of photons in an optical cavity
[54] (see Fig. 1). The problem is that photon losses are
modeled effectively as a zero-temperature bath, for which
the standard theory of entropy production yields unphysical
results (it is infinite regardless of the state or the process)
[55,56].

This “zero-temperature catastrophe” [57,58] occurs be-
cause the theory relies on the existence of fluctuations which,
in classical systems, seize completely as T → 0. In quantum
systems, however, vacuum fluctuations remain. This was the
motivation for an alternative formulation introduced by some
of us in Ref. [59] and recently assessed experimentally in [45],
which uses the Wigner function and its associated Shannon
entropy as a starting point to formulate the entropy production
problem. This has the advantage of accounting for the vacuum
fluctuations, thus leading to a framework that remains useful
even when T → 0.

This paper builds on Ref. [59] to formulate a theory which
is suited for describing driven-dissipative transitions. Since
these transitions are seldom Gaussian, we use here instead the
Husimi Q function and its associated Wehrl entropy [56,60].
Our focus is on defining a consistent thermodynamic limit
where criticality emerges. This allow us to separate � into
a deterministic term, related to the external laser drive, plus
a term related to quantum fluctuations. The latter is also
additionally split into two terms, one related to the nontrivial
unitary dynamics and the other to photon loss dissipation. We
apply our results to the Dicke and Kerr models, two paradig-
matic examples of dissipative transitions having a continuous
and discontinuous transition respectively. In both cases, we
find that unitary part of � behaves exactly like in classical
systems. The dissipative part, on other hand, is proportional
to the variance of the order parameter and thus diverges at the
critical point.

II. DRIVEN-DISSIPATIVE SYSTEMS

We consider a system described by a set of bosonic
modes ai evolving according to the Lindblad master

equation

∂tρ = −i

[
H0 + i

∑
i

Ei(a
†
i − ai ), ρ

]

+
∑

i

2κi

(
aiρa†

i − 1

2
{a†

i ai, ρ}
)

, (2)

where H0 is the Hamiltonian, Ei are external pumps, and κi

are the loss rates for each mode (see Fig. 1). The second term
in Eq. (2) is the typical Lindblad dissipator describing one-
photon losses of a cavity. The results below hold for arbitrary
times in the dynamics, although most of our interest will be in
the NESS, defined as the fixed point dρ/dt = 0.

We work in phase space by defining the Husimi func-
tion Q(μ, μ̄) = 1

π
〈μ|ρ|μ〉, where |μ〉 = ⊗

i |μi〉 are coherent
states and μ̄ denotes complex conjugation. The master Eq. (2)
is then converted into a quantum Fokker-Planck (QFP) equa-
tion [61],

∂t Q = U (Q) +
∑

i

(
∂μi Ji(Q) + ∂μ̄i J̄i(Q)

)
, (3)

where U (Q) is a differential operator related to the uni-
tary part (see Appendixes A–C for examples) and Ji(Q) =
κi(μiQ + ∂μ̄i Q) are irreversible quasiprobability currents as-
sociated with the photon loss dissipators.

As our basic entropic quantifier, we use the Shannon
entropy of Q, known as Wehrl’s entropy [60],

S(Q) = −
∫

d2μ Q ln Q. (4)

This quantity can be attributed an operational interpretation
by viewing Q(μ, μ̄) as the probability distribution for the
outcomes of a heterodyne measurement. S(Q) then quantifies
the entropy of the system convoluted with the additional noise
introduced by the heterodyning [62,63]. As a consequence,
S(Q) � S(ρ), with both converging in the semiclassical limit.
We also mention that the Wehrl entropy has the unique advan-
tage of being well defined for any quantum state, since Q � 0.
This is in contrast with the Wigner entropy, which can become
imaginary if the Wigner function is negative.

Next, we differentiate Eq. (4) with respect to time and
use Eq. (3). Employing a standard procedure developed for
classical systems [64], we can separate dS/dt as in Eq. (1),
with an entropy flux rate given by

� =
∑

i

2κi〈a†
i ai〉, (5)

and an entropy production rate

� = −
∫

d2μ U (Q) ln Q +
∑

i

2

κi

∫
d2μ

|Ji(Q)|2
Q

. (6)

The entropy flux is seen to be always non-negative, which
is a consequence of the fact that the dissipator is at zero
temperature, so that entropy cannot flow from the bath to
the system, only the other way around. As for � in Eq. (6),
the last term is the typical dissipative contribution, related
to the photon loss channels and also found in [59]. The
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extension to a finite temperature dissipator is straightforward
and requires only a small modification of the currents Ji [59].
The new feature in Eq. (6) is the first term, which is related
to the unitary contribution U (Q). Unlike the von Neumann
entropy, the unitary dynamics can affect the Wehrl entropy.
This is due to the fact that the unitary dynamics can already
lead to diffusionlike terms in the Fokker-Planck Eq. (3), as
discussed, e.g., in Ref. [65].

III. THERMODYNAMIC LIMIT

The results in Eqs. (5) and (6) hold for a generic master
equation of the form (2), irrespective of whether or not the
system is critical. We now reach the key part of our paper,
which is to specialize the previous results to the scenario of
driven-dissipative critical systems. The first ingredient that is
needed is the notion of a thermodynamic limit. For driven-
dissipative systems, criticality emerges when the pump(s)
Ei become sufficiently large. It is therefore convenient to
parametrize Ei = εi

√
N and define the thermodynamic limit

as N → ∞, with εi finite. In driven systems 〈ai〉 always scales
proportionally to Ei, so that we can also define 〈ai〉 = αi

√
N ,

where the αi are finite and represent the order parameters of
the system.

The parameter N , representing the thermodynamic limit,
can therefore be thought of as being proportional to the
number of photons in the pump which, in turn, is roughly the
number of photons in the cavity. Thus, criticality in driven-
dissipative models occur when the number of photons be-
comes very large. From a theoretical point of view, however,
N is to be viewed as knob allowing one to tune the model
towards a critical behavior.

This combination of scalings implies that at the mean-field
level (ai → 〈ai〉) the pump term Ei(a

†
i − ai ) in (2) will be

O(N ); i.e., extensive. We shall henceforth assume that the
parameters in the model are such that this is also true for H0

in Eq. (2) (see below for examples).
Introducing displaced operators δai = ai − αi

√
N , the en-

tropy flux (5) is naturally split as

� = �ext + �q = N
∑

i

2κi|αi|2 +
∑

i

2κi〈δa†
i δai〉. (7)

The first term is extensive in N and depends solely on the
mean-field values |αi|. It is thus independent of fluctuations.
The second term, on the other hand, is intensive in N . In fact, it
is proportional to the variance of the order parameter 〈δa†

i δai〉
(the susceptibility) and thus captures the contributions from
quantum fluctuations.

We can also arrive at a similar splitting for the entropy
production (6). Defining displaced phase-space variables
νi = μi − αi

√
N , the currents Ji in the QFP Eq. (3) are split as

Ji = √
NκiαiQ + Jν

i (Q), where Jν
i = κi(νiQ + ∂ν̄i Q). Substi-

tuting in (6) then yields

� = �ext + �u + �d = N
∑

i

2κi|αi|2 −
∫

d2ν U (Q) ln Q

+
∑

i

2

κi

∫
d2ν

|Jν
i (Q)|2

Q
. (8)

This is the main result in this paper. It offers a splitting of
the total entropy production rate into three contributions with
distinct physical interpretations. The first, �ext, is extensive
and depends solely on the mean-field values αi. It therefore
corresponds to a fully deterministic contribution, independent
of fluctuations. Comparing with Eq. (7), we see that

�ext = �ext, (9)

a balance which holds irrespective of whether the system is in
the NESS. Hence, this contribution does not affect the system
entropy: At the mean-field level, all entropy produced flows to
the environment.

The second and third terms in Eq. (8) represent, respec-
tively, the unitary and dissipative contributions to �. These
two terms account for the contributions to the entropy produc-
tion stemming from quantum fluctuations. This becomes more
evident in the NESS (dS/dt = 0), where combining Eqs. (1)
and (9) leads to

�u + �d = �q. (10)

The two terms �u and �d therefore represent two sources for
the quantum entropy �q in Eq. (7). We also note in passing
that while �d � 0, the same is not necessarily true for �u,
although this turns out to be the case in the examples treated
below.

IV. KERR BISTABILITY

To illustrate how the different contributions to the entropy
production in Eq. (8) behave across a dissipative transition, we
now apply our formalism to two prototypical models. The first
is the Kerr bistability model [11,26,54], described by Eq. (2)
with a the single mode a and Hamiltonian

H0 = �a†a + u

2N
a†a†aa, (11)

where � is the detuning and u is the nonlinearity strength.
This model has a discontinuous transition.

The NESS of this model and the terms in Eq. (8) were
computed using numerically exact methods. Details on the
numerical calculations are provided Appendix B and the main
results are shown in Fig. 2. In Figs. 2(a) and 2(b) we plot
�u and �d for different sizes N . As can be seen, �u has a
discontinuity at the critical point when N → ∞. Conversely,
�d diverges. The critical behavior in the thermodynamic limit
(N → ∞) can be better understood by performing a finite size
analysis [Figs. 2(c) and 2(d)], where we plot �u and �d/N vs
N (ε/εc − 1) for multiple values of N . Surprisingly, we find
that the behavior of �u matches exactly that of the classical
entropy production in a discontinuous transition [49,51,52].
We also see from Fig. 2 that �u is negligible compared to
�d . As a consequence, in view of Eq. (10) the dissipative
contribution �d will behave like the variance of the order
parameter 〈δa†δa〉, which diverges at the critical point. This
is clearly visible in Fig. 2(d), which plots �d/N .

V. DRIVEN-DISSIPATIVE DICKE MODEL

The second model we study is the driven-dissipative Dicke
model [39,40]. It is described by Eq. (2) with a mode a,
subject to photon loss dissipation κ , as well as a macrospin
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FIG. 2. Entropy production in the discontinuous transition of the
Kerr bistability model [Eq. (11)]. (a), (b) Unitary and dissipative
contributions �u and �d for N = 30 (black-solid) and 10 (blue-
dashed). (c), (d) Finite-size analysis showing a data collapse of �u

and �d/N vs N (ε/εc − 1) for multiple values of N (from 10 to 40 in
steps of 5). The critical behavior of �u matches that of the classical
entropy production. �d , on the other hand, behaves similarly to
〈δa†δa〉 and thus diverges at the critical point. Other parameters were
κ = 1/2, � = −2, and u = 1.

of size J = N/2. The Hamiltonian is

H0 = ω0Jz + ωa†a + 2λ√
N

(a + a†)Jx, (12)

where Ji are macrospin operators. This model does not need
a drive E since the last term can already be interpreted as a
kind of “operator valued pump” (as it is linear in a + a†).
In fact, this is precisely how this model was experimentally
implemented in a cold-atom setup [39]. The model can also be
pictured as purely bosonic by introducing an additional mode
b according to the Holstein-Primakoff map Jz = b†b − N/2
and J− = √

N − b†bb. It hence falls under the category of
Eq. (2), with two modes a and b.

Since this is a two-mode model, numerically exact results
are more difficult. Instead, we follow Refs. [39,40,45] and
consider a Gaussianization of the model valid in the limit of N
large. Details are provided in Appendix C and the results are
shown in Fig. 3. Once again, the unitary part �u of the entropy
production [Figs. 3(a) and 3(b)] is found to behave like the
mean-field predictions for classical transitions [46–52]. It is
continuous and finite, but presents a kink (the first derivative
is discontinuous) at the critical point λc =

√
ω0(κ2 + ω2)/ω.

The dissipative part �d , on the other hand, diverges at λc.
This was indeed already shown experimentally in Ref. [45].
In fact, the behavior of �d at the vicinity of λc is of the form

�d ∼ 1

|λc − λ| , (13)

FIG. 3. Entropy production in the continuous transition of the
driven-dissipative Dicke model [Eq. (12)]. (a), (b) �u and d�u/dλ

vs λ. This part of the entropy production is continuous, but
has a kink (discontinuous first derivative) at the critical point
λc = √

ω0(κ2 + ω2)/ω. (c) �d vs λ showing a divergence at λc.
(d) log10 �d vs log10 |λc − λ| at the vicinity of λc. The points
correspond to simulations, whereas the straight lines are fits with
slope −1, showing that �d diverges as in Eq. (13). Other parameters
were ω0 = 0.005, ω = 0.01, and κ = 1.

as confirmed by the analysis in Fig. 3(d). Similarly to the Kerr
model, �u is much smaller than �d so that the latter essen-
tially coincides with 2κ〈δa†δa〉 in the NESS [cf. Eq. (10)].
The divergence in (13) thus mimics the behavior of 〈δa†δa〉.

VI. DISCUSSION

Understanding the behavior of the entropy production
across a nonequilibrium transition is both a timely and impor-
tant question, specially concerning driven-dissipative quan-
tum models, which have found renewed interest in recent
years. This paper provides a framework for computing the
entropy production for the zero-temperature dissipation ap-
pearing in driven-dissipative models.

We then applied our formalism to two widely used models.
In both cases we found that one contribution �u behaved
qualitatively similar to that of the entropy production in
classical dissipative transitions. The other, �d , behaved like a
susceptibility, diverging at the critical point. Why �u behaves
in this way, remains an open question. Driven-dissipative
systems have one fundamental difference when compared to
classical systems. In the latter, energy input and output both
take place incoherently, through the transition rates in a master
equation. In driven-dissipative systems, on the other hand, the
energy output is incoherent (Lindblad-like) but the input is
coherent (the pump). A classical analog of this is an electrical
circuit coupled to an external battery E . For instance, the
entropy production in a simple RL circuit is �RL = E2/RT
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[66] where R is the resistance and T is the temperature. If we
consider an empty cavity with a single mode a and H0 = 0,
Eq. (6) predicts �cavity = 2E2/κ . Notwithstanding the sim-
ilarity between the two results, one must bear in mind that
the RL circuit still contains incoherent energy input. Indeed,
�RL diverges as T → 0. The cavity, on the other hand, relies
solely on vacuum fluctuations. This interplay between thermal
and quantum fluctuations highlights the need for extending
the present analysis to additional models of driven-dissipative
transitions. In particular, it would be valuable to explore mod-
els which can be tuned between classical (e.g., for large T )
and quantum (T = 0) transitions.
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APPENDIX A: PROPERTIES OF �u

The entropy production rate in Eq. (6) of the main text has
a term proportional to the unitary dynamics,

�u = −
∫

d2μ U (Q) ln Q, (A1)

which depends on the differential operator U (Q), representing
the unitary contribution to the QFP Eq. (3). Written in this
way, the physics behind this term is not immediately transpar-
ent. To shed light on this, we focus here the case of a single
mode. The Hamiltonian may then always be written in normal
order as

H0 =
∑
r,s

Hrs(a
†)ras, (A2)

for some coefficients Hrs. The thermodynamic limit hypothe-
sis used in the main text is that H0 should be O(N ) at the mean-
field level (ai → 〈ai〉). This implies that Hrs = hrsN1−(r+s)/2,
where the hrs are independent of N . For instance, the coeffi-
cient multiplying a†a†aa should scale as 1/N [as in Eq. (11)].
We may thus write (A2) as

H0 = N
∑
r,s

hrs

(
a†

√
N

)r(
a√
N

)s

. (A3)

The corresponding phase-space contribution U (Q) can be
found using standard correspondence tables [61] to convert
the master equation term −i[H0, ρ] into a corresponding
differential operator for Q. The result is

U (Q) = −iN
∑
r,s

hrs

N (r+s)/2
{μ̄r (μ + ∂μ̄)s − μs(μ̄ + ∂μ)r}Q.

(A4)

Normal ordering is convenient as it pushes all derivatives to
the right. We now change variables to ν = μ − α

√
N and

expand the result in a power series in N .
This yields, to leading order,

U (Q) = −i
√

N
∑
r,s

hrsα
s−1ᾱr−1(sᾱ∂ν̄ − rα∂ν )Q

− i
∑
r,s

hrs
αs−2ᾱr−2

2

[
s(s − 1)(ᾱ)2

(
2ν∂ν̄ + ∂2

ν̄

)
− r(r − 1)α2(2ν̄∂ν + ∂2

ν

)+2rs|α|2(ν̄∂ν̄−ν∂ν )
]
Q

+O(1/
√

N ). (A5)

The remaining terms in the expansion are at least O(1/
√

N )
and thus vanish in the limit N → ∞. This expression may be
further simplified by introducing the constants

ξ1 = −i
∑
r,s

hrs αs−1ᾱrs, (A6)

ξ2 = −i
∑
r,s

hrs αs−2ᾱrs(s − 1), (A7)

ξ11 = −i
∑
r,s

hrs αs−1ᾱr−1rs. (A8)

Then, since hrs = h∗
sr , we can write (A5) as

U (Q) =
√

N (ξ1∂ν̄ + ξ̄1∂ν )Q + 1
2

[
ξ2

(
2ν∂ν̄ + ∂2

ν̄

)
+ ξ̄2

(
2ν̄∂ν + ∂2

ν

)+ 2ξ11(ν̄∂ν̄ − ν∂ν )
]
Q + O(1/

√
N ).

(A9)

This is the leading-order contributions of the unitary dynamics
to the Fokker-Planck equation. The important point to notice
is the existence of diffusive terms (proportional to the second
derivative ∂2

ν and ∂2
ν̄ ). This is a known feature of the Husimi

function.
We now plug Eq. (A9) into Eq. (A1). Integrating by parts

multiple times and using the fact that the Husimi function
always vanishes at infinity, we find that the only surviving
terms are

�u = 1

2

∫
d2ν

Q
[ξ2(∂ν̄Q)2 + ξ̄2(∂νQ)2], (A10)

which provides the leading-order contribution to �u. In the
limit N → ∞ this is the only contribution which survives.

APPENDIX B: SOLUTION OF THE KERR
BISTABILITY PROBLEM

In this section we provide additional details on the solution
methods used to study the entropy production in the Kerr
model [Eq. (11) of the main text]. The NESS of this model
can be found analytically using the generalized P function
[54]. This includes all moments of the form 〈(a†)ras〉, as well
as the Wigner function [67]. While the Husimi function can
in principle be found numerically from the Wigner function,
we have found that this is quite numerically unstable due to
the highly irregular nature of the latter. Instead, it is easier
to simply find the steady-state density matrix ρ numerically
using standard vectorization techniques (as done, e.g., in
Ref. [26]).
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1. Numerical procedure

The numerical calculations were performed as follows.
We define the Liouvillian corresponding to the master
equation (2) as

L(ρ) = −i[H0 + iε
√

N (a† − a), ρ]

+ 2κ
(
aρa† − 1

2 {a†a, ρ}). (B1)

The steady-state equation,

L(ρ) = 0, (B2)

is then interpreted as an eigenvalue/eigenvector equation: ρ

is the eigenvector of L with eigenvalue 0. To carry out the
calculation, we decompose ρ in the Fock basis, using a
sufficiently large number of states nmax to ensure convergence.

From ρ we then compute the Husimi function and the cor-
responding integrals numerically using standard integration
techniques. The Husimi function is obtained by constructing
approximate coherent states

|μ〉 = e−|μ|2/2
nmax∑
n=0

μn

√
n!

|n〉.

A grid of the Husimi function Q(μ, μ̄) can then be built to be
subsequently integrated numerically. Derivatives of Q do not
need to be computed using finite differences. Instead, one may
notice that, for instance,

∂μ̄Q = −μQ + 1

π
〈μ|aρ|μ〉, (B3)

with similar expressions for other derivatives. Finally, conver-
gence of the numerical integration can be verified by com-
puting moments 〈(a†)ras〉 of arbitrary order from the Husimi
function and comparing with the exact results of Ref. [54].

2. Bistable behavior

For fixed κ , U , and � < 0, the NESS of Eq. (B1) presents
a discontinuous transition at a certain critical value εc. This
transition is related to a bistable behavior of the model at the
mean-field level. For finite N the steady state of (B1) is unique
[54]. However, as shown recently in Ref. [26], in the limit
N → ∞ the Liouvillian gap between the steady state and the
first excited state closes asymptotically in the region between

ε± =
√

n±[κ2 + (� + n±u)2] and

n± = −2� ± √
�2 − 3κ2

3u
. (B4)

From a numerical point of view, however, this causes no
interference since all computations are done for finite N ,
where the NESS is unique.

3. Unitary contribution to the quantum Fokker-Planck equation

The unitary contribution U (Q) appearing in Eq. (4) of
the main text can be obtained using standard correspondence
tables [61] and reads

U (Q) = (iμ� − E )∂μQ − (iμ̄� + E )∂μ̄Q + iu

2N

{
2|μ|2(μ∂μQ − μ̄∂μ̄Q) + μ2∂2

μQ − μ̄2∂2
μ̄Q

}
. (B5)

When plugged into Eq. (A1), the terms proportional to � and
E vanish. The only surviving terms are

�u = iu

2N

∫
d2μ

Q
[μ2(∂μQ)2 − μ̄2(∂μ̄Q)2]. (B6)

Substituting μ = α
√

N + ν yields a leading contribution of
O(1) which, of course, is the same as that which would be
obtained using Eq. (A10) with r = s = 2.

APPENDIX C: SOLUTION OF THE
DRIVEN-DISSIPATIVE DICKE MODEL

Here we describe the calculations for the driven-dissipative
Dicke model [Eq. (12) of the main text]. We consider only
a single source of drive and dissipation (E, κ ) acting on the
optical cavity mode a. The full master equation is then

dρ

dt
= −i[H, ρ] + 2κ

[
aρa† − 1

2 {a†a, ρ}], (C1)

with

H = ω0Jz + ωa†a + 2λ√
N

(a + a†)Jx. (C2)

Since this system involves two modes, direct solution by
vectorization becomes computationally too costly. Instead, we
tackle the problem using Gaussianization. The calculations

are done in detail in Refs. [39,40,45]. Here we simply cite the
main results and adapt the notation to our present interests.

1. Mean-field solution

We start by looking at the mean-field level by introducing
〈a〉 = α

√
N , 〈J−〉 = βN , and 〈Jz〉 = wN . For large N we then

get

dα

dt
= −(κ + iω)α − iλ(β + β∗), (C3)

dβ

dt
= −iω0β + 2iλ(α + ᾱ)w, (C4)

dw

dt
= iλ(α + ᾱ)(β − β∗), (C5)

which are independent of N , as expected. Angular momentum
conservation also imposes w2 + |β|2 = 1/4, which leads to
two choices, w = ± 1

2

√
1 − 4β2.

At the steady state this implies that β∗ = β,

α = − 2iλβ

κ + iω
, (C6)

and

−β
√

1 − 4β2 = ±λ2
c

λ2
β, (C7)

013136-6



QUANTUM FEATURES OF ENTROPY PRODUCTION IN … PHYSICAL REVIEW RESEARCH 2, 013136 (2020)

where λc = 1
2

√
ω0
ω

(κ2 + ω2) is the critical interaction in the
absence of any external drives. The ± sign in Eq. (C7) stems
from the two choices w = ± 1

2

√
1 − 4β2 respectively. The

minus solution in Eq. (C7) always yields the trivial result
β = 0. The plus solution, on the other hand, can be nontrivial
when λ > λc. For this reason, we henceforth focus on the
solution of

β
√

1 − 4β2 = λ2
c

λ2
β, (C8)

which yields either β = 0 or β ∈ [0, 1/2]. Moreover, this
solution corresponds to w = − 1

2

√
1 − 4β2, so that the spin

is pointing downwards.

2. Holstein-Primakoff expansion

Next we introduce a Holstein-Primakoff expansion

Jz = b†b − N

2
, (C9)

J− =
√

N − b†b b (C10)

and expand

a = α
√

N + δa, b = β̃
√

N + δb, (C11)

for α and β̃ independent of N . The constant β̃ can be related
with β = 〈J−〉/N by expanding Eq. (C10) in a power series in
1/N , resulting in

β̃

√
1 − β̃2 = β, (C12)

which has two solutions

β̃± =
√

1 ±
√

1 − 4β2

2
. (C13)

Which solution to choose is fixed by imposing that
Eq. (C9) should also comply with 〈Jz〉 = w

√
N and w =

− 1
2

√
1 − 4β2. This fixes β̃− as the appropriate choice. It is

also useful to note that β̃2
+ + β̃2

− = 1 and β̃−β̃+ = β.
In terms of the expansion (C11) the operator Jz in Eq. (C9)

becomes

Jz = N

2

√
1 − 4β2 +

√
N β̃−(δb + δb†) + δb†δb. (C14)

We similarly expand J− in Eq. (C10), leading to

J− = Nβ +
√

N β̃+

[
δb − 1

2

β̃2
−

β̃2+
(δb + δb†)

]

− β̃−
2β̃+

[
δb†δb + (δb + δb†)δb + β̃2

−
4β̃2+

(δb + δb†)2

]

+O(1/
√

N ). (C15)

Substituting Eqs. (C14) and (C15) into Eq. (C2) we find, to
leading order, the quadratic Hamiltonian

H = ω̃0δb†δb + ωδa†δa + λ̃(δa + δa†)(δb + δb†)

− ζ (δb + δb†)2, (C16)

where

ω̃0 = ω0 − λ(α + ᾱ)
β̃−
β̃+

, (C17)

λ̃ = λβ̃+

(
1 − β̃2

−
β̃2+

)
, (C18)

ζ = λ(α + ᾱ)

2

β̃−
β̃+

(
1 + β̃2

−
2β̃2+

)
. (C19)

3. Stabilization of the solution

The Gaussianization procedure above explicitly already
takes the limit N → ∞. Because of this, it turns out that on
order to obtain a stable steady state, it is also necessary to
add a small dissipation to δb. Here we do so in the simplest
way possible, as a zero-temperature dissipator. We therefore
consider the evolution of the Gaussianized master equation

dρ

dt
= −i[H, ρ] + 2κD[δa] + 2γD[δb], (C20)

where D[L] = LρL† − 1
2 {L†L, ρ}. The value of γ was actu-

ally determined experimentally in [45] and is more than six
orders of magnitude smaller than κ . One must therefore use
a nonzero value, but the value itself can be arbitrarily small.
In Fig. 3 of the main text, we have used γ = 10−3κ simply to
ensure numerical stability.

4. Lyapunov equation

Once Gaussianized, we can study the steady state by solv-
ing for the second moments of δa and δb. Define quadrature
operators

δqb = δb + δb†

√
2

δpb = i√
2

(δb† − δb), (C21)

with identical definitions for δqa and δpa. The Hamiltonian
(C16) then transforms to

H2 = ω̃0

2

(
δq2

b+δp2
b

) + ω

2

(
δq2

a + δp2
a

) + 2λ̃δqaδqb − 2ζ δq2
b.

(C22)

Next define the covariance matrix (CM)

σi j = 1
2 〈{Ri, Rj}〉, R = (δqb, δpb, δqa, δpa). (C23)

Since both the Hamiltonian and the dissipator are Gaussian
preserving, the dynamics of σ is closed and described by a
Lyapunov equation,

dσ

dt
= Aσ + σAT + D, (C24)

where

A =

⎛
⎜⎜⎝

−γ ω̃0 0 0
4ζ − ω̃0 −γ −2λ̃ 0

0 0 −κ ω

−2λ̃ 0 −ω −κ

⎞
⎟⎟⎠ (C25)

and D = diag(γ , γ , κ, κ ).
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The assumption that the state of the system can be Gaus-
sianized allows us to write down the Husimi function of the
NESS, which has the form

Q = 1

π
√|σ + I4/2| exp

{− 1
2 rT(σ + I4/2)−1r

}
, (C26)

where r = (xb, yb, xa, ya) are the phase-space variables corre-
sponding to the quadrature operators R in Eq. (C23) and I4

is the identity matrix of dimension 4. All integrals appearing
in Eq. (8) will then be Gaussian and can thus be trivially
computed.
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