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Introduction
The Quantum Rabi model describes the interaction of a
quantized field with a two-level atom and is characterized
by:

HRabi = ω0a†a +
Ω

2
σz − λ(a + a†)σx (1)

In the present work we investigate the critical properties of
the critical Rabi model, in and out of equilibrium. In particu-
lar, the nature of the phase transition for the model and the
dynamics of relaxation under a slow linear quench around
the critical point, reproducing the results from.1
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Schrieffer-Wolf Transformation
Since the interaction term λ(a+a†)σx introduces off-diagonal
block matrices in the Hamiltonian our first task is to find a
method to diagonalize the it. As it was done in,1 the proce-
dure that we’ll employ is the Schrieffer-Wolff transformation.
The method yields the following generator:

S =
1
Ω

(a + a†)(σ+ − σ−) (2)

In the thermodynamic limit a transformation given by this
generator produces a gaussian Hamiltonian:

H̃np = e−SHRabieS = ω0a†a −
Ω

2
−
ω0g2

4
(a + a†)2 (3)

Where the coupling constant g is given by g = 2λ/
√
ω0Ω.
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Figure 1: A representation of the Hamiltonian in matrix form before and after
the transformation up to first order. The blue block matrix represents the
low-energy subspace that we obtain after an projection in that subspace.

Diagonalized Hamiltonian
With a quadratic Hamiltonian in our hands we can perform
a Bogoliubov transformation on the bosonic operators us-
ing the squeezing operator, with an appropriate choice of
parameters this will give us a diagonal Hamiltonian:

Hnp = S†(rnp)H̃npS(rnp) = ω0

√
1 − g2a†a −

Ω

2
+
εnp − ω0

2
(4)

With rnp = −1/4 ln (1 − g2). This equation however fails for
gc = 1, since the energy gap closes at the critical point. If we
dislocate the Hamiltonian first, using the displacement op-
erator D(α) = αa†−α∗a, we can bypass this problem. With an
adequate choice for the displacement parameter, given
by α =

√
Ω/4ω0(g2 − g−2).

We can apply the squeezing operators once again, this
time with the choice rsp = −1/4 ln (1 − g−2). The result is:

Hsp = ω0

√
1 − g−2a†a +

εnp − ω0

2
−

Ω

4
(g2 + g−2) (5)

Phase Transition
The order parameter for this phase transition is the normal-
ized number of photons, given by:

This is a second order phase
transition, as shown in the pic- 0 1 2
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ture below. The phase for g > 1 is called the superradiant
phase, due to the macroscopic occupation of nc.
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Figure 2: Ground energy of the
system and its second deriva-
tive as a function of g/gc. Note
that there’s a discontinuity at
the critical point for the sec-
ond derivative of the GS en-
ergy. This characterizes the 2nd
order phase transition.

Relaxation Dynamics
Lastly we study the dynamics of the system after a sudden
linear quench in the parameter g, given by g(t) = g f t/τq.
The system behaves adiabatically when far away from the
critical point, and the residual energy, defined as Er(t) =
〈0|H(t)|0〉 − EG(t), scales with τ−2

q . On the other hand, near
the critical point the system behaves impulsively, and the
Kibble Zurek Mechanism predicts a scaling of τ−

1
3

q . These re-
lations could be confirmed with numerical simulations, as
shown below.
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Figure 3: Residual energy as a function of the final quench time. The dashed
lines show the expected behavior for both regimes. The colored lines represent
the numerical solutions for the system Dynamics.
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