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Introduction
TheQuantum Rabimodel describes the inter-
action of a quantized field with a two-level
atom and is characterized by:

HRabi = ω0a†a +
Ω

2
σz − λ(a + a†)σx (1)

In the present work we investigate the criti-
cal properties of the critical Rabi model, in
and out of equilibrium. In particular, the na-
ture of the phase transition for the model
and the dynamics of relaxation under a lin-
ear quench around the critical point, repro-
ducing the results from.1
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Schrieffer-Wolf Transformation
Since the interaction term λ(a + a†)σx intro-
duces off-diagonal block matrices in the
Hamiltonian, our first task is to find a method
to diagonalize it. As it was done in,1 the
procedure that we’ll employ is the Schrieffer-
Wolff transformation. The method yields the
following generator:

S =
1
Ω

(a + a†)(σ+ − σ−) (2)

In the thermodynamic limit a transformation
given by this generator produces a gaussian
Hamiltonian:

H̃np = e−SHRabieS = ω0a†a −
Ω

2
−
ω0g2

4
(a + a†)2 (3)

Where the coupling constant g is given by
g = 2λ/

√
ω0Ω.
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Figure 1: A representation of the Hamiltonian in matrix form before
and after the transformation up to first order. The blue block matrix
represents the low-energy subspace that we obtain after an projection
in that subspace.

Diagonalized Hamiltonian
With a quadratic Hamiltonian in our hands
we can perform a Bogoliubov transformation
on the bosonic operators using the squeez-
ing operator, with an appropriate choice of
parameters this will give us a diagonal Hamil-
tonian:

Hnp = S†(rnp)H̃npS(rnp) = ω0

√
1 − g2a†a −

Ω

2
+
εnp − ω0

2
(4)

With rnp = −1/4 ln (1 − g2). This equation how-
ever fails for gc = 1, since the energy gap
closes at this critical point. If we dislocate
the Hamiltonian first, using the displacement
operator D(α) = αa† − α∗a we can bypass
this problem. With an adequate choice for
the displacement parameter, given by α =√

Ω/4ω0(g2 − g−2). We can apply the squeez-
ing operators once again, this time with the
choice rsp = −1/4 ln (1 − g−2). The result is:

Hsp = ω0

√
1 − g−2a†a +

εnp − ω0

2
−

Ω

4
(g2 + g−2) (5)

Phase Transition
The order parameter for this phase transition
is the normalized number of photons, given
by:

The phase for g > 1 is called the superradiant
phase, due to the macroscopic occupation
of nc.
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This is a second order phase transition, as
shown in the picture below.
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Figure 2: Ground state energy of the system and its second derivative
as a function of g/gc. Note that there’s a discontinuity at the critical
point for the second derivative of the GS energy. This characterizes the
2nd order phase transition.

Relaxation Dynamics
Lastly we study the dynamics of the system
after a sudden linear quench in the param-
eter g, given by g(t) = g f t/τq. The system be-
haves adiabatically when far away from the
critical point, and the residual energy, de-
fined as Er(t) = 〈0|H(t)|0〉−EG(t), scales with τ−2

q .
On the other hand, near the critical point the
system behaves impulsively, and the Kibble
Zurek Mechanism predicts a scaling of τ−1/3

q .
These relations could be confirmed with nu-
merical simulations, as shown below.
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Figure 3: Residual energy as a function of the final quench time. The
dashed lines show the expected behavior for both regimes. The colored
lines represent the numerical solutions for the system Dynamics.

Dissipative Phase Transition
The dissipation in the model, which corre-
sponds to a possible loss of photons in the
cavity, can be described through a master
equation of the form

ρ̇ = L[ρ] = −i[HRabi, ρ] + 2κD[a] (6)
with a dissipator of the formD[a] = aρa†−a†aρ−
ρa†a. This dissipator generates the Liouvillian
eigenvalue at the normal phase:

`np = −κ ± iω0

√
1 − g2 (7)

In the closed QRB, the phase transition is
characterized by the closing of the energy
gap. However, in the dissipative case we
observe the closing of the Liouvillian gap in-
stead, which occurs at the critical point:

gc =
√

1 + κ2/ω2
0 (8)
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Figure 4: Plot of the Asymptotic Decay Rate (ADR), defined as the real
part of the Liouvillian eigenvalues. To find the eigenvalues `sp for the
superradiant phase we simply substitute g→ g3/g3

c into `np.
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