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Infroduction

In  the framework of Quantum
Thermodynamics, this work starts from
the collisional model fo conceive
quantum heat engines. These engines
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energy of the system and obtain: power series, one can recover the
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Figure 1: De Chiara et al., 2018 Otto Cycle C I .
Environment: I\I;loc:ToI The continuous time engine shows a an usion .
thermal -+ 50 = QSTeT rectified behavior, otherwise saying, it This. work shows that the collisional
: Equation : . model IS compatible with
state units ME works as a refrigerator in just one way , o
(LME) and not the other (while the heat fhermodynamics and  that it is  an
9 engine and accelerator regimes are interesting line of action fo fackle the
dps _ possible even when the subsystems are problem of modelling gquantum heat
i [Hs, ps] + ZD (ps) | (D engines operating at finite time.
dt swapped). .
) The complefte understanding of how
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Expanding these dissipators, it can be
seen fthat they have a Lindblad
dissipator form.

Quantum Heat Engine

The operafion of a quantum heat
engines confaining 2 or more
subsystems (this work considers 2), can
only be understood looking af the
interaction between the parts and also
local and global detailed balance.

Local detailed balance holds:
|Hs, + Hp,Vi] =0 (i=12)

But global detailed balance does not
hold:

|Hg + Hg, + Hp,, Vi + V5| = [H, V, + V,] # 0
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Discrete Time Engine

All engines In essence are discrete
fime/stroke-based engines. Therefore,
we ook af the work and heat strokes
separaftely and note that the system has
a stroboscopic evolution?,
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Steady-state Energy equations

approach approach

Master
equation at

each stroke
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= (0 — I16)|ps)ss =0 { evolution J

[ |ps)ss = ker (8 — 116)} (4) {Lineor sys’rem}
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of equations o
the energy

Both paths lead fo equivalent
thermodynamic quantifies (work, heat
and entropy production).

heat engines work af the quantum
regime and what are the advanftages
that can be obfained with respect o
their classical counterparts are of utmaost
importance to the next generafion of
quantum technologies.
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