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Collisional Model
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Quantum Heat Engine
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But global detailed balance does not 
hold:

Local detailed balance holds:
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Continuous Time Engine
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The continuous time engine shows a
rectified behavior, otherwise saying, it
works as a refrigerator in just one way
and not the other (while the heat
engine and accelerator regimes are
possible even when the subsystems are
swapped).
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Next step: 
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A schematic representation of this
model1 can be seen in Fig. (1). Its main
idea is to consider the environments as
flywheels of thermal state units which
interact for a very short time with the
system, taken in the limit to 0. A central
idea of this model is to consider the
interaction +" to scale with ;
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Figure 1: De Chiara et al., 2018

Expanding these dissipators, it can be
seen that they have a Lindblad
dissipator form.

The operation of a quantum heat
engines containing 2 or more
subsystems (this work considers 2), can
only be understood looking at the
interaction between the parts and also
local and global detailed balance.
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Within the collisional model, we can
expand in power series the average
energy of the system and obtain:

All engines in essence are discrete
time/stroke-based engines. Therefore,
we look at the work and heat strokes
separately and note that the system has
a stroboscopic evolution2.
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Both paths lead to equivalent

thermodynamic quantities (work, heat
and entropy production).

Expanding the thermodynamic
quantities of the discrete time engine in
power series, one can recover the
continuous time engine if the following
limiting conditions are considered:

As we deal with nonequilibrium
steady-states, the thermodynamic
quantities have stochastic distributions,
which can be represented by
fluctuation relations. So, as a next step
of this work, relations of the following
kind3 will be studied:
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Introduction
In the framework of Quantum

Thermodynamics, this work starts from
the collisional model to conceive
quantum heat engines. These engines
are studied in the continuous time and
discrete time (stroke-based) regimes,
and a link between them is found.

In the end the continuation of this
work is set: fluctuation relations.

This work shows that the collisional
model is compatible with
thermodynamics and that it is an
interesting line of action to tackle the
problem of modelling quantum heat
engines operating at finite time.

The complete understanding of how
heat engines work at the quantum
regime and what are the advantages
that can be obtained with respect to
their classical counterparts are of utmost
importance to the next generation of
quantum technologies.
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Y : strength of the interaction between subsystems
γ : strength of the interaction with the baths


