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1. Eigenfun! Let A be a Hermitian matrix with eigenstuff A|vi〉 = λi|vi〉.

(a) Find the eigenvalues and eigenvectors of An, in terms of |vi〉 and λi. Note that this
includes A−1.

(b) Do the same for A + b, where b is a constant.

(c) Do the same for cA, where c is a constant.

(d) Let f (x) be an arbitrary function defined by a power series expansion f (x) =
∑

n cnxn.
Find the eigenvalues and eigenvectors of f (A) (again in terms of |vi〉 and λi).

(e) Let B = S AS −1. Relate the eigenvalues and eigenvectors of B and A. This is called a
similarity transformation. Unitaries are a particular case, in which S −1 = S †.

(f) We can also invert the argument on our previous result: if A and B are two operators
which share the same eigenvalues, then there must exist a similarity transformation
between them. Show that if A and B are both Hermitian, then this transformation must
be accomplished by a unitary.

(g) Show that S f (A)S −1 = f (S AS −1): similarity transformations infiltrate functions! This
type of infiltration appear all the time. For instance, given a unitary U, UeAU† =

eUAU† .

(h) Now let C be an arbitrary (not necessarily Hermitian) finite dimensional operator.
Show that C†C and CC† are positive semi-definite operators1 and share the same ei-
genvalues, although in general they are different. Note that this property holds only
for finite dimensional systems. For instance, the eigenvalues of a†a are 0, 1, 2, . . ., but
the eigenvalues of aa† are 1, 2, 3, . . ..

2. Functions of operators. The goal of this exercise is to show you that, when manipulating
functions of operators, all that matters is the algebra. That is, we don’t need to know what
are the actual matrix elements or even if the matrix is finite or infinite. All properties follow
only from the abstract algebra between operators.

(a) Let A be an operator such that A2 = 1. Find eαA, where α is a constant. Your results
contemplate as a particular case the operators σx, σy and σz.

(b) Let B be an operator such that B2 = 0. Find eαB. This now contemplates σ+ and σ−.

(c) Consider now the angular momentum operators S x,y,z satisfying [S i, S j] = iεi, j,kS k.
Compute eαS xS ze−αS x . Your results hold for arbitrary spin. If S i = σi/2 (spin 1/2)
then you can check your calculation by using the results in (a).

1A positive definite operator is one whose eigenvalues are always positive. Semi-definite means the eigenvalues
can be either positive or zero (i.e., non-negative). When we say an operator is positive definite or semi-definite it is
already implicit that it is also Hermitian, for the very notion of “positive eigenvalues” would not be defined unless the
eigenvalues are real.



(d) Consider now the harmonic oscillator/bosonic operators a and a†, which satisfy [a, a†] =

1.2 Compute the commutation relations of

A+ =
a†a†

2
, A− = −

aa
2
, Az = a†a +

1
2
. (1)

Show that they satisfy the same algebra as σ+, σ− and σz.

(e) Finally, let S (r) = exp{ r
2 (a†a†−aa)}. Use the results from the previous items to show

that this operator may be factored as

S (r) = etanh(r)A+e− ln(cosh(r))Azetanh(r)A− (2)

This is the message I wanted you to take home: all that matters is the algebra. If
infinite dimensional operators happen to satisfy the same algebra as 2 × 2 matrices,
lucky for us!

3. Quantum gates in Bloch’s sphere. Consider a single qubit and the Bloch sphere repre-
sentation (see figure). The goal of this exercise is to understand what the different points
in Bloch’s sphere represent and how to move around it by means of unitaries.

(a) A general parametrization of the state of a qubit is given by

|ψ〉 = cos
(
θ

2

)
|0〉 + eiφ sin

(
θ

2

)
|1〉 (3)

Show that all states are contained within this parametrization and with θ ∈ [0, π),
φ ∈ [0, 2π]. That is, show that if you choose any state which is not in this set, then you
either violate normalization or you get back the same state up to a global phase (which
is physically irrelevant).

(b) Consider now the bit-flip gate

X = σx =

(
0 1
1 0

)
(4)

Study the action of this gate on the general state |ψ〉 and, from this, explain intuitively
what it does in the Bloch’s sphere representation.

2You probably know what are annihilation and creation operators of course. But I want to emphasize that for this
problem you don’t need to know anything about them, except the fact that [a, a†] = 1.



(c) Do the same for the Haddamard gate

H =
1
√

2

(
1 1
1 −1

)
(5)

(d) Do the same for the phase-shift gate

Vχ =

(
1 0
0 eiχ

)
(6)

When χ = π we get Vπ = Z, which is also called in this case a phase-flip gate.

4. Amplitude Damping. In class we saw the effects of the dephasing model in producing
decoherence. Here I want you to study the amplitude damping model, which consists of a
qubit subject to the following master equation

dρ
dt

= −i
Ω

2
[σz, ρ] + γ

[
σ−ρσ+ −

1
2

(σ+σ−ρ + ρσ+σ−)
]

(7)

Study the evolution of ρ(t) starting from a general state (which you can parametrize, like we
did in class). The message I want you to have from this exercise, is that for the amplitude
damping decoherence also occurs, but it does so together with changes in the populations
(diagonal elements).

5. Bipartite entanglement. Consider a bipartite system AB prepared in the state

|ψ〉 =
c
√

2
(|0, 0〉 + |1, 1〉) +

d
√

2
(|0, 1〉 + |1, 0〉) (8)

where c and d are real numbers. If you wish, you can parametrize them in a convenient
way using some angle.

(a) Without doing any calculations, try to understand for which values of c and d the state
will or will not be entangled.

(b) Compute the reduced density matrices ρA and ρB.

(c) Compute the purity.

(d) Find the Schmidt decomposition of |ψ〉.

(e) Compute the von Neumann entropy of ρA and ρB.

(f) Compute all Rényi-α entropies.

(g) Plot all these things in terms of the angle that you used to parametrize c and d. I want
pretty plots!3

6. Entangling through interactions. In order to entangle particles, we must make them
interact.

(a) Consider first a single qubit in an arbitrary state ρ. Show that the purity is preserved
by any unitary evolution. Associate this with the radius of Bloch’s sphere.

3This is an example of an open ended problem where I won’t tell you exactly what to analyze. Instead, you will
have to figure out yourself what are the interesting quantities to look at. I don’t do this because I am mean (which I’m
not) or lazy (which I definitely am), I do it because that is how things work in research.



(b) Now consider two interacting qubits evolving according to the Hamiltonian

H = g(σ1
+σ

2
− + σ1

−σ
2
+) (9)

In the context of continuous variables (which we will cover soon), this is usually called
a beam splitter interaction. Suppose that they are initially in the product state |ψ(0)〉 =

|0, 1〉AB. Compute the state at an arbitrary time t.

(c) Compute now the reduced density matrices and the populations of each qubit as a
function of time.

(d) Compute the purity (or some entropy) of the reduced state and show that by interacting,
the two qubits become entangled. Find the time where the entanglement is maximum.

(e) Sketch the trajectory of qubit A in its Bloch sphere.

7. Consuming correlations to reverse the flow of heat.4 Consider two qubits with indi-
vidual Hamiltonians HA = −ΩσA

z /2 and HB = −ΩσB
z /2. Suppose that they are initially

prepared in a correlated state
ρAB(0) = ρ0

A ⊗ ρ
0
B + χ (10)

where ρ0
i = e−βiHi/Zi, with Zi = tr(e−βiHi) and βi = 1/Ti being the temperature in which

each qubit was prepared. Moreover, χ = α(|0, 1〉〈1, 0| + |1, 0〉〈0, 1|), where α is a constant.
The interesting thing about this state is that tr(χ) = 0 so, if you look only at A or only at B,
they behave like thermal states. But they are nonetheless correlated. Suppose now that the
two qubits are allowed to evolve according to the interaction

H = g(σA
xσ

B
y − σ

A
yσ

B
x ) (11)

Study the flow of energy in this system, characterized, for instance, by d〈HA〉
dt . Compare

this with the correlation between the two systems, measured by the mutual information
IAB = S (ρA) + S (ρB) − S (ρAB). I want you to show that if there is no correlation (α = 0),
heat will flow from hot to cold. But if they are correlated, then the correlation can be
consumed to make the heat flow from cold to hot.

4This was based on arXiv:1711.03323


