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1 Estimation theory 1

1.1 Introduction

Given a parameter of interest, such as a population mean µ, the objective
of estimation theory is to use a sample to compute a number that represents
in some sense a good guess for the true value of the parameter. The resulting
number is called a point estimate or estimative. Obtaining a estimative en-
tails calculating the value of a statistic2 such as the sample mean X̄ or sample
standard deviation S.

When discussing general concepts and methods of inference, it is convenient
to have a generic symbol for the parameter of interest. We will use the letter
θ for this purpose. The objective of a estimation is to select a single number,
based on sample data, that represents a sensible value for θ. The estimative
of a parameter θ is obtained by selecting a suitable statistic and computing its
value from a the given sample data. The selected statistic is called the estimator
of θ. The symbol θ̂ is customarily used to denote both the estimator of θ and
the estimative resulting from a given sample.

Example 1.1. A natural estimator for the population variance σ2 is the
sample variance:

σ̂2 = S2 =

n∑
i=1

(Xi − X̄)2

n − 1
(1)

Here Xi is a random variable. An alternative estimator would re-
sult from using divisor n instead of n − 1 (i.e., the average squared
deviation):

σ̂2 = S2 =

n∑
i=1

(Xi − X̄)2

n
(2)

We shall see sun why Eq. (1) is a better estimator for the variance than
Eq. (2).

In the best of all possible worlds, we could find an estimator θ̂ for which
θ̂ = θ always. However, θ̂ is a function of the sample Xi’s, so it is a random
variable. For some sample, θ̂will yield a value larger than θ, whereas for other
samples θ̂ will underestimate θ. If we write

θ̂ = θ + error of estimation (3)
1Most of this text is a summary of some ideas presented in Ref. [1]
2A statistic is any quantity whose value can be calculated from sample data. Prior to obtaining

data, there is uncertainty as to what value of any particular statistic will result. Therefore, a statistic
is a random variable and will be denoted by an uppercase letter.
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then an accurate estimator would be one resulting in small estimation errors,
so that estimated values will be near the true value.

1.2 Mean Squared Error

The mean squared error of an estimator θ̂ is3 E[(θ̂−θ)2]. Note that by using
the variance V(Y),

V(Y) = E(Y2) − [E(Y)]2 (4)

we can write

E[(θ̂ − θ)2] = V(θ̂ − θ) + [E(θ̂ − θ)]2

= V(θ̂)︸︷︷︸
variance of
estimator

+ [E(θ̂) − θ]2︸       ︷︷       ︸
(bias)2

(5)

1.3 Unbiased Estimator
An estimator θ̂ is said to be an unbiased estimator of θ if E(θ̂) = θ for every

possible value of θ. If θ̂ is not unbiased, the difference E(θ̂) − θ is called the
bias of θ̂.

Example 1.2. Let us turn to the problem of estimating σ2 based on a
random sample X1,. . . ,Xn. First consider the estimatora,

S2 =

n∑
i=1

(Xi − X̄)2

n − 1
=

n∑
i=1

(X2
i − 2XiX̄ + X̄2)

n − 1

=
(
∑n

i=1 X2
i ) − 2(

∑n
i=1 Xi)X̄ + (

∑n
i=1 X̄2)

n − 1

=
1

n − 1

[ n∑
i=1

X2
i −

(∑n
i=1 Xi

)2

n

]
(6)

Now if we calculate the average value of S2 we have

E(S2) =
1

n − 1

{∑
E[X2

i ] −
1
n

E
[(∑

Xi

)2]}
=

1
n − 1

{∑
(σ2 + µ2) −

1
n

{
V
(∑

Xi

)
+

[
E
(∑

Xi

)]2}}
=

1
n − 1

{
nσ2 + nµ2

−
1
n

nσ2
−

1
n

(nµ)2
}

=
1

n − 1
{nσ2

− σ2
} = σ2 (7)

Than we have show that the sample variance S2 is an unbiased esti-
mator of σ2. The estimator that uses the divisor n can be expressed as
(n − 1)S2/n, so

E
[ (n − 1)S2

n

]
=

n − 1
n

E(S2) =
n − 1

n
σ2 (8)

This estimator is therefore biased.

aHere X̄ =
∑n

i=1 Xi/n

3Here E(X) mean the expected value (or the mean value) of the random variable X.
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Example 1.3. Suppose that X has an uniform distribution on the in-
terval from 0 to an unknown upper limit θ. We want to estimate θ on
the basis of a random sample X1,X2, . . . ,Xn.

θ

1/
θ

Since θ is the largest possible value of the entire population, consider
as a first estimator the largest sample value:

θ̂b = max(X1, . . . ,Xn). (9)

Note we have,

E[θ̂b] =
n

n + 1
θ (10)

Thus, θ̂b is a biased estimator. It is easy to modify θ̂b to obtain an
unbiased estimator of θ. Consider the estimator

θ̂u =
n + 1

n
θ̂b (11)

and now E[θ̂u] =
(

n+1
n

)
E[θ̂b] = θ.

1.4 Estimator with Minimum Variance

Suppose θ̂1 and θ̂2 are two estimators of θ that are both unbiased. Then,
although the distribution of each estimator is centered at the true values of θ,
the spread of the distributions about the true values may be different. Among
all estimators of θ that are unbiased, the one that has minimum variance is
called the minimum variance unbiased estimator (MVUE) of θ.

Seeking an unbiased estimator with minimum variance is the same as seek-
ing an unbiased estimator that has minimum mean squared error.

Example 1.4. When X1 . . . ,Xn is a random sample from a uniform
distribution on [0, θ], the estimator

θ̂1 =
n − 1

n
max(X1, . . . ,Xn) (12)

is a unbiased estimator for θ, i.e. E[θ̂1] = θ. This is not the only
unbiased estimator of θ. Note that E[Xi] = θ/2. This implies that
E[X̄] = θ/2, from which E[2X̄] = θ, i.e. the estimator θ̂2 = 2X̄ is
unbiased for θ. It is possible to show that,

V(θ̂1) =
θ2

n(n + 2)
and V(θ̂2) =

θ2

3n
(13)

As long as n > 1, V(θ̂1) < V(θ̂2), so θ̂1 is a better estimator than θ̂2.
More advanced methods can be used to show that θ̂1 is the MVUE of
θ.
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1.5 The standard error of the estimator

Besides reporting the value of a point estimate, some indication of its pre-
cision should be given. The usual measure of precision is the standard error of
the estimator. The standard error of an estimator θ̂ is its standard deviation

σθ̂ =

√
V(θ̂) (14)

1.6 Methods of point estimation

We now discuss two methods for obtaining estimators: the method of mo-
ments and the method of maximum likelihood.

1.6.1 The method of moments

The basic idea of this method is to equate certain sample characteristics,
such as the mean, to the corresponding population expected values. Then
solving these equations for unknown parameters values yields the estimators.

Let us start by considering X1, . . . ,Xn random sample from a probability dis-
tribution function p(x). For k = 1, 2, . . . , the kth population moment, or kth mo-
ment of the distribution p(x), is E(Xk). The kth sample moment is (1/n)

∑n
i=1 Xk

i .
Thus the first population moment is E(X) = µ and the first sample moment is∑

Xi/n = X̄. The second population and sample moment are E(X2) and
∑

X2
i /n,

respectively. The population moments will be functions of any unknown pa-
rameters θ1, θ2 . . . .

Now, let X1,X2, . . . ,Xn be a random sample from a distribution with prob-
ability distribution function p(x|θ1, . . . , θm), where θ1, . . . , θm are parameters
whose values are unknown. Then the moment estimators θ̂1, . . . , θ̂m are ob-
tained by equating the first m sample moments to the corresponding first m
populations moments and solving for θ1, . . . , θm.

Example 1.5. Let X1, . . . ,Xn be a random sample from a gamma dis-
tribution

p(x|α, β) =

{ 1
βαΓ(α) xα−1e−x/β x > 0

0 otherwise
(15)

where α > 0 and β > 0. It is possible to show that,

E[X] = αβ and E[X2] = αβ2(α + 1) (16)

The moments estimators of α and β are obtained by solving

X̄ =

n∑
i=1

Xi

n
= αβ and

n∑
i=1

X2
i

n
= α(α + 1)β2 (17)

From the above result, it is possible to write the estimators

α̂ =
(X̄)2

1
n
∑

X2
i − (X̄)2

and β̂ =

1
n
∑

X2
i − (X̄)2

X̄
(18)
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1.6.2 Maximum Likelihood Estimation4

Let X1, . . . ,Xn have joint probability distribution function

p(x1, x2, . . . , xn|θ1, . . . , θm) (19)

where the parameters θ1, . . . , θm have unknown values. When x1, . . . , xn are the
observed sample values and Eq. (19) is regarded as a function of θ1, . . . , θm it is
called the likelihood function. The maximum likelihood estimates θ̂1, . . . , θ̂m
are those values of the θi that maximize the likelihood function, so that

p(x1, x2, . . . , xn|θ̂1, . . . , θ̂m) ≥ p(x1, x2, . . . , xn|θ1, . . . , θm) for all θ1, . . . , θm (20)

When the Xi are substituted in place of the xi’s, the maximum likelihood
estimators result.

The likelihood function tells us how likely the observed sample is as a
function of the possible parameter values. Maximizing the likelihood gives
the parameter values for which the observed sample is most likely to have
been generated, that is, the parameter values that "agree most closely" with the
observed data.

Example 1.6. Suppose X1, . . . ,Xn is a random sample from an expo-
nential distribution with parameter λ. Because of independence, the
likelihood function is a product of the individual probability distribu-
tion function:

p(x1, . . . , xn|λ) = (λe−λx1 )(λe−λx2 ) · · · (λe−λxn ) = λne−λ
∑

xi (21)

The logarithmic of the likelihood is

ln
[
p(x1, . . . , xn|λ)

]
= n lnλ − λ

∑
xi (22)

Now we can make

d
dλ

[
ln(p(x1, . . . , xn|λ))

]
= 0 =⇒

n
λ
−

∑
xi = 0 =⇒ λ =

n∑
xi

(23)

Thus the maximum likelihood estimator is

λ̂ =
1
X̄

(24)

Example 1.7. Let X1, . . . ,Xn be a random sample from a normal dis-
tribution. The likelihood function is

f (x1, . . . , xn|µ, σ
2) =

1
√

2πσ2
e−(x1−µ)2/(2σ2) . . . e−(xn−µ)2/(2σ2) (25)

=
( 1

2πσ2

)n/2
e−

∑
(xi−µ)2/(2σ2) (26)

so

ln
[

f (x1, . . . , xn|µ, σ
2)
]

= −
n
2

ln(2πσ2) −
1

2σ2

∑
(xi − µ)2 (27)

To find the Maximizing values of µ and σ2, we must take the partial

4Introduced by R. A. Fisher in the 1920s. You can read more about in Ref. [2].
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derivatives of ln p with respect to µ and σ2 and equating them to zero,

∂
∂µ

ln
[

f
]

= 0 =⇒ µ =
∑ xi

n
=⇒ µ̂ = X̄ (28)

∂

∂σ2 ln
[

f
]

= 0 =⇒ σ̂2 =
∑ (xi − µ)2

n
=⇒ σ̂2 =

∑ (Xi − X̄)2

n
(29)

The Maximum likelihood estimator of σ2 is not the unbiased estimator,
so two different principles of estimation yield two different estimators.

Under very general conditions on the joint distribution of the sample, when
the sample size is large, the maximum likelihood estimator of any parameter
θ is close to θ (consistency), is approximately unbiased [E(θ̂) ≈ θ], and has
variance that is nearly as small as can be achieved by any unbiased estimator.
Stated another way, the maximum likelihood estimator θ̂ is approximately the
MVUE of θ.

1.7 Information and Efficiency

Consider p(x|θ) a probability density function with unknown parameter
θ. The Fisher information is intended to measure the precision in a single
observation. Consider a random variable U obtained by taking the partial
derivative of ln[p(x|θ)] with respect to θ and then replacing5 x by X:

U =
∂
∂θ

[ln[p(X;θ)]] (30)

the Fisher information F(θ) in a single observation from a probability density
function p(x|θ) is the variance of the random variable U = ∂θ

[
ln(p(X|θ))

]
F(θ) = V

[
∂
∂θ

ln(p(X|θ))
]

(31)

There is an alternative expression for F(θ) that is sometimes easier to com-
pute:

F(θ) = E
[(
∂
∂θ

ln(p(X|θ))
)2]

=
∑

x

p(x|θ)
[
∂
∂θ

ln(p(x|θ))
]2

(32)

Proof. Let us start by Let us calculate the average value of U,

E[U] = E
[
∂
∂θ

ln(p(X|θ))
]

E[U] =
∑

x
p(x|θ)

∂
∂θ

ln(p(x|θ)) =
∑

x

∂
∂θ

p(x|θ) =
∂
∂θ

∑
x

p(x|θ) = 0

(33)

5Remember that here X denotes a random variable.
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Now we get,

F(θ) = V
[
∂
∂θ

ln(p(X|θ))
]

= E
[(
∂
∂θ

ln(p(X|θ))
)2]
−���

���
�: 0

E
[
∂
∂θ

ln(p(X|θ))
]2

F(θ) = E
[(
∂
∂θ

ln(p(X|θ))
)2]

(34)

�

Example 1.8 (Fisher Information). Let X be a Bernoulli random vari-
able, so p(x, r) = rx(1 − r)1−x and x = 0, 1. Then

F(r) =

1∑
x=0

p(x|r)
[
∂
∂r

ln(p(x|r))
]2

=
1

r(1 − r)
(35)

and

V(X) = E[X2] − E[X]2 = r(1 − r) = 1/F(r) (36)

which says that the information is the reciprocal of V(X). It is reason-
able that the information is greatest when the variance is smallest.

1.8 Information in a Random Sample

Let us assume a random sample X1,X2, . . . ,Xn from a distribution p(x|θ). Let
p(X1,X2, · · · ,Xn|θ) = p(X1|θ)p(X2|θ) · · · p(Xn|θ) be the likelihood function. The
Fisher information In(θ) for the random sample is the variance of the function
∂θ[ln(p(X|θ))]. Then

∂θ[ln(p(X|θ))] =
∂
∂θ

ln p(X1,X2, . . . ,Xn|θ)

=
∂
∂θ

ln
[
p(X1|θ)p(X2|θ) . . . p(Xn|θ)

]
=
∂
∂θ

ln p(X1|θ) + · · · +
∂
∂θ

ln p(Xn|θ) (37)

Taking the variance of both sides of Eq. (37) gives the information Fn(θ) in the
random sample,

Fn(θ) = V
[
∂
∂θ

ln p(X1,X2, . . . ,Xn|θ)
]

= nV
[
∂
∂θ

ln p(X1|θ)
]

= nF(θ) (38)

Therefore, the Fisher information in a random sample is just n times the infor-
mation in a single observation. This should make sense intuitively, because it
says that twice as many observations yield twice as much information.

1.9 The Cramér-Rao Inequality

Assume a random sample X1,X2, . . . ,Xn from the distribution with proba-
bility distribution function p(x|θ) such that the set of possible values does not
depended on θ. If the statistic θ̂ = θ̂(X1,X2, . . . ,Xn) is an unbiased estimator

7



for the parameter θ, then

V(θ̂) ≥
1

V
[
∂
∂θ [ln p(X1, . . . ,Xn|θ)]

] =
1

nV
[
∂
∂θ ln p(X1|θ)

] =
1

nF(θ)
(39)

The ration of the lower bound to the variance of θ̂ is the efficiency. Then θ̂ is
said to be an efficient estimator if θ̂ achieves the Cramér-Rao lower bound. An
efficient estimator is a minimum variance unbiased estimator (MVUE).
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2 Quantum estimation6

Several quantities of interest in quantum information, including entangle-
ment and purity, are nonlinear functions of the density matrix and cannot, even
in principle, correspond to proper quantum observables. Any method aimed
to determine the value of these quantities should resort to indirect measure-
ments and this corresponds to a parameter estimation problem whose solution,
i.e. the determination of the most precise estimator unavoidably involves an
optimization procedure.

The solution of a parameter estimation problem amounts to find an esti-
mator, i.e. a mapping θ̂ = θ̂(X1,X2, . . . ) from a set χ of measure outcomes
into the set of parameters. As we saw in Sec. 1, optimal estimators in classical
estimation theory are those saturating the Cramér-Rao inequality,

V(θ̂) ≥
1

nF(θ)
(40)

which establish a lower bound on the mean square error V(θ̂) = E[(θ̂({X})−θ)2]
of any estimator of the parameterθ. In Eq. (40) n is the number of measurements
and F(θ) is the Fisher Information

F(θ) =

∫
dx p(x|θ)

[∂ ln p(x|θ)
∂θ

]2

=

∫
dx

1
p(x|θ)

[∂p(x|θ)
∂θ

]2

(41)

where p(x|θ) denotes the conditional probability of obtaining the value x when
the parameter has the value θ. For unbiased estimators, as those we will deal
with, the mean square error is equal to the variance

V(θ̂) = E[θ̂2] − E[θ̂]2 (42)

The parameter θ that we want to estimate does not, in general, correspond
to a quantum observable and our aim is to estimate its values thorough the
measurement of some observable. A quantum estimator Oθ forθ is a selfadjoint
operator, which describe a quantum measurement followed by any classical
data processing performed on the outcomes. In quantum mechanics, according
to the Born rule we have p(x|θ) = Tr[Πxρθ] where {Πx} are the elements of a
positive operator-value measurement (POVM)7, and ρθ is the density operator
parametrized by the quantity we want to estimate.

2.1 Quantum Cramér-Rao Bound

Symmetric Logarithmic Derivate (SLD)

Let us introduce the Symmetric Logarithmic Derivative Lθ as the selfadjoint
operator (L†θ = Lθ) satisfying the equation

Lθρθ + ρθLθ
2

=
∂ρθ
∂θ

(43)

6This section is a summary of the nice work from Matteo G. A. Paris [3]
7Note that

∫
dx Πx = 1
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Note that

∂θp(x|θ) = ∂θ Tr{Πxρθ} = Tr{Πx∂θρθ}

= Tr
{
Πx

(Lθρθ + ρθLθ
2

)}
=

1
2

Tr{ΠxLθρθ} +
1
2

Tr{ΠxρθLθ}

=
1
2

Tr{ΠxLθρθ} +
1
2

Tr{(ΠxρθLθ)†}∗

=
1
2

Tr{ΠxLθρθ} +
1
2

Tr{LθρθΠx}
∗ (44)

by using the cyclic property of the trace, we can write

∂θp(x|θ) = Re(Tr{ρθΠxLθ}) (45)

Then we can use this result to write the Fisher information as

F(θ) =

∫
dx

Re(Tr{ρθΠxLθ})2

Tr{ρθΠx}
(46)

For a given quantum measurement, i.e. a POVM {Πx}, Eq. (41) and Eq. (46)
establish the classical bound on precision, which may be achieved by a proper
processing.

Quantum Fisher Information and Quantum Cramér-Rao bound

In order to evaluate the ultimate bounds to precision we have now to max-
imize the Fisher information over the quantum measurements8

F(θ) =

∫
dx

Re(Tr{ρθΠxLθ})2

Tr{ρθΠx}
≤

1
Tr{ρθΠx}

∫
dx

∣∣∣ Tr{ρθΠxLθ}
∣∣∣2 (47)

=
1

Tr{ρθΠx}

∫
dx

∣∣∣∣∣ Tr
{(√

ρθ
√

Πx

)
(
√

ΠxLθ
√
ρθ)

}∣∣∣∣∣2 (48)

By using the Schwartz inequality:

|Tr(A†B)|2 ≤ Tr(A†A) Tr(B†B) (49)

we can write∣∣∣∣∣ Tr
{(√

Πx
√
ρθ

)†
(
√

ΠxLθ
√
ρθ)

}∣∣∣∣∣2 ≤ Tr
{[√

Πx
√
ρθ

]†[√
Πx
√
ρθ

]}
×

× Tr
{
[
√

ΠxLθ
√
ρθ]†[

√
ΠxLθ

√
ρθ]

}
= Tr

{
ρθΠx

}
Tr

{
LθΠxLθρθ

}
(50)

By using Eq. (50) in Eq. (48), we obtain

F(θ) ≤
∫

dx Tr
{
ΠxLθρθLθ

}
= Tr

{
�
�
�
�
�>

1( ∫
dxΠx

)
LθρθLθ

}
(51)

F(θ) ≤ Tr
{
ρθL2

θ

}
(52)

8In Eq. (47) we are using |z| ≥ Re(z).
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The above chain of inequalities prove that the Fisher information F(θ) of any
quantum measurement is bounded by the so-called Quantum Fisher Informa-
tion (QFI)9

F(θ) ≤ H(θ) ≡ Tr
{
ρθL2

θ

}
= Tr

{
(∂θρθ)Lθ

}
(53)

Leading the quantum Cramér-Rao bound

V(θ) ≥
1

nH(θ)
(54)

to the variance of any estimator. The quantum version of the Cramér-Rao
theorem provides an ultimate bound.

Optimal POVM

The quantum Fisher Information is an upper bound for the Fisher Informa-
tion as it embodies the optimization of the Fisher Information over any possible
measurement. Optimal quantum measurements for the estimation of θ thus
correspond to POVM with Fisher information equal to the quantum Fisher
information, i.e. those saturating both inequalities Eq. (47) and Eq. (50). The in-
equality Eq. (47) is saturated when Tr[ρθΠxLθ] is a real number. The inequality
Eq. (50) is based on the Schwartz inequality

|Tr(A†B)|2 ≤ Tr(A†A) Tr(B†B)

Which is saturated when, e.g. B = cA (where c is a constant):

|c|2|Tr(A†A)|2 = |c|2 Tr(A†A) Tr(A†A)

In our case, we shall have √
Πx
√
ρθ = c

√
ΠxLθ

√
ρθ (55)

The condition Eq. (55) is satisfied iff {Πx} is made by the set of projectors over
the states of Lθ10, which, in turn, represents the optimal POVM to estimate the
parameter θ.

Notice, however, that Lθ itself may not represent the optimal observable to
be measured. In fact, Eq. (55) determines the POVM and not the estimator,
i.e. the function of the eigenvalues of Lθ. This corresponds to a classical post-
processing of data aimed to saturate the Cramér-Rao inequality and may be
pursed by maximum likelihood (see Sec. 1.6.2).

9In Eq. (53) we are using

Lθρθ + ρθLθ
2

=
∂ρθ
∂θ

=⇒ Lθρθ + ρθLθ = 2
∂ρθ
∂θ

=⇒
(
Lθρθ + ρθLθ

)
Lθ = (2∂θρθ)Lθ

Tr
{(

Lθρθ + ρθLθ
)
Lθ

}
= Tr

{
(2∂θρθ)Lθ

}
=⇒ Tr

{
ρθL2

θ

}
= Tr

{
(∂θρθ)Lθ

}
10For instance, if Lθ =

∑
wx|qx〉〈qx|, we could have {Πx} = {|qx〉〈qx|}. Thus√

Πx
√
ρθ = c

√
ΠxLθ

√
ρθ =⇒

√
Πx
√
ρθ = cωx

√
Πx
√
ρθ =⇒

√
Πx
√
ρθ =

√
Πx
√
ρθ with c = 1/wx
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2.2 Expressions for the Symmetric Logarithmic Derivative and
for the Quantum Fisher Information

The Eq. (43) is the Lyapunov matrix equation to be solved for Lθ. The
general solution may be written as

Lθ = 2
∫
∞

0
dt exp

{
− ρθt}(∂θρθ) exp{−ρθt} (56)

Proof. Let us cheek if the Eq. (56) is the solution of Eq. (43). Let us
start by writing the density matrix in its eigenbasis ρθ =

∑
n cn|ψn〉〈ψn|.

Then we have

ρθLθ = 2
(∑

i

ci|ψi〉〈ψi|

) ∫ ∞

0
dt

(∑
n

e−cnt
|ψn〉〈ψn|

)
(∂θρθ)×

×

(∑
m

e−cmt
|ψm〉〈ψm|

)
=

∑
i,n,m

2ci〈ψi|ψn〉

∫
∞

0
dte−(cn+cm)t

〈ψn|(∂θρθ)|ψm〉|ψi〉〈ψm|

=
∑
n,m

2cn

cn + cm
〈ψn|(∂θρθ)|ψm〉|ψn〉〈ψm| (57)

we also have

(Lθρθ)† = Lθρθ =
∑
n,m

2cn

cn + cm
〈ψm|(∂θρθ)|ψn〉|ψm〉〈ψn|

=
∑
n,m

2cm

cn + cm
〈ψn|(∂θρθ)|ψm〉|ψn〉〈ψm| (58)

Combining Eq. (57) and Eq. (58), we obtain

Lθρθ + ρθLθ
2

=
∑
n,m

( cn + cm

cn + cm

)
〈ψn|(∂θρθ)|ψm〉|ψn〉〈ψm|

=
∑
n,m
〈ψn|(∂θρθ)|ψm〉|ψn〉〈ψm|

=
∂
∂θ

∑
n,m
〈ψn|ρθ|ψm〉|ψn〉〈ψm|

=
∂
∂θ

∑
n,m
|ψn〉〈ψn|ρθ|ψm〉〈ψm|

= ∂θρθ (59)

�

Upon writing ρθ in its eigenbasis ρθ =
∑

n cn|ψn〉〈ψn|, leads to

Lθ = 2
∑
n,m

∫
∞

0
dt e−(cn+cm)t

|ψn〉〈ψn|(∂θρθ)|ψm〉〈ψm|

= 2
∑
n,m

〈ψn|∂θρθ|ψm〉

cn + cm
|ψn〉〈ψm| (60)
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By using the Eq. (60) we can write the quantum Fisher information as,

H(θ) = Tr
{
(∂θρθ)Lθ

}
= Tr

{
(∂θρθ)

(
2
∑
n,m

〈ψn|∂θρθ|ψm〉

cn + cm
|ψn〉〈ψm|

)}
= 2

∑
n,m

〈ψn|∂θρθ|ψm〉

cn + cm
Tr

{
∂θρθ|ψn〉〈ψm|

}
= 2

∑
n,m

〈ψn|∂θρθ|ψm〉

cn + cm
〈ψm|∂θρθ|ψn〉

H(θ) = 2
∑
n,m

|〈ψn|∂θρθ|ψm〉|
2

cn + cm
(61)

2.3 Classical and Quantum contributions to the Quantum Fisher
Information

Notice that the SLD is defined only on the support of ρθ [see Eq. (60)] and
both the eigenvalues cn and the eigenvectors |ψn〉may depend on the parameter.
In order to separate the two contributions to the quantum Fisher information
we explicitly evaluate ∂θρθ

∂θρθ = ∂θ

(∑
n

cn|ψn〉〈ψn|

)
=

∑
n

[
(∂θcn)|ψn〉〈ψn| + cn|∂θψn〉〈ψn| + cn|ψn〉〈∂θψn|

]
(62)

Here we are using the notation

|∂θψn〉 = ∂θ|ψn〉 =
∑

k

∂θψnk|k〉 (63)

where ψnk are obtained expanding |ψn〉 in arbitrary basis {|k〉} independent on
θ. Since 〈ψn|ψm〉 = δnm we have

∂θ
[
〈ψn|ψm〉

]
= 〈∂θψn|ψm〉 + 〈ψn|∂θψm〉 = 0 =⇒ 〈∂θψn|ψm〉 = −〈ψn|∂θψm〉 (64)

Using Eqs. (60) and (62) we have

Lθ =
∑
n,m,i

2
cn + cm

〈ψn|

[
(∂θci)|ψi〉〈ψi| + ci|∂θψi〉〈ψi| + ci|ψi〉〈∂θψi|

]
|ψm〉|ψn〉〈ψm|

=
∑

n

∂θcn

cn
|ψn〉〈ψn| +

∑
n,m,i

2ci

cn + cm

[
〈ψn|∂θψi〉〈ψi|ψm〉 + 〈ψn|ψi〉〈∂θψi|ψm〉

]
|ψn〉〈ψm|

=
∑

n

∂θcn

cn
|ψn〉〈ψn| +

∑
n,m

2
cn + cm

[
cm〈ψn|∂θψm〉 + cn〈∂θψn|ψm〉

]
|ψn〉〈ψm| (65)

13



Now, we can use the result Eq. (64)

Lθ =
∑

n

∂θcn

cn
|ψn〉〈ψn| +

∑
n,m

2
cn + cm

[
cm〈ψn|∂θψm〉 − cn〈ψn|∂θψm〉

]
|ψn〉〈ψm|

=
∑

n

∂θcn

cn
|ψn〉〈ψn| + 2

∑
n,m

cm − cn

cn + cm
〈ψn|∂θψm〉|ψn〉〈ψm| (66)

Squaring the above expression, we find

L2
θ =

(∑
n

∂θcn

cn
|ψn〉〈ψn| + 2

∑
n,m

cm − cn

cn + cm
〈ψn|∂θψm〉|ψn〉〈ψm|

)
×(∑

n′

∂θcn′

cn′
|ψn′〉〈ψn′ | + 2

∑
n′,m′

cm′ − cn′

cn′ + cm′
〈ψn′ |∂θψm′〉|ψn′〉〈ψm′ |

)
=

∑
n

(
∂θcn

cn

)2

|ψn〉〈ψn| + 2
∑
n,m′

∂θcn

cn

(cm′ − cn

cn + cm′

)
〈ψn|∂θψm′〉|ψn〉〈ψm′ |

+2
∑
n,m

∂θcm

cm

(cm − cn

cn + cm

)
〈ψn|∂θψm〉|ψn〉〈ψm|

+4
∑

n,m,m′

(cm − cn

cn + cm

)(cm′ − cm

cm + cm′

)
〈ψn|∂θψm〉〈ψm|∂θψm′〉|ψn〉〈ψm′ | (67)

We can use the above result to calculate the quantum Fisher information

H(θ) = Tr{ρθL2
θ} = Tr

{(∑
n

cn|ψn〉〈ψn|

)
L2
θ

}
=

∑
n

cn〈ψn|L2
θ|ψn〉 (68)

Using the expression for L2
θ we have

H(θ) =
∑

n

(∂θcn)2

cn
+ 4

∑
n,m

cn

(cm − cn

cn + cm

)(cn − cm

cm + cn

)
〈ψn|∂θψm〉〈ψm|∂θψn〉 (69)

Thus, we can write11

H(θ) =
∑

n

(∂θcn)2

cn
+ 2

∑
n,m

σ̃nm|〈ψn|∂θψm〉|
2 (70)

with σ̃nm = 2cn[(cm − cn)/(cn + cm)]2. Note that we can also write a more general
expression

H(θ) =
∑

n

(∂θcn)2

cn
+ 2

∑
n,m

(σ̃nm + Λnm)|〈ψn|∂θψm〉|
2 (71)

where Λnm is any antisymmetric term12, i.e, Λnm = −Λmn. If we define σnm =
σ̃nm + Λnm, we have

H(θ) =
∑

n

(∂θcn)2

cn︸       ︷︷       ︸
classical

Fisher information

+ 2
∑
n,m

σnm|〈ψn|∂θψm〉|
2

︸                     ︷︷                     ︸
truly quantum contribution

(72)

11In Eq. (70) we are using the result Eq. (64), i.e. 〈ψm|∂θψn〉 = −〈∂θψm|ψn〉
12It is easy see why that is true. Again, just remember that 〈δθψn|ψm〉 = −〈ψn|δθψm〉
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Some examples of possible values for σnm are

σnm = σ̃nm +��
�*0

Λnm = 2cn

(cm − cn

cn + cm

)2

(73)

σnm = σ̃nm + 2
(cm − cn)3

(cm + cn)2 = 2cm

(cm − cn

cn + cm

)2

(74)

σnm = σ̃nm +
2(cm − cn)(c2

m + c2
m)

(cm + cn)2 = 2cm

(cm − cn

cn + cm

)
(75)

σnm = σ̃nm +
(cm − cn)3

(cm + cn)2 =
(cm − cn)2

cn + cm
(76)

The first term in Eq. (72) represents the classical Fisher information of the
distribution cn

[
remember that ρθ =

∑
n cn|ψn〉〈ψn|

]
whereas the second term

contains the truly quantum contribution.

2.4 Unitary families and the pure state model

Let us consider the case where the parameter of interest is the amplitude of a
unitary perturbation imposed to a given initial state ρ0. The family of quantum
states we are dealing with may be expressed as

ρθ = Uθρ0U†θ (77)

where Uθ = exp{−iθG} is a unitary operator and G is the corresponding Her-
mitian generator. Upon expanding the unperturbed state in its eigenbasis

ρ0 =
∑

k

ck|k〉〈k| we have ρθ =
∑

k

ck|ψk〉〈ψk| where |ψk〉 = Uθ|k〉 (78)

as a consequence we have

∂θρθ =
∑

k

ck

[
(∂θ|ψk〉)〈ψk| + |ψk〉(∂θ〈ψk|)

]
= −i

∑
k

ck

[
G|ψk〉〈ψk| − |ψk〉〈ψk|G

]
= −i

[
G, ρθ

]
= −iUθ

[
G, ρ0

]
U†θ (79)

Let us calculate the SLD,

Lθ = 2
∑
n,m

〈ψn|∂θρθ|ψm〉

cn + cm
|ψn〉〈ψm|

= −2i
∑
n,m

〈n|U†θUθ

[
G, ρ0

]
U†θUθ|m〉

cn + cm
Uθ|n〉〈m|U†θ

= Uθ

(
− 2i

∑
n,m

〈n|
[
G, ρ0

]
|m〉

cn + cm
|n〉〈m|

)
U†θ

= Uθ

(
− 2i

∑
n,m

〈n|G|m〉
(cm − cn

cn + cm

)
|n〉〈m|

)
U†θ (80)
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If we define

L0 = −2i
∑
n,m

〈n|G|m〉
(cm − cn

cn + cm

)
|n〉〈m| we can write Lθ = UθL0U†θ (81)

The corresponding quantum Fisher information is independent on the value of
the parameter and may be written in compact form as

H(θ) = Tr{ρθL2
θ} = Tr{(Uθρ0U†θ)(UθL2

0U†θ)} = Tr{ρ0L2
0} (82)

Thus we have to calculate L2
0

L2
0 =

[
− 2i

∑
n,m

〈n|G|m〉
(cm − cn

cn + cm

)
|n〉〈m|

][
− 2i

∑
n′,m′
〈n′|G|m′〉

(cm′ − cn′

cn′ + cm′

)
|n′〉〈m′|

]
= −4

∑
n,m,m′

〈n|G|m〉〈m|G|m′〉
(cm − cn

cn + cm

)(cm′ − cm

cm + cm′

)
|n〉〈m′| (83)

and ρ0L2
0

ρ0L2
0 = −4

(∑
k

ck|k〉〈k|
) ∑

n,m,m′
〈n|G|m〉〈m|G|m′〉

(cm − cn

cn + cm

)(cm′ − cm

cm + cm′

)
|n〉〈m′|

= −4
∑

n,m,m′
cn〈n|G|m〉〈m|G|m′〉

(cm − cn

cn + cm

)(cm′ − cm

cm + cm′

)
|n〉〈m′| (84)

Finally we have

H(θ) = Tr{ρ0L2
0} = 2

∑
n,m

σnm|〈n|G|m〉|2 (85)

where σnm = 2cn((cm − cn)/(cn + cm))2. Here again we can write σnm = [σnm +
any antisymmetric]. Possible values for σnm are, for example, Eqs. (73)-(76).

Pure state model

For a generic family of pure states we have ρθ = |ψθ〉〈ψθ|. Since ρ2
θ = ρθ we

have

∂θρθ = ∂θ(ρ2
θ) = ρθ(∂θρθ) + (∂θρθ)ρθ (86)

If we compare Eq. (43) and Eq. (86), we find

Lθ = 2∂θρθ = 2∂θ(|ψθ〉〈ψθ|) = 2
[
|∂θψθ〉〈ψθ| + |ψθ〉〈∂θψθ|

]
(87)
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Finally we can calculate the Fisher Information13

H(θ) = Tr
{
(∂θρθ)Lθ

}
=

1
2

Tr
{
L2
θ

}
= 2 Tr

{[
|∂θψθ〉〈ψθ| + |ψθ〉〈∂θψθ|

][
|∂θψθ〉〈ψθ| + |ψθ〉〈∂θψθ|

]}
= 2 Tr

{
|∂θψθ〉〈ψθ|∂θψθ〉〈ψθ| + |ψθ〉〈∂θψθ|∂θψθ〉〈ψθ|+

+ |∂θψθ〉〈ψθ|ψθ〉〈∂θψθ| + |ψθ〉〈∂θψθ|ψθ〉〈∂θψθ|
}

= 2
[
〈ψθ|∂θψθ〉〈ψθ|∂θψθ〉 + 〈∂θψθ|∂θψθ〉〈ψθ|ψθ〉+

+ 〈ψθ|ψθ〉〈∂θψθ|∂θψθ〉 + 〈∂θψθ|ψθ〉〈∂θψθ|ψθ〉
]

= 4
[
〈∂θψθ|∂θψθ〉 + 〈∂θψθ|ψθ〉

2
]

(88)

For a unitary family of pure states |ψθ〉 = Uθ|ψ0〉 we have the following
results:

|∂θψθ〉 = ∂θ
(
Uθ|ψ0〉

)
=

(
∂θUθ

)
|ψ0〉 = −iGUθ|ψ0〉 = −iG|ψθ〉 (89)

〈∂θψθ|∂θψθ〉 = 〈ψθ|G2
|ψθ〉 = 〈ψ0|U†θG2Uθ|ψ0〉 = 〈ψ0|G2

|ψ0〉 (90)

〈∂θψθ|ψθ〉 = i〈ψθ|G|ψθ〉 = i〈ψ0|U†θGUθ|ψ0〉 = i〈ψ0|G|ψ0〉 (91)

The quantum Fisher information thus reduces to the simple form

H(θ) = 4
[
〈ψ0|G2

|ψ0〉 + (i〈ψ0|G|ψ0〉)2
]

= 4
[
〈ψ0|G2

|ψ0〉 − 〈ψ0|G|ψ0〉
2
]

= 4〈ψ0|(∆G)2
|ψ0〉

= 4〈(∆G)2
〉 (92)

where we are using the definition 〈ψ0|(∆G)2
|ψ0〉 = 〈ψ0|G2

|ψ0〉 − 〈ψ0|G|ψ0〉
2.

The quantum Fisher information is independent on θ and proportional to the
fluctuations or the generator on the unperturbed state. Using the quantum
Crammér-Rao bound, we have

V(θ) ≥
1

nH(θ)
=⇒ V(θ) ≥

1
4n〈(∆G)2〉

(93)

Mixed state

We already calculate the QFI for a mixed state in Eq. (85). Here we intend
to recast that result in a special form. Let us start by writing

H(θ) = 2
∑
n,m

σnm|〈n|G|m〉|2 =
∑
n,m

4cn

(cm − cn

cn + cm

)
〈n|G|m〉〈m|G|n〉 (94)

We would like to rewrite this result as a function of the variance 〈(∆G)2
〉,

〈(∆G)2
〉 = Tr

{
(∆G)2ρ0

}
= 〈G2

〉 − 〈G〉2 = Tr
{
G2ρ0

}
− Tr

{
Gρ0

}2
(95)

13Here we will use again the result 〈∂θψθ|ψθ〉 = −〈ψθ|∂θψθ〉.
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First, note that we can write

Tr
{
G2ρ0

}
= Tr

{
G2

(∑
n

cn|n〉〈n|
)}

=
∑

n

cn〈n|G2
|n〉

=
∑
n,m

cn〈n|G|m〉〈m|G|n〉 (96)

Using this result we can write

H(θ) = 4〈(∆G)2
〉 + 4〈G〉2 +

∑
n,m

4
[
cn

(cm − cn

cn + cm

)
− cn

]
〈n|G|m〉〈m|G|n〉

= 4〈(∆G)2
〉 + 4

[
〈G〉2 +

∑
n,m

2cn

( cm

cn + cm

)
〈n|G|m〉〈m|G|n〉

]
= 4〈(∆G)2

〉 + 4
∑

n

cn〈n|
[
〈G〉2 +

∑
n,m

2
( cm

cn + cm

)
G|m〉〈m|G

]
|n〉 (97)

Finally, if we define

K(n) =
∑

m

cm

cn + cm
|m〉〈m| (98)

we can write

H(θ) = 4 Tr
{
(∆G)2ρ0

}
+ 4

∑
n

cn〈n|
[
〈G〉2 +

∑
n

2GK(n)G
]
|n〉 (99)

Now the quantum Crammér-rao bound, V(θ) ≥ 1/nH(θ), can be written as

V(θ) ≥
1

4n

[
〈(∆G)2

〉 +
∑

n

cn〈n|
[
〈G〉2 +

∑
n

2GK(n)G
]
|n〉︸                                   ︷︷                                   ︸

classical contribution
due to the mixing

]−1

(100)

The second term in Eq. (100) thus represents the classical contribution to
uncertainty due to the mixing thus represent the classical contribution to un-
certainty due to the mixing of the initial signal.
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