Here is a list of my publications. You can also have a look at my arXiv page, my Google Citations or my Lattes page (a Brazilian CV website). Or, check-out my students page, for the curriculum of each student.


- G. Guarnieri, Gabriel T. Landi, Stephen R. Clark and John Goold, "Thermodynamics of precision in quantum non equilibrium steady states”, Physical Review Research, 1, 033021 (2019). arXiv 1901.10428. PDF.

L. V. T. Tavares, L. G. dos Santos, G. T. Landi, Pedro R. S. Gomes, P. F. Bienzobaz, "Supersymmetric Quantum Spherical Spins with Short-Range Interactions”. arXiv:1910.04007.

- Franklin L. S. Rodrigues, Gabriele De Chiara, Mauro Paternostro and Gabriel T. Landi, "Thermodynamics of weakly coherent collisional models”, Phys. Rev. Lett. 123 140601 (2019). arXiv:1906.08203. PDF.

- André M. Timpanaro, Giacomo Guarnieri, John Goold, Gabriel T. Landi, “Thermodynamic uncertainty relations from exchange fluctuation theorems”, Phys. Rev. Lett., 123090604 (2019). arXiv 1904.07574. PDF.

Alessio Belenchia, Luca Mancino, Gabriel T. Landi and Mauro Paternostro, “Entropy production in continuously measured quantun systems”, arXiv 1908.09382.

André M. Timpanaro, Sascha Wald, Fernando Semião, Gabriel T. Landi, “Dynamical chaotic phases and constrained quantum dynamics”, Phys. Rev. A., 100, 012117 (2019). arXiv 1807.04374. PDF.

- Susane Calegari, Antônio C. Lourenço, Gabriel T. Landi, Eduardo I. Duzzioni, "Genuine multipartite correlations in Dicke Superradiance”,  arXiv:1907.04263.

Kaonan Micadei, John P. S. Peterson, Alexandre M. Souza, Roberto S. Sarthour, Ivan S. Oliveira, Gabriel T. Landi, Tiago B. Batalhão, Roberto M. Serra, Eric Lutz, "Reversing the direction of heat flow using quantum correlations”, Nature Communications, 102456 (2019). PDF. arXiv:1711.03323

- G. L. Zanin, T. Häffner, M. A. A. Talarico, E. I. Duzzioni, P. H. Souto Ribeiro, G. T. Landi, L. C. Céleri, “Experimental quantum thermodynamics with linear optics”, arXiv 1905.02829. Brazilian Journal of Physics, 00700-6 (2019). PDF.

- Stella Seah, Stefan Nimmrichter, Daniel Grimmer, Jader P. Santos, Angeline Shu, Valerio Scarani, Gabriel T. Landi, “Collisional quantum thermometry”, arXiv 1904.12551.

Gabriel T. Landi, Giacomo Guarnieri, Benjamin Morris, John Goold, Gerardo Adesso, "A resource theory of Maxwells Demons”, arXiv:1903.12629.

Jader P. Santos, Lucas C. Céleri, Gabriel T. Landi, Mauro Paternostro, "The role of quantum coherence in non-equilibrium entropy production”, Nature Quantum Information, 5, 23 (2019). PDFarXiv: 1707.08946.

- W. T. B. Malouf, J. P. Santos, L. A. Correa, M. Paternostro and G. T. Landi, "Wigner entropy production and heat transport in linear quantum lattices”, Phys. Rev. A., 99, 052104 (2019). PDFarXiv 1901.03127


Stefano Scopa, Gabriel T. Landi, Adam Hammoumi, Dragi Karevski, "Exact solution of time-dependent Lindblad equations with closed algebras”, Physical Review A, 99, 022105 (2018). arXiv 1811.05490.

- M Brunelli, L. Fusco, W. Wieczorek, J. Hoelscher-Obermaier, G. T. Landi, F. L. Semião, A. Ferraro, N. Kiesel, T. Donner, G. De Chiara and M. Paternostro. "Experimental determination of irreversible entropy production in out-of-equilibrium mesoscopic quantum systems”. Phys. Rev. Lett. 121, 160604 (2018). arXiv: 1602.06958. See also the synopsis on physics

- Giancarlo Camilo, Gabriel T. Landi and Sebas Eliëns, "On the Strong Subadditivity of the Rényi entropies for bosonic and fermionic Gaussian states”, Phys. Rev. B., 99, 045155 (2019). arXiv: 1810.07070.

- William B. Malouf, John Goold, Gerardo Adesso and Gabriel T. Landi, "Analysis of the conditional mutual information in ballistic and diffusive non-equilibrium steady-states”, arXiv 1809.09931.

- Mariana Afeche Cipolla and Gabriel T. Landi, Processing quantum coherence using the spin-boson model”, arXiv 1808.01224.

- Gabriele De Chiara, Gabriel T. Landi, Adam Hewgill, Brendan Reid, Augusto Roncaglia and Mauro Antezza, "Reconciliation of quantum local master equations with thermodynamics”, New Journal of Physics, 20, 113024,  arXiv 1808.10450.

T. B. Batalhao, S. Gherardini, J. P. Santos, G. T. Landi, M. Paternostro, "Characterizing irreversibility in open quantum systemsTo appear as a chapter of "Thermodynamics in the quantum regime - Recent Progress and Outlook", F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso eds., Springer International Publishing. arXiv:1806.08441

- Stefano Scopa, Gabriel T. Landi and Dragi Karevski, "Lindblad-Floquet description of finite-time quantum heat enginesPhysical Review A97, 062121. DOI: 10.1103/PhysRevA.97.062121. ArXiv: 1803.11180PDF.

- Jader. P. Santos, Alberto L. de Paula Jr., Raphael Drummond, Gabriel T. Landi and Mauro Paternostro, Irreversibility at zero temperature from the perspective of the environment, Physical Review A - Rapid Communications, 97 050101(R) (2018). DOI: 10.1103/PhysRevA.97.050101arXiv:1804.02970PDF

- Jader P. Santos, Lucas C. Céleri, Frederico Brito, Gabriel T. Landi and Mauro Paternostro, "Spin-phase-space-entropy production”, Physical Review A, 97 052123 (2018).DOI: 10.1103/PhysRevA.97.052123. arXiv 1806.04463 PDF.

Sascha Wald,  André M. Timpanaro,  Cecilia Cormick and Gabriel T. Landi, "Energy barriers between metastable states in first-order quantum phase transitions”, Phys. Rev. A. 97 023608 (2018). DOI:


- S. Wald, G. T. Landi and M. Henkel, "Lindblad dynamics of the quantum spherical model”, J. Stat. Mech. (2018) 013103 arXiv:1707.06273. PDF 

- J. P. Santos, G. T. Landi and M. Paternostro, The Wigner Entropy Production Rate, Phys. Rev. Lett. 118, 220601 (2017): DOI: 10.1103/PhysRevLett.118.220601. arXiv: 1706.01145 . PDF. 

- P. H. Guimarães, G. T. Landi and M. J. de Oliveira, "Thermal conductance of a two-level atom coupled to two quantum harmonic oscillators”,  Phys. Rev. E. 95 042108 (2017). DOI: 10.1103/PhysRevE.95.042108. arXiv: 1703.06252PDF 

- G. T. Landi, et. al, "AC susceptibility as a tool to probe the dipolar interaction in magnetic nanoparticles". Journal of Magnetism and Magnetic Materials, 421, 138–151. DOI: 10.1016/j.jmmm.2016.08.011, arXiv: 1604.02978PDF

- M. S. Carrião, et. al. “Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study.” Journal of Applied Physics, 121 173901 (2017). DOI: arXiv: 1702.02022PDF


- J. P Santos and G. T. Landi, "Microscopic theory of a non-equilibrium open bosonic chain”, Phys. Rev. E. 94, 062143 (2016). DOI: 10.1103/PhysRevE.94.062143, arXiv: 1610.05126PDF.

- L. Schuab, E. Pereira and G. T. Landi, "Energy Rectification in Quantum Graded Spin Chains: Analysis of the XXZ Model”, Phys. Rev. E. 94, 042122 (2016). DOI: 10.1103/PhysRevE.94.042122. arXiv: 1608.08960PDF.

- W. L. Ribeiro, G. T. Landi and F. Semião, "Quantum thermodynamics and work fluctuations with applications to magnetic resonance”,  Am. J. of Phys. 84, 948 (2016). DOI: 10.1119/1.4964111. arXiv: 1601.01833. PDF.

- P. H. Guimarães, G. T. Landi and M. J. de Oliveira, "Non-equilibrium quantum chains under multi-site Lindblad baths”, Phys. Rev. E., 94, 032139 (2016). DOI:  10.1103/PhysRevE.94.032139, arXiv: 1609.03885. PDF.

- G. T. Landi and D. Karevski, "Fluctuations of the heat exchanged between two quantum spin chains”, Phys. Rev. E., 93, 032122 (2016). DOI:  10.1103/PhysRevE.93.032122. arXiv: 1412.4230. PDF.

- C. M. Rivaldo-Gómez, F. F. Ferreira, G. T. Landi and J. A. Souza, "New route for hollow materials”, Scientific Reports, 6, 32107 (2016). DOI: 10.1038/srep32107. PDF.


- G. T. Landi and D. Karevski, "Open Heisenberg chain under boundary fields : A magnonic logic gate”, Phys. Rev. B. 91, 174422 (2015). DOI: 10.1103/PhysRevB.91.174422. arXiv: 1501.07732. PDF.

- P. H. Guimarães, G. T. Landi and M. J. de Oliveira, "Thermal rectification in anharmonic chains under an energy-conserving noise”, Phys. Rev. E. 92, 062120 (2015). DOI: 10.1103/PhysRevE.92.062120. arXiv: 1511.06595. PDF.


- G. T. Landi, E. Novais, M. J. de Oliveira and D. Karevski, "Flux rectification in the quantum XXZ chain”, Phys. Rev. E. 90, 042142 (2014). DOI: 10.1103/PhysRevE.90.042142. PDF.

-  G. T. Landi and M. J. de Oliveira, "Fourier's law from a chain of coupled planar harmonic oscillators under energy conserving noise”, Phys. Rev. E. 89, 022105 (2014). DOI: 10.1103/PhysRevE.89.022105. arXiv: 1309.6560. PDF.

- G. T. Landi, “Role of dipolar interaction in magnetic hyperthermia”, Phys. Rev. B. 89, 014403 (2014). DOI: 10.1103/PhysRevB.89.014403. PDF.

- G. T. Landi and C. E. Fiore, "Effect of diffusion in one-dimensional discontinuous absorbing phase transitions”, Phys. Rev. E, 90, 032123 (2014). DOI: 10.1103/PhysRevE.90.032123. PDF.


- G. T. Landi and M. J. de Oliveira, "Fourier's law from a chain of coupled anharmonic oscillators under energy-conserving noise”, Phys. Rev. E. 87, 052126 (2013). DOI: 10.1103/PhysRevE.87.052126. arXiv: 1305.0806. PDF.

- G. T. Landi, "The random dipolar-field approximation for systems of interacting magnetic particles”, J. Appl. Phys. 113, 163908 (2013). DOI: 10.1063/1.4802583. PDF.

- G. T. Landi, T. Tomé, M. J. de Oliveira, "Entropy production in linear Langevin systems”,  J. Phys. A, 46, 395001 (2013). DOI: 10.1088/1751-8113/46/39/395001. arXiv: 1507.00232. PDF.


- E. L. Verde, et. al. "Magnetic hyperthermia investigation of cobalt ferrite nanoparticles : Comparison between experiment , linear response theory and dynamic hysteresis simulations”, J. Appl. Phys. 111, 123902 (2012). DOI: 10.1063/1.4729271. PDF.

- E. L. Verde, et. al. "Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes” AIP Advances, 2, 032120 (2012). DOI: 10.1063/1.4739533. PDF.

- G. T. Landi, "Simple models for the heating curve in magnetic hyperthermia experiments”, JMMM, 326, 14-21 (2012). DOI: 10.1016/j.jmmm.2012.08.034. PDF.

- G. T. Landi and A. D. Santos, "Longitudinal dynamic hysteresis in single-domain particles”, J. Appl. Phys. 111, 07D121 (2012). DOI: 10.1063/1.3676416. PDF.

- G. T. Landi and A. F. Bakuzis, "On the energy conversion efficiency in magnetic hyperthermia applications : A new perspective to analyze the departure from the linear regime”, J. Appl. Phys. 111, 083915 (2012). DOI: 10.1063/1.4705392. PDF.

- G. T. Landi, "Dynamic symmetry loss of high-frequency hysteresis loops in single-domain particles with uniaxial anisotropy”, JMMM, 324, 466-470 (2012). DOI: 10.1016/j.jmmm.2011.08.022. PDF.

- G. T. Landi, "Influence of the magnetization damping on dynamic hysteresis loops in single domain particles”, J. Appl. Phys. 111, 043901 (2012). DOI: 10.1063/1.3684629. PDF.

- L. E. G. Armas, et. al. "Graphene modification with gold nanoparticles using the gas aggregation technique”, Diamond and Related Materials, 23, 18-22 (2012). DOI: 10.1016/j.diamond.2011.12.038.


- G. T. Landi and A. D. Santos, "High-density gas aggregation nanoparticle gun applied to the production of SmCo clusters”. J. Mat. Sci., 45, 4906-4911 (2010). DOI: 10.1007/s10853-010-4271-4. PDF.

- G. T. Landi, S. Romero and A. D. Santos, "High density flux of Co nanoparticles produced by a simple gas aggregation apparatus”, Rev. Sci. Inst., 81, 033908 (2010). DOI: 10.1063/1.3355075. PDF.

 © Gabriel Teixeira Landi 2018