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Abstract.  This work is dedicated to the study of a supersymmetric quantum 
spherical spin system with short-range interactions. We examine the critical 
properties both a zero and finite temperature. The model undergoes a quantum 
phase transition at zero temperature without breaking supersymmetry. At 
finite temperature the supersymmetry is broken and the system exhibits a 
thermal phase transition. We determine the critical dimensions and compute 
critical exponents. In particular, we find that the model is characterized by a 
dynamical critical exponent z  =  2. We also investigate properties of correlations 
in the one-dimensional lattice. Finally, we explore the connection with a 
nonrelativistic version of the supersymmetric O(N) nonlinear sigma model and 
show that it is equivalent to the system of spherical spins in the large N limit.

Keywords: classical phase transitions, quantum phase transitions, solvable 
lattice models

L V T Tavares et al

Supersymmetric quantum spherical spins with short-range interactions

Printed in the UK

023104

JSMTC6

© 2020 IOP Publishing Ltd and SISSA Medialab srl

2020

20

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/ab6a06

PAPER: Quantum statistical physics, condensed matter, integrable systems

2

Journal of Statistical Mechanics: Theory and Experiment

© 2020 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

1742-5468/ 20 /023104+31$33.00

mailto:ltavares@uel.br
mailto:lgsantos@uel.br
mailto:gtlandi@if.usp.br
mailto:pedrogomes@uel.br
mailto:paulabienzobaz@uel.br
stacks.iop.org/JSTAT/2020/023104
https://doi.org/10.1088/1742-5468/ab6a06
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/ab6a06&domain=pdf&date_stamp=2020-02-19
publisher-id
doi


Supersymmetric quantum spherical spins with short-range interactions

2https://doi.org/10.1088/1742-5468/ab6a06

J. S
tat. M

ech. (2020) 023104

Contents

1. Introduction	 2

2. Partition function and supersymmetry breaking	 6

3. Quantum critical behavior	 8

3.1.  Behavior of the lagrange multiplier γ near criticality.......................................8

3.2.  Magnetization, fermionic condensate, and susceptibility................................11

4. Thermal critical behavior	 13

4.1.  Solutions with µ  ≠  0.......................................................................................14

4.1.1.  Magnetization, fermionic condensate, and susceptibility.....................15

4.2. µ  =  0...............................................................................................................17

4.2.1.  Magnetization, fermionic condensate, and susceptibility.....................17

5. Correlation function	 18

6. Equivalence with the nonlinear sigma model	 22

6.1.  Action in components and the large N expansion..........................................24

7. Discussions and conclusions	 28

Acknowledgments................................................................................. 29

References	 29

1.  Introduction

This work is dedicated to the study of a supersymmetric quantum spherical spin with 
short-range interactions. This model refers to a supersymmetric extension of a system 
of quantum spherical spins, i.e. a lattice model involving continuous spin variables, 
−∞ < Sr < ∞, attached to each site of a hypercubic lattice and subject to the spherical 
constraint 

∑
r S

2
r = N , where N is the total number of sites of the lattice. The classical 

Hamiltonian is [1],

Hc =
1

2

∑
r,r′

Jr,r′SrSr′ .� (1)

A quantum version can be constructed by introducing a nontrivial dynamics to the spins 
by means of a kinetic term involving the conjugated momentum of Sr, for example, of 
the form ∼

∑
r P

2
r  [2]. Thus canonical quantization can be immediately carried out. 

Alternatively, quantum features may be introduced using path integrals [3]. Classical 
and quantum versions of spherical spins have been intensively studied in a number of 
situations [2–7]. This is mainly due to the fact that they are exactly soluble, even in the 
presence of an external field and may present non-mean-field critical exponents. The 
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spherical model thus constitutes a fruitful framework to examine a number of questions 
of great interest in the study of critical phenomena and phase transitions.

The supersymmetric model has its origin in the search for further generalizations 
of the previous studies while keeping the same spirit of the spherical model, i.e. with-
out loosing the remarkable properties mentioned above. Usually the spherical versions 
involve only scalar spin variables like Sr at each site, that after quantization corre-
spond to bosonic degrees of freedom. A natural generalization of this situation consists 
in adding degrees of freedom of fermionic character at each site. This can be done in a 
controllable way by requiring that the new degrees of freedom enter on an equal foot-
ing with the bosonic ones, i.e. by requiring that the whole system be supersymmetric.

Over the years, the arena of supersymmetry has become wider, far beyond its origi-
nal conception in describing elementary particles and strings [8]. The eorts to place 
supersymmetry in a broader context, outside high-energy physics, is largely due to 
the unfortunate dissonance with other physical theories, where in general the elegance 
of theoretical descriptions is graced by experimental evidences. After all, it would be 
rather disappointing if nature, at any level, does not choose to enjoy such a remarkable 
symmetry. Apart from the high-energy scenario, favorable places to find supersym-
metry are in systems involving many distinct degrees of freedom, like the ones fre-
quently considered in statistical mechanics and condensed matter physics. One of the 
first examples is the supersymmetry arising in the tricritical Ising model [9, 10]. More 
recently, a number of studies has reported that supersymmetry does emerge in special 
points of the parameter space in several quantum models [11–16]. Of course, in all these 
cases, the supersymmetry is thought in an eective sense, dierent from the original 
purpose. It is in the eective sense that we treat the supersymmetric model discussed 
in this work, i.e. as describing eective quantum degrees of freedom. We remember that 
the quantum spherical model is an akin of the quantum rotors [7], which in turn can be 
used to describe low-energy excitations of many systems [17]. Therefore, it is expected 
that its supersymmetric counterpart can also play an interesting role in such systems.

A proper way to obtain the supersymmetric model is by proceeding with the super-
space formalism [18]. This is so because we have to generalize the spherical constraint in 
compliance with supersymmetry and working in the superspace takes this into account 
automatically. The minimal supersymmetric model requires extended supersymmetry 
with N = 2 supercharges. In this case, the usual spin variable Sr is replaced by the 
superfield Φr(t, θ, θ̄) = Sr + θ̄ψr + ψ̄rθ + θ̄θFr, which contains, in addition to the usual 
spin variable Sr, two fermionic degrees of freedom, ψr and ψ̄r, and an auxiliary (non-
physical) bosonic degree of freedom, Fr. The Grassmann variables θ and θ̄ , together 
with the time, t, are the coordinates of the superspace. The generalization of the spheri-
cal constraint corresponds simply to∑

r

Φ2
r = N .

� (2)

With these ingredients, we can write the action in the superspace,

S =

∫
dtdθdθ̄

[
1

2

∑
r

D̄ΦrDΦr +
1

2

∑
r,r′

Ur,r′ΦrΦr′ − Ξ

(∑
r

Φ2
r −N

)]
,� (3)

where D and D̄ are the supercovariant derivatives,

https://doi.org/10.1088/1742-5468/ab6a06
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D ≡ − ∂

∂θ̄
+ iθ

∂

∂t
and D̄ ≡ ∂

∂θ
− iθ̄

∂

∂t
,� (4)

and

Ξ(t, θ, θ̄) = γ + θ̄ξ + ξ̄θ + θ̄θµ,� (5)
is a Lagrange multiplier that enforces the constraints∑

r

S2
r = N ,

∑
r

Srψr = 0,
∑
r

Srψ̄r = 0, and
∑
r

SrFr =
∑
r

ψ̄rψr.� (6)

The interaction energy Ur,r′ = U(|r− r′|) entering the action (3) controls the range of 
the interaction.

It is also instructive to write the Lagrangian in terms of components. After integrat-
ing over the Grassmann variables, we find

L =
1

2

∑
r

Ṡ2
r +

1

2

∑
r

F 2
r + i

∑
r

ψ̄rψ̇r +
∑
r,r′

Ur,r′
(
SrFr′ − ψ̄rψr′

)

+ γ
∑
r

(
FrSr − ψ̄rψr

)
−

∑
r

(
ψ̄rξ + ξ̄ψr

)
Sr − µ

(∑
r

S2
r −N

)
,

�

(7)

up to redefinitions of the Lagrange multipliers to absorb unimportant numerical fac-
tors. The corresponding supersymmetry transformations that leave this Lagrangian 
invariant are

ε : δεSr = ψ̄rε, δεψr = −iṠrε+ Frε, δεψ̄r = 0, and δεFr = i ˙̄ψrε;� (8)

and

ε̄ : δε̄Sr = ε̄ψr, δε̄ψr = 0, δε̄ψ̄r = iṠrε̄+ Frε̄, and δε̄Fr = −iε̄ψ̇r,� (9)
where ε and ε̄ are the parameters (Grassmann) of the transformation.

In [19] we have provided a detailed discussion on the construction of the supersym-
metric model as well as a comparison with the previous studies. In [19] we also pres-
ent the calculation of the partition function via the saddle point method for arbitrary 
interactions depending only on the distance between the sites, followed by an extensive 
analysis of the mean-field critical behavior (obtained by setting Ur,r′ → U/N ). Such 
analysis provides a qualitative understanding of the general pattern of phase trans
itions in the system.

The present work is a direct continuation of [19]. Here we move beyond the mean-
field analysis and examine in detail the critical properties for the more interesting case 
of short-range interactions,

Ur,r′ ≡ U

d∑
i=1

(
δr,r′+ei + δr,r′−ei

)
,� (10)

where U is the interaction energy that can be positive (ferro) or negative (anti-ferro), 
and we are considering a d-dimensional hypercubic lattice with ei being a set of orthog-
onal unit vectors,

https://doi.org/10.1088/1742-5468/ab6a06
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{
ei
}
= {(1, 0, . . . , 0) ; (0, 1, 0, . . . , 0) ; . . . ; (0, . . . , 0, 1)} .� (11)

By studying the convergence properties of the saddle point equations coming from the 
constraints, we determine the critical dimensions of the model in both cases of zero 
and finite temperature, and also compute the critical exponents of magnetization and 
susceptibility. The analysis of the solutions of the saddle point equations shows that, 
in the case of zero temperature, there is no spontaneous supersymmetry breaking, such 
that a quantum phase transition takes place with supersymmetry preserved. In the case 
of finite temperature, on the other hand, supersymmetry is broken by thermal eects 
and there is an additional solution of saddle point equations, which in turn changes 
the critical exponent of the susceptibility, and hence the universality class of the phase 
transition. By comparing the shift in the critical dimensions in the cases of zero and 
finite temperature we extract a dynamical critical exponent z  =  2. This follows from the 
usual classical-quantum mapping connecting thermal critical phenomena in D spatial 
dimensions and quantum critical phenomena in the reduced d  =  D  −  z spatial dimen-
sions. In this case, z parametrizes the dierence between the behavior of the correlation 
length, ξ, and the correlation time, τc, near the critical point, according to ξ ∼ |t|−ν and 
τc = ξz ∼ |t|−zν, where t measures the distance from the critical point [17, 20]3.

Another remarkable property of classical and quantum spherical models is the con-
nection with nonlinear sigma-type models in the limit of large number of fields. Some 
of the specific relations are

Classical Spherical Model ⇐⇒ Classical Heisenberg Model [23]
Quantum Spherical Model ⇐⇒ O(N) Nonlinear Sigma Model [7, 24]

Gauged Quantum Spherical Model ⇐⇒ CP (N) Model [25].
� (12)

This is an appealing property since it softens the issue with the long-range interactions 
eectively introduced by the spherical constraint, relating such models with ones which 
involve exclusively short-range interactions.

In this context, we address the question of whether the supersymmetric extension 
considered here has an equivalent description in terms of some field theoretical model 
in the large N limit. We shall see that it has also a counterpart version given in terms 
of a supersymmetric nonlinear sigma model, enlarging the set of equivalences. One 
important guide in this direction is the dynamical critical exponent z  =  2, which implies 
an anisotropic scaling between the correlation length and the correlation time. This 
feature leads us to look for continuum field theories that embody this and hence should 
not be Lorentz invariant. They are referred to as Lifshitz field theories, since this type 
of nonrelativistic theory is used in the description of quantum Lifshitz points [26].

In the context of high-energy physics, field theories of Lifshitz type have attracted a 
lot of attention in the recent years, mainly due to the possibility of being implemented 
in quantum gravity [27]. The anisotropic scaling characterized by z  =  2 amounts to 

3 If we interpret the time as an additional spatial coordinate, we can make contact with the anisotropy exponent θ 
usually defined in magnetic systems involving competing interactions (exhibiting a Lifshitz point), which is given 

by θ =
ν‖
ν⊥

 [21, 22]. In this relation, ν⊥ is associated with the correlation length in the directions with only first 

neighbor interactions, and ν‖ with the correlation length along the directions with the competing interactions, i.e. 
ξ⊥ ∼ |t|−ν⊥ and ξ‖ ∼ |t|−ν‖. Therefore, we have the identification θ ⇔ 1

z
.

https://doi.org/10.1088/1742-5468/ab6a06
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the introduction of higher spatial derivative operators in the action, which in eect 
improves the UV behavior without breaking unitarity, rendering the theory power-
counting renormalizable in four spacetime dimensions. In this setting, the local Lorentz 
invariance is expected to emerge in the low-energy sector. Since this proposal, many 
studies have been conducted to examine renormalization group flows in such theo-
ries, with the general pattern pointing out that the restoration of Lorentz invariance 
depends in general on fine-tunings [28, 29].

This work is organized as follows. In section 2 we review the computation of the par-
tition function via saddle point method and discuss the corresponding solutions accord-
ing to supersymmetry breaking. Section 3 is dedicated to the study of the quantum 
critical behavior for the case of short-range interactions, including the computation of 
some critical exponents. In section 4 the previous analysis is extended to the case of 
finite temperatures. In section 5 we compute bosonic correlations functions in the one-
dimensional case, aiming to investigate possible oscillations due to competing interac-
tions. In section 6 we examine the connection with the nonrelativistic supersymmetric 
nonlinear sigma model. We conclude in section  7 with a summary and additional 
comments.

2. Partition function and supersymmetry breaking

In this section we briefly review the saddle point computation of the partition function 
[19]. In terms of imaginary time, t = −iτ , with τ ∈ [0, β] and β = 1/T , the partition 
function reads,

Z =

∫
DΩexp

{
−
∫ β

0

dτ

[
LE +HB

∑
r

Sr +HF

∑
r

ψ̄rψr

]}
,� (13)

where the measure DΩ corresponds to the integral over all fields as well as 
over the Lagrange multipliers that implement the supersymmetric constraints, 
DΩ ≡ DSDFDψDψ̄DµDγDξDξ̄ , and LE is the Euclidean version of the Lagrangian in 
(7),

LE =
1

2g

∑
r

(
∂Sr

∂τ

)2

− 1

2

∑
r

F 2
r +

1
√
g

∑
r

ψ̄r
∂ψr

∂τ
−
∑
r,r′

Ur,r′
(
SrFr′ − ψ̄rψr′

)

− γ

(∑
r

FrSr −
∑
r

ψ̄rψr

)
+
∑
r

ψ̄rξSr +
∑
r

ξ̄ψrSr + µ

(∑
r

S2
r −N

)
.

�

(14)

Notice that we have introduced a parameter g in the Euclidean Lagrangian through the 
rescaling τ → √

gτ , which measures the quantum fluctuations in the system. In the case 
of zero temperature, this is the parameter that controls the distance of the quantum 
critical point, playing a role similar to the temperature in the case of a phase transition 
driven by thermal fluctuations. We have also included in the partition function two 
external fields, HB and HF, so that by taking derivatives with respect to them we obtain 

respectively the order parameter 〈
∑

r Sr〉 and the fermionic condensate 〈
∑

r ψ̄rψr〉.

https://doi.org/10.1088/1742-5468/ab6a06
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The integral over the fields S,ψ, ψ̄, and F are at most quadratic and thus and can 
be directly performed. This leads to

Z =

∫
DµDγDξ̄Dξe−NSeff ,� (15)

with the eective action given by

Seff ≡
1

2N
Tr

∑
q

ln

[
− 1

2g

∂2

∂τ 2
+ µ+

(U(q) + γ)2

2

]

− 1

N
Tr

∑
q

ln

[
1
√
g

∂

∂τ
+ U(q) + γ +HF − 1

2
ξO−1

q ξ̄

]

− 1

4

∫ β

0

dτ
H2

B

µ+ [U(0)+γ]2

2

−
∫ β

0

dτµ,

�

(16)

where U(q) is the Fourier transform of the interaction Ur,r′ ≡ U(|r− r′|),

U(q) =
∑
r−r′

U(|r− r′|)eiq·h,
� (17)

and the operator Oq is defined as

Oq ≡ − 1

2g

∂2

∂τ 2
+ µ+

1

2
[U(q) + γ]2 .� (18)

The remaining integrals in (15) can be evaluated through the saddle point method, 
which becomes exact in the thermodynamic limit N → ∞. The saddle point equa-
tions are determined by the conditions

δSeff

δµ
=

δSeff

δγ
=

δSeff

δξ
=

δSeff

δξ̄
= 0.� (19)

The last two equations  (the fermionic ones) are trivially satisfied with ξ = ξ̄ = 0, 
whereas the bosonic ones yield to the constraint equations for the parameters µ and γ,

1 =
H2

B

4
[
µ+ 1

2
(U(0) + γ)2

]2 +
1

2N

∑
q

g

wB
q

coth

(
β

2
wB

q

)
,� (20)

and

0 =
H2

B

4
[
µ+ (U(0)+γ)2

2

]2 [U(0) + γ] +
1

2N

∑
q

g

wB
q

[U(q) + γ] coth

(
β

2
wB

q

)

− 1

2N

∑
q

g

wF
q

[U(q) + γ +HF ] tanh

(
β

2
wF

q

)
,

�

(21)

with the bosonic and fermionic frequencies defined as

(
wB

q

)2 ≡ 2g

{
µ+

1

2
[U(q) + γ]2

}
and (wF

q )
2 = g [U(q) + γ +HF ]

2 .� (22)

https://doi.org/10.1088/1742-5468/ab6a06
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The analysis of convergence properties of equations (20) and (21) determine the critical 
behavior of the model. In the next section, we will perform a detailed analysis for the 
case of short-range interactions (10), whose Fourier transform takes the form,

U(q) = 2U
d∑

i=1

cos qi.� (23)

Before doing so, however, it is instructive to look at the free energy of the system, 

f = 1
β
Seff, which gives

f = − H2
B

4
[
µ+ 1

2
(U(0) + γ)2

] − µ+
1

βN

∑
q

ln

[
2 sinh

(
β
2
wB

q

)

2 cosh
(
β
2
wF

q

)
]
.� (24)

In the limit T → 0 this expression reduces to the ground state energy, that in the 
absence of the external fields reads,

E0

N
= −µ+

1

2N

∑
q

(wB
q − wF

q )

= −µ+
1

2N

∑
q

{[
2g

(
µ+

1

2
(U(q) + γ)2

)] 1
2

−
[
2g

(
1

2
(U(q) + γ)2

)] 1
2

}
.

�

(25)

We see that it vanishes only for µ = 0, independently of γ. As a nonvanishing ground 
state energy is a diagnosis of supersymmetry breaking this implies that any solution of 
(20) and (21) with µ �= 0 corresponds to a spontaneous supersymmetry breaking. In the 
case of finite temperature, supersymmetry is always broken by thermal eects, indepen-
dent of the values taken by µ and γ.

3. Quantum critical behavior

3.1. Behavior of the lagrange multiplier γ near criticality

To study the quatum critical behavior we have to analyze the spherical constraints 
(20) and (21) in the limit of zero temperature (β → ∞), which enables us to obtain 
the parameters µ and γ as a function of g, HB, and HF. It is helpful to recall here that 
the parameter µ implements the usual constraint 

∑
r S

2
r = N , whereas γ implements 

the constraint 
∑

r

(
FrSr − ψ̄rψr

)
= 0. Thus γ is responsible for the coupling between 

bosonic and fermionic degrees of freedom.
By considering firstly HB = HF = 0, it is immediate to verify that the expression 

(21) is satisfied only if µ = 0 independent of the value of γ, implying that supersym-
metry is not spontaneously broken in this model. In the thermodynamic limit,

1

N

∑
q

→
∫

ddq

(2π)d
,� (26)

the critical behavior is then governed by equation (20) with HB = µ = 0,

https://doi.org/10.1088/1742-5468/ab6a06
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1 =
1

N

∑
q

g

2wB
q

=

√
g

2

∫
ddq

(2π)d
1

|γ + 2U
∑

i cos(qi)|
,� (27)

which involves only on the Lagrange multiplier γ that carries the information of inter-
action between bosons and fermions. This is a crucial dierence compared to the non-
supersymmetric counterpart of the model. The model will exhibit a critical point if 
the momentum integral in (27) does converge even when the denominator approaches 
to zero. The critical point is thus located at γc + 2Umax(

∑
i cos qi) = 0 if γ and U 

have opposite signs, and at γc + 2Umin(
∑

i cos qi) = 0 if γ and U have the same sign. 
By writing the on-shell version of the action (7), we can see that the product γU is 
eectively the interaction energy between first-neighbors (we show this explicitly in 
section 5, equation  (79)), so that γU < 0 corresponds to a ferromagnetic interaction 
whereas γU > 0 to an anti-ferromagnetic one. For concreteness, throughout this work 
we consider that γ and U have opposite signs, say γ > 0 and U  <  0, where

γc = 2|U |d.� (28)
To proceed let us assume momentarily that γ + 2U

∑
i cos(qi) > 0, such that we can 

get rid of the absolute value in the denominator of (27) (we shall see in the numerical 
solution that when γ > 0 and U  <  0, this is indeed the case). It is convenient to rewrite 
(27) with help of the identity [30]

1

x p
=

1

Γ( p)

∫ ∞

0

dt t p−1 exp (−xt) , p, x > 0,� (29)

so that the constraint equation is expressed as

1 =

√
g

4|U |

∫ π

−π

ddq

(2π)d

∫ ∞

0

dt exp

[
−

(
γ

2|U |
−

∑
i

cos qi

)
t

]

=

√
g

4|U |

∫ ∞

0

dt exp

(
− γ

2|U |
t

)∫ π

−π

ddq

(2π)d
exp

(
t
∑
i

cos qi

)

=

√
g

4|U |

∫ ∞

0

dt exp

(
− γ

2|U |
t

)
[I0(t)]

d ,

�

(30)

where Iα(t) is the modified Bessel function of the first type. The analysis now follows a 
standard approach in the literature. We have to investigate the convergence properties 
of the integral appearing in this expression,

Id(γ) ≡
∫ ∞

0

dt exp

(
− γ

2|U |
t

)
[I0(t)]

d .� (31)

To this we use the asymptotic behaviors of I0(t),

I0(t) ∼ 1, t → 0,

I0(t) ∼
et

(2πt)
1
2

, t → ∞.� (32)
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These behaviors show that a potential divergence of (31) is located in the region of large 
values of t. It is convergent at the critical point for d  >  2, which determines the lower 
critical dimension of the model d0l = 2. In this case the model exhibits a critical point 
when γ reaches γc, with a corresponding value g  =  gc. To extract the dependence on 
(γ − γc) according to the dimensionality in d  >  2, we consider the derivative of Id with 
respect to γ in the large-t region,

I ′
d(γ) ∼ −

∫ ∞

0

dt t−
(d−2)

2 exp[−t(γ − γc)].� (33)

This expression converges at the critical point for d  >  4, which determines the upper 
critical dimension of the model d0u = 4. For 2  <  d  <  4, we can find the leading order 
contribution for γ ∼ γc by evaluating the integral in (33):

I ′
d(γ) ∼ −(γ − γc)

−(4−d)
2 Γ

(
4− d

2

)
.� (34)

Integrating this expression in γ we obtain

Id(γ)− Id(γc) ∼ −(γ − γc)
(d−2)

2(
d−2
2

) Γ

(
4− d

2

)
.� (35)

Since equation (30) is of the form 1/
√
g ∼ Id(γ), by expanding it around the critical 

point and using (35), it follows that

τg ∼ (γ − γc)
(d−2)

2 , for 2 < d < 4,� (36)

where τg ≡ (
√
g −√

gc)/
√
gc .

For d  =  4 we need to be a little more careful with (31). We also consider its deriva-
tive with respect to γ,

I ′
d(γ) ∼ −

∫ ∞

0

dt exp

(
− γ

2|U |
t

)
t [I0(t)]

4 .� (37)

We then split the integration region as 
∫∞
0

=
∫ 1

0
+
∫∞
1

. The integral in the first part is 

clearly finite and for the second part we use the asymptotic behavior in (32),

I ′
d(γ) ∼ −

∫ ∞

1

dt exp

(
− t

2|U |
(γ − γc)

)
t−1

∼ −Γ

(
0,

1

2|U |
(γ − γc)

)
,

� (38)

where Γ
(
0, (γ−γc)

2|U |

)
 is the incomplete gamma function [30]. Its behavior for small (γ − γc) 

is

Γ

(
0,

1

2|U |
(γ − γc)

)
= −ln

[
(γ − γc)

2|U |

]
+ Γ′(1) +O(γ − γc),� (39)

where −Γ′(1) is the Euler constant. Using this in (38) and integrating in γ, we get
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Id(γ)− Id(γc) ∼ (γ − γc)ln(γ − γc),� (40)
that, together with equation (30), implies

τg ∼ −(γ − γc)ln(γ − γc).� (41)
For d  >  4, as I ′(γ) is convergent at the critical point and it immediately follows 

that

I(γ) = I(γc) + (γ − γc)I ′(γc) + · · · ,� (42)
which, in turn, when plugged in (30) and expanded around the critical point, furnishes

τg ∼ (γ − γc).� (43)
The above results can be summarized as

(γ − γc) ∼





τ
2

d−2
g for 2 < d < 4

− τg
lnτg

for d = 4

τg for d > 4

,� (44)

showing the behavior of γ near the quantum critical point. This corresponds to a 
quantum phase transition without supersymmetry breaking.

A numerical analysis of equation  (20) can help reveal the relation between the 
parameters γ and 

√
g as a function of N. The results are shown in figure 1 for some 

integer dimensions, where we observe the points of nonanalyticity arising as we increase 
N, i.e. as we go to the thermodynamic limit, signalling the quantum phase transition. 
Moreover, the numerical solution of figure 1 shows that 

√
g >

√
gc for γ > γc, whereas √

g <
√
gc for γ = γc. Notice that γ never goes below the critical value γc.

3.2. Magnetization, fermionic condensate, and susceptibility

In the quantum case, the thermodynamic quantities can be computed from the free 
energy (24) in the limit of zero temperature, with µ = 0,

f = − H2
B

2 [U(0) + γ]2
+

√
g

2N

∑
q

{[
(U(q) + γ)2

] 1
2 −

[
(U(q) + γ +HF )

2] 1
2

}
,

� (45)
where U(0) = −2|U |d = −γc. We first compute the magnetization,

mB ≡

〈
1

N

∑
r

Sr

〉
= − ∂f

∂HB

=
HB

(γ − γc)2
,� (46)

which vanishes for HB  =  0 and 
√
g >

√
gc, since γ is always dierent from γc. However, 

when HB  =  0 and 
√
g <

√
gc there is an indeterminacy in the magnetization because, for 

such region, γ = γc. In this case, we can use the spherical constraint in the presence of 
HB to settle this indeterminacy. Notice first that according to equation (30), gc is given 
by
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1
√
gc

=
1

4|U |

∫ ∞

0

dt exp

(
− γc
2|U |

t

)
[I0(t)]

d

=
1

4|U |

∫ ∞

0

dte−dt [I0(t)]
d .

� (47)

Now, considering the constraint equation for values 
√
g <

√
gc and including the depend

ence on the external field HB, we obtain

1 =
H2

B

(γ − γc)
4 +

√
g

4|U |

∫ ∞

0

dt exp

(
− γc
2|U |

t

)
[I0(t)]

d

=
H2

B

(γ − γc)
4 +

√
g

√
gc
.

�

(48)

By using (46) in this relation it follows immediately that

m = ±
(√

gc −
√
g

√
gc

) 1
2

,� (49)

giving the quantum critical exponent βg = 1/2 for d  >  2. As in the non-supersymmetric 
counterpart, the magnetization does not depend on the dimension [7].

Analogously to the bosonic magnetization, the fermionic condensate can be com-
puted as

CF ≡

〈
1

N

∑
r

ψ̄rψr

〉
= − ∂f

∂HF

=

√
g

2

1

N
sign

∑
q

(γ + U(q) +HF )

=

√
g

2
sign(γ +HF ),

� (50)

Figure 1.  Formation of the singularity according to the numerical analysis of 
equation  (20) with HB = µ = 0 as N is increased. The zero mode (that leads 
the critical point for γ > 0 and U  <  0) is treated separately before taking the 
thermodynamic limit. For U ≡ −1, the critical points are 

√
gc = 7.91, 12.9, and 

17.29, for dimensions 3, 4 and 5, respectively.
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where we have used that 
∑

q U(q) = U(|h| = 0) = 0, since there is no self-interaction. 
Therefore, for HF  =  0, the fermionic condensate is a function of g both below and above 
the critical point.

Finally, we obtain the bosonic susceptibility from equation (46),

χB =
∂mB

∂HB

= (γ − γc)
−2 ,� (51)

which diverges for 
√
g <

√
gc since γ = γc. This is a characteristic of spherical models 

[4]. For 
√
g >

√
gc the quantity (γ − γc) depends on the dimension according to equa-

tion (44). In particular, for 2  <  d  <  4, we get

χB = τ
− 4

d−2
g ,� (52)

so that we find the new critical exponent γg =
4

d−2
, showing that the supersymmetric 

quantum spherical model indeed exhibits a non-trivial behavior for the case of short-

range interactions. It is instructive to compare this critical exponent with the non-

supersymmetric counterpart, given by γg =
2

d−2
 [7].

Above the upper critical dimension, d  >  4, equation (44) implies

χ ∼ τ−2
g ,� (53)

recovering the mean-field critical exponent γg = 2 [19].

4. Thermal critical behavior

In the previous case we have seen that supersymmetry is not spontaneously broken at 
zero temperature as the saddle point equations enforce µ = 0. At finite temperature, 
however, supersymmetry is always broken. This is a consequence of the dierent way 
in which bosons and fermions behave in the presence of thermal fluctuations [31, 32]. 
Therefore, it is expected in this case that the saddle point equations admit solutions 
with µ �= 0.

At finite temperature the thermal fluctuations in general dominate over quantum 

fluctuations (βwB/F
q << 1), so that the critical behavior is governed essentially by the 

former. In this situation, we can expand the hyperbolic functions in equations (20) and 

(21) for small arguments (coth x ∼ 1
x
+ x

3 and tanh x ∼ x) to study the critical behavior. 
In the absence of external fields, we then find

1 ≈ 1

2βN

∑
q

1[
µ+ 1

2
(γ + 2U

∑
i cos(qi))

2] ,� (54)

and

0 ≈ 1

2βN

∑
q

1[
µ+ 1

2
(γ + 2U

∑
i cos(qi))

2]
[
2U

∑
i

cos(qi) + γ

]

− βg

6N

∑
q

[
2U

∑
i

cos(qi) + γ

]
.

�

(55)
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Equation (54) shows that the model can exhibit a critical behavior for the whole region 
µ � 0. Remembering that γ > 0 and U  <  0, the critical point occurs at the minimum 
of U(q), which now reads

γc = 2|U |d+
√

2|µ|.� (56)

The analysis of the critical behavior follows similarly as in the case of the zero 
temperature and can be obtained from equation (54) in the thermodynamic limit,

β =

∫
ddq

(2π)d
1[

−2|µ|+ [γ − 2|U |
∑

i cos(qi)]
2]

=
1

2
√
2|µ|

∫
ddq

(2π)d

[
1

|γ − 2|U |
∑

i cos(qi)| −
√
2|µ|

− 1

|γ − 2|U |
∑

i cos(qi)|+
√
2|µ|

]

=
1

2|U |
√
2|µ|

∫ ∞

0

dt exp

(
− γt

2|U |

)
sinh

(√
2|µ|

2|U |
t

)
[I0(t)]

d ,

�

(57)

where in the last line we have employed the representation in (29). Analysing the 
asymptotic behaviors, it is straightforward to show that the integral converges when 
t → 0 for any dimension regardless the value of µ. On the other hand, for large values 
of t the convergence depends on the dimension as well as on the parameter µ and we 
shall investigate the cases µ �= 0 and µ = 0 separately.

4.1. Solutions with µ �= 0

For µ �= 0 the asymptotic behavior of the integral

Id(γ,µ) ≡
∫ ∞

0

dt exp

(
− γ

2|U |
t

)
sinh

(√
2|µ|

2|U |
t

)
[I0(t)]

d ,� (58)

shows that divergences can occur for large values of t depending on the dimensionality. 
In this case, the integral Id(γ,µ) is convergent for d  >  2 when γ > γc, exhibiting a criti-

cal point at γc = 2|U |d+
√
2|µ|. As in the previous section, we obtain the dependence 

of (γ − γc) in the large-t region from the derivative of equation (58) with respect to γ,

I ′
d(γ,µ) ∼ −

∫ ∞

0

dt t−
(d−2)

2 exp[−t(γ − γc)].� (59)

Comparing with the equation (33) we verify that for finite temperature and µ �= 0 the 
model exhibits the same convergence properties as in the quantum case, showing a 
thermal phase transition with supersymmetry broken. According to equation (57), the 
integral Id(γ,µ) is proportional to 1/T, so that

(γ − γc) ∼





τ
2

d−2

β for 2 < d < 4

− τβ
lnτβ

for d = 4

τβ for d > 4

,� (60)

with τβ ≡ (T − Tc)/Tc. The points of non-analyticity at γ = γc and how they depend on 
the dimensions of the system are illustrated in figure 2.
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4.1.1. Magnetization, fermionic condensate, and susceptibility.  Let us start with the 
bosonic magnetization, which is obtained from the free energy, equation (24),

m = − ∂f

∂HB

=
HB

2
[
−|µ|+ 1

2
(γ − 2|U |d)2

] .� (61)

According to the numerical solution shown in figure 2, when T > Tc the parameter γ is 

always greater than γc, such that the quantity 
[
−|µ|+ 1

2
(γ − 2|U |d) 2

]
 is dierent from 

zero. Thus, for HB  =  0 the magnetization vanishes. For T < Tc, we have γ = γc and the 
magnetization leads to an indeterminacy when HB  =  0. As in the case of zero temper
ature, we can settle this by using the spherical constraint, equation (54), in the presence 
of HB. With this we find

mB = ±
(
Tc − T

Tc

) 1
2

,� (62)

characterizing a thermal critical exponent βT = 1/2 for all dimensions d  >  2.
As the bosonic magnetization, from the free energy equation  (24) we obtain the 

expression for the fermionic condensate,

CF = − ∂f

∂HF

=
1

β

∫
ddq

(2π)d
γ − 2|U |

∑
i cos(qi)[

−2|µ|+ (γ − 2|U |
∑

i cos(qi))
2] .� (63)

In this expression, we have used the second constraint equation (55) to express g in 
terms of γ, µ and β . From this form, we see that for T < Tc, as γ is fixed at γ = γc, the 
condensate behaves as

CF ∝ T ,� (64)
independent of dimension. When T > Tc, γ changes with the temperature but the 
expression (54) does not furnish an explicit expression of γ = γ(β). In this case, we 
proceed with a numerical analysis of the fermionic condensate in the region γ > γc. To 
this, we use the identity (29) to rewrite (63) in a more convenient way,

Figure 2.  Equation (54) leads to a nonanalyticity point as N is increased. The 
plot was made using µ = U = −1 for d = 3, 4, and 5, defining the respective sets of 
critical points: (γc = 7.41; kBTc = 22.02), (γc = 9.41; kBTc = 51.69), and (γc = 11.41; 
kBTc = 88.71).
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CF =
1

β

1

2|U |
√
2|µ|

∫ ∞

0

dte−(t
γ

2|U|) sinh

(
t

√
2|µ|

2|U |

)[
γ [I0(t)]

d − 2|U |d [I0(t)]d−1 I1(t)
]
.� (65)

The results are shown in figure 3, where we see that above the critical temperature the 
condensate also does not depend on the dimension,

CF ∝ T
1
2 .� (66)

For very high temperatures we can see this behavior emerging in (63). Indeed, in this 

limit the relation (54) implies γ ∼ T
1
2 (neglecting µ and U compared to γ), that when 

plugged into (63) leads to the above result. Precisely these same dependencies with the 
temperature are obtained in the mean-field version of the model [19].

Next we turn to the bosonic susceptibility from the equation (61),

χB =
∂mB

∂HB

=
1

2

[
−|µ|+ 1

2
(γ − 2d|U |)2

]−1

,� (67)

which diverges for T < Tc since γ = γc. For T > Tc we expand around the critical point, 
so that

χB ∼ 1

2

[√
2|µ|(γ − γc) +

1

2
(γ − γc)

2

]−1

.� (68)

As µ �= 0, the behavior of the susceptibility is governed by the dominant term (γ − γc). 
Using equation (60) to express (γ − γc) in terms of the temperature we finally obtain,

χB ∼





τ
−( 2

d−2)
β for 2 < d < 4

−
(

τβ
lnτβ

)−1

for d = 4

τ−1
β for d > 4

.� (69)

For 2  <  d  <  4 we obtain a new critical exponent, γT =
(

2
d−2

)
 and for d  >  4 we recover 

the mean-field exponent, γT = 1 [19].
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Figure 3.  The plots show a numerical analysis of the fermionic condensate, 
with µ �= 0, in the region T > Tc for d  =  3 and d  =  5 in the left and right panels, 
respectively. The best fit of the numerical data is CF = a+ b

√
T , where a and b 

are constants.
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4.2. µ = 0

By taking µ = 0 in (57) we obtain

β =
1

4|U |2

∫ ∞

0

dt t exp

(
− γ

2|U |
t

)
[I0(t)]

d .� (70)

We see that the additional factor of t in the integrand compared to the previous case 
will change the convergence properties and hence the critical behavior. Indeed, the 
integral we shall investigate now is

I0
d (γ) ≡

∫ ∞

0

dt t exp

(
− γ

2|U |
t

)
[I0(t)]

d .� (71)

This integral converges at the critical point γ = γc for d  >  4, which determine the lower 
critical dimension d0l = 4. To determine the upper critical dimension we consider the 
derivative with respect to γ,

I ′0
d (γ) ∼ −

∫ ∞

0

dt t−(
d−4
2 ) exp (−t (γ − γc)) .� (72)

This expression converges at the critical point for d  >  6, giving the upper critical dimen-
sion d0u = 6. By proceeding similarly as in section 3, we obtain the relation between 
(γ − γc) and τβ according to the dimensionality,

(γ − γc) ∼





τ
2

d−4

β for 4 < d < 6

− τβ
lnτβ

for d = 6

τβ for d > 6

.� (73)

Thus, the model exhibits a nontrivial critical behavior for 4  <  d  <  6.

4.2.1. Magnetization, fermionic condensate, and susceptibility.  Following the analysis 
of the previous sections, the critical exponents can be promptly computed. To avoid 
unnecessary repetition, we just quote the results. The critical exponent of the magne-
tization is βT = 1/2 for all dimensions d  >  4. The fermionic condensate also shows the 
same behavior as in the case µ �= 0, that is

CF ∝

{
T for T < Tc

T
1
2 for T > Tc

,� (74)

where the high-temperature dependence is determined numerically, as shown in figure 4. 
The results are also independent of the dimension.

Finally, near the critical point the susceptibility behaves as

χB ∼





τ
−( 4

d−4)
β for 4 < d < 6(
τβ
lnτβ

)−2

for d = 6

τ−2
β for d > 6

,� (75)

which gives the critical exponents γT = 4
d−4

 for 4  <  d  <  6, and γT = 2 for d  >  6.
A summary of the results is exhibit in the table 1.
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5. Correlation function

The on-shell form of the Lagrangian (7) reveals an interesting feature of interactions 
between the bosonic variables Sr of dierent sites. The on-shell formulation is obtained 
by integrating out the auxiliary field Fr. As it appears only quadratically in the action, 
this process is equivalent to use its equation of motion, which is purely algebraic

∂L

∂Fr

= 0 ⇒ Fr = −γSr −
∑
r′

Ur,r′Sr′ ,� (76)

i.e. there is no time derivative of Fr and hence it is not a dynamical physical degree of 
freedom. Plugging this back in (7), we obtain the on-shell Lagrangian

L =
1

2

∑
r

Ṡ2
r + i

∑
r

ψ̄rψ̇r −
1

2

∑
r,r′

Jr,r′SrSr′ −
∑
r,r′

Ur,r′ψ̄rψr′ −
∑
r

Sr

(
ψ̄rξ + ξ̄ψr

)

− µ
∑
r

(
S2
r −N

)
− 1

2
γ2N − γ

(∑
r,r′

Ur,r′SrSr′ +
∑
r

ψ̄rψr

)
,

�

(77)

where Jr,r′ ≡
∑

r′′ Ur,r′′Ur′′,r′.
Let us focus on the terms involving interactions of Sr in dierent sites,

LSS ≡ −1

2

∑
r,r′

Jr,r′SrSr′ − γ
∑
r,r′

Ur,r′SrSr′ .� (78)

To make clear the role of these terms, we consider explicitly the interaction (10) 
for a one-dimensional lattice. In this case, we have Ur,r′ = U(δr,r′+1 + δr,r′−1) and 
Jr,r′ = U2(δr,r′+2 + δr,r′ + δr,r′−2), so that (78) becomes

LSS = −U2

2

∑
r

(SrSr+2 + SrSr−2)− γU
∑
r

(SrSr+1 + SrSr−1),� (79)

with the Lagrange multiplier γ playing the role of an interaction energy between first 
neighbors. Thus, we see that even if Ur,r′ is only a nearest neighbor interaction, once 
we integrate out the auxiliary field Fr, the resulting interactions Jr,r′ will be eectively 

Figure 4.  Fermionic condensate for µ = 0 and T > Tc. The plots, for d  =  5 (left 
panel) and d  =  7 (right panel), show the same behaviors as the case with µ �= 0.
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of second nearest-neighbors. As γ and U have opposite signs, the interaction energies 
U2/2  >  0 and γU < 0 favour dierent orderings between first and second neighbors 
(ferro and anti-ferro, respectively). In general, models with competing interactions give 
rise to rich phase diagrams with modulated phases, as it has been observed in several 
lattice models [33–36], including the classical [21, 37] and quantum spherical models 
[38, 39]. The competing interactions also aect the correlation functions. When the 
interactions are independent of each other, depending on their relative magnitude, they 
usually lead to an oscillatory behavior in the correlation, besides the usual exponential 
decay. In particular, as it has been shown in [38] for the quantum spherical model with 
competing interactions, such oscillation manifests already in the one-dimensional cor-
relation function.

In the present case, however, the interactions are not independent at all, since the 
saddle point solution for γ implies that it must satisfy the spherical constraints, which 
in turn involve the other parameters, including U. Therefore it is not clear a priori 
whether the correlation functions will exhibit oscillatory behavior. We investigate this 
point further by computing the correlation function in the one-dimensional supersym-
metric model.

Table 1.  Summary of the critical behavior. To facilitate comparison, we have 
included in the two bottom rows of the table  the corresponding results for the 
non-supersymmetric quantum and classical versions of the spherical model. 
In addition, we have included the results for the critical exponents η and 
ν. The exponent η follows directly from the behavior of the correlation function 

〈S−qSq〉 for small momenta (large distances) and taken at the critical point, i.e. 

〈S−qSq〉 ∼ (wB
q )

−2 ∼
(
−
√
2|µ|U |q|2 + 1

2
U2|q|4 + · · ·

)
−1 ∼ |q|−2+η, which shows 

clearly the dierence of the values of η in the cases of µ = 0 and µ �= 0. The 

exponent ν can be computed in all the cases from ξ ∼ (γ − γc)
− 1

2, and then using 

relations (44), (60) and (73) to express ξ in the form ξ ∼ τ−ν for each one of 
the cases. We can check immediately that all the exponents satisfy the standard 
scaling relations, recalling that in the case of zero temperature we must replace 
d → d+ z.

T µ dl du γg/T ν η β Univ. class

0 0 2 4
{
4/ (d− 2 )

2

{
1/ (d− 2 )

1/2

−2 1
2

SUSY quantum

>0 �= 0 2 4
{
2/ (d− 2)

1

{
1/ (d− 2)

1/2

0 1
2

SUSY thermal I

>0 0 4 6
{
4/ (d− 4)

2

{
1/ (d− 4)

1/2

−2 1
2

SUSY thermal II

0 — 1 3
{
2/ (d− 1)

1

{
1/ (d− 1)

1/2

0 1
2

Quantum

>0 — 2 4
{
2/ (d− 2)

1

{
1/ (d− 2)

1/2

0 1
2

Classical
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The correlation function can be computed in the usual way by introducing a site-
dependent field, through the replacement,

HB

∑
r

Sr ⇒
∑
r

HrSr.

� (80)
With this, the free energy becomes

f = − 1

4N

∑
q

(2g)
HqH−q(
wB

q

)2 − µ+
1

βN

∑
q

ln

[
2 sinh

(
β

2
wB

q

)]

− 1

βN

∑
q

ln

[
2 cosh

(
β

2
wF

q

)]
.

�

(81)

In the momentum space, the correlation function follows immediately,

〈SqS−q〉 = − 1

β

∂2f

∂HqH−q

=
g

βN

1(
wB

q

)2 .� (82)

Turning back to the position space, the one-dimensional correlation function reads,

〈SrSr+h〉 =
1

2β

∫ π

−π

dq

2π

eiqh

µ+ 1
2
(γ − 2|U | cos q)2

.� (83)

For simplicity, in the following analysis we shall consider the saddle point solution 
with µ = 0, since it is not a relevant parameter for the question we are investigating. 
Of course, the general conclusions are not aected when µ �= 0. We have to analyse the 
correlation function together the constraint equation,

1 =
1

β

∫ π

−π

dq

2π

1

(γ − 2|U | cos q)2
.� (84)

To make transparent the main point of this analysis, we shall consider a slightly 
more general computation, by deforming the correlation function according to

〈SrSr+h〉 =
1

β

∫ π

−π

dq

2π

exp (iqh)

(γ − 2|U | cos q)2 + α cos q
,� (85)

with the corresponding modification in the constraint (84). This is equivalent to adding 
to the Lagrangian an independent first neighbor interaction with energy α. Of course, 
adding only this term in the model is incompatible with supersymmetry4. In the end 
we will take the limit α → 0.

With the change of variable z = eiq, we trade the integration in q by an integration 
along a closed path (unit circle) in the complex plane. The denominator of (85) can be 
written as a fourth-order polynomial in z,

4 It would be possible in principle to modify the Lagrangian as well as the supersymmetry transformations in 
order to accommodate such a term without breaking supersymmetry. We will return to this point in the next sec-
tion where we discuss a similar deformation without destroying supersymmetry in an equivalent field theoretical 
model.
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〈SrSr+h〉 =
1

2πiβ|U |2

∮

C

dz
z1+h

[
z4 +

(
α

2|U |2 −
2γ
|U |

)
z3 +

(
γ2

|U |2 + 2
)
z2 +

(
α

2|U |2 −
2γ
|U |

)
z + 1

] ,
� (86)

where the contour C is the unit circle travelled in the counterclockwise way. The roots 
of the polynomial are given by

z1 =
1

8|U |2
(−α + 4|U |γ − A− B) , z2 =

1

8|U |2
(−α + 4|U |γ + A+ B∗) ,

� (87)
and the corresponding complex conjugates, z∗1 and z∗2, with

A ≡
√

α (α− 8|U |γ),
B ≡

√
−8|U |γ [A+ 2 (α− |U |γ)]− 64|U |4 + 2α (α + A).

� (88)

Out of the four roots, only z1 and z∗1 reside inside the unit circle if we consider values 
of α in the interval5 0 � α < 4|U |γ. Computing the integration in the complex plane 
we obtain,

〈SrSr+h〉 =
1

|U |2β

[
z
(h+1)
1

w (α, γ,U)
+

z
∗(h+1)
1

w∗ (α, γ,U)

]
,� (89)

where we have written the denominator as

w(α, γ,U) ≡ (z1 − z2)(z1 − z∗1)(z1 − z∗2) ≡ |w|eiδ.� (90)

The integral of the constraint (84) (with the introduction of the α cos q term) can be 
carried out similarly, resulting in

1 =
1

|U |2β

[
z1

w (α, γ,U)
+

z∗1
w∗ (α, γ,U)

]
.� (91)

With this, we can write the correlation function (89) in the compact form,

〈SrSr+h〉 =
cos [δ − (h+ 1) θ]

cos (δ − θ)
exp (h ln |z1|) ,� (92)

where,

z1 ≡ |z1|eiθ.� (93)

We see that in the limit α → 0 the root z1 becomes real so that θ vanishes. In this 
case, the oscillatory factor cancels out the correlation function (92), remaining only the 
usual exponential decay, since |z1|  <  1 (this root is inside the unit circle). Therefore, 
the model does not exhibit the oscillations characteristic of the competing interactions. 
They are only generated when we deform the theory with the α cos q term, which in 
turn corresponds to introducing an independent first neighbor interaction in the model.

5 We impose this upper bound on α just to simplify the analysis. What really matters here is that the value α = 0 
belongs to the interval, which is the limit we intend to take as to recover the original model.
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6. Equivalence with the nonlinear sigma model

In this last part of our work, we discuss the equivalence with a field theory model. A 
useful guide to enlighten this connection is to recall the classical-quantum mapping 
based on renormalization-group arguments, connecting classical (thermal) critical phe-
nomena in D spatial dimensions to quantum critical phenomena (zero temperature) in 
d  =  D  −  z spatial dimensions. In our case, we notice a shift of both lower and upper 
critical dimensions by a factor of 2; i.e. (2, 4) → (4, 6), for the cases of zero temperature 
and finite temperature with µ = 0, showing that the dynamical critical exponent is 
z  =  2. It can also be obtained directly from the divergence of the correlation time at 

the critical point, τc ∼ (wB
q )

−1 ∼
(
−
√
2|µ|U |q|2 + 1

2
U2|q|4 + · · ·

)
− 1

2 ∼ |q|−z, which for 

µ = 0, gives z  =  2. This implies that the correlation length and the correlation time 
scale anisotropically in the model, weighted by the exponent z  =  2, and hence any field 
theory connection should be with a nonrelativistic one. This feature can also be noticed 
even more directly by considering naively the continuum limit of the action in the 
superspace (3) in the case where Ur,r′ corresponds to first neighbor interactions. While 
the time derivatives appear only inside the supercovariant derivatives, the spatial 
derivatives emerging in the continuum limit appear explicitly in the action,

∫
dtdθdθ̄

∑
r,r′

Ur,r′ΦrΦr′ −→
continuum limit

∫
dtdθdθ̄

∫
ddr

(
Φ2

r −
1

2
(∇Φr)

2

)
,

� (94)
and are thus not on equal footing with the time derivatives. The result is a theory that 
when written in components has a dierent number of temporal and spatial derivatives, 
leading to an anisotropic scaling weighted by z  =  2.

Matching of symmetries is crucial in identifying the equivalent theory. According 
to the previous discussion, we should then look for a theory which is supersymmetric 
but not Lorentz invariant. A nonlinear sigma model with those properties has been 
constructed in [40], and is a natural candidate to be equivalent to the supersymmetric 
quantum spherical model. In addition, the nonlinear sigma model has an O(N) inter-
nal symmetry that is not present in the spherical model. That is the reason why the 
equivalence will be established strictly in the limit N → ∞, where eectively there is 
no symmetry at all. This also happens in all the theories in the right hand side of (12).

For convenience, before going through the equivalence, we briefly review the con-
struction of the model by following the conventions of [40]. As the spinor size and 
consequently the superspace structure depend on the spacetime dimension, we shall 
consider here explicitly the of 2  +  1 spacetime dimensions, which can also be used for 
the case of 1  +  1 dimensions, where we have for both situations two-component spinors. 
In this case, the superspace is constituted of bosonic coordinates x0 and xi, with i = 1, 2, 
and a pair of real Grassmann coordinates θα, with α = 1, 2.

The model is constructed out of a set of N scalar superfields6,

6 Although we are using the same letter N in both models, it has dierent meanings in each case. In the spheri-
cal model, the thermodynamic limit necessarily corresponds to N → ∞, since there is represents the total number 
of sites of the lattice. On the other hand, it is a free parameter in the nonlinear sigma model, i.e. the number of 
fields, that can be chosen at our convenience.
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Φa = ϕa + θ̄ψa +
1

2
θ̄θFa, a = 1, ...,N ,� (95)

having as components, real scalar fields, ϕa, Majorana spinor fields, ψa, and auxiliary 
bosonic fields Fa. The conjugated Grassmann variable is defined as θ̄ ≡ θTγ0 and simi-
larly for ψ̄. The Dirac matrices in the 2× 2 representation are given in terms of the 
Pauli matrices as γ0 = σ2, γ

1 = iσ1 and γ2 = iσ3.
The superfields are required to satisfy the constraint

ΦaΦa =
N

2g̃
,� (96)

with g̃ being the coupling constant. It is important to emphasize the fundamental 
dierence compared with the spherical constraint (2). While the above constraint is 
local, since it involves only fields at the same point of the spacetime, the spherical 
constraint (2) involves spin variables of all sites of the lattice, even those which are far 
apart from each other.

In terms of component fields, the constraint reads,

ϕaϕa =
N

2g̃
, ψaϕa = 0, and ϕaFa =

1

2
ψ̄aψa.� (97)

These constraints can be imposed via a superfield Lagrange multiplier

Σ = σ + θ̄ξ +
1

2
θ̄θλ,� (98)

through the inclusion of the term Σ(ΦaΦa −N/2g̃) in the action.
The action of the model, incorporating the anisotropic scaling characterized by 

z  =  2, is given by

S =
1

2

∫
dtd2xd2θ

[
ΦaD̄DΦa + a2Φa∇2Φa − Σ(ΦaΦa −

N

2g̃
)

]
,� (99)

where a2 is a dimensionless positive parameter and the supercovariant derivative is 
defined as

D ≡ ∂

∂θ
− iθ̄γµ∂̃µ, (∂̃µ ≡ ∂0, a1∂i).� (100)

Here a1 is a dimensionfull parameter ([a1]  =  1 in mass units) to give the correct dimen-
sion for the supercovariant derivative, since for the case z  =  2 it is more convenient to 
assign dimensions [x0]  =  2 and [xi]  =  1 in length units.

The supersymmetry transformations can be obtained from the supercharge,

Q ≡ ∂

∂θ̄
+ iγµθ∂̃µ,� (101)

defined in such way that it anticommutes with the supercovariant derivative, i.e. 
{D,Q} = 0. This is required in order to ensure that DΦa transforms as the superfield 
itself, so that any term in the superspace action involving supercovariant derivatives 
is manifestly supersymmetric. The supercharge generates translations in superspace,
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δx0 ≡ ε̄Qx0 = iε̄γ0θ, δxi ≡ ε̄Qxi = ia1ε̄γ
iθ and δθ ≡ ε̄Qθ = ε,� (102)

where εα, α = 1, 2, is a Grassmannian parameter of the transformation, under which 
the superfield transforms as

δΦa ≡ ε̄QΦa.� (103)

By using the properties θ̄αθβ = iθ2θ1δαβ = 1
2
θ̄θδαβ and ε̄θ = θ̄ε, and comparing the corre

sponding power of θ in both sides, we find the supersymmetry transformations of the 
components

δϕa = ε̄ψa,

δψa = −iγµε∂̃µϕa + Faε,

δFa = −iε̄γµ∂̃µψa.

�

(104)

6.1. Action in components and the large N expansion

Now we are ready to discuss the equivalence between the models. To show this it is 
convenient to write the action (99) in terms of components,

S =

∫
dtd2x

[
−1

2
ϕ∂̃2ϕ+

i

2
ψ̄γµ∂̃µψ +

1

2
F 2 − a2F∇2ϕ+

a2
2
ψ̄∇2ψ

+ σ(Fϕ− 1

2
ψ̄ψ)− ξ̄ψϕ+

λ

2
(ϕ2 − N

2g̃
)

]
.

�

(105)

Next we use the equation of motion of the auxiliary field Fa,

Fa = a2∇2ϕa − σϕa,� (106)
to eliminate it from the Lagrangian,

S =

∫
dtd2x

[
−1

2
ϕ∂̃2ϕ− a22

2
∇2ϕ∇2ϕ+

i

2
ψ̄γµ∂̃µψ +

a2
2
ψ̄∇2ψ

+ a2σϕ∇2ϕ− 1

2
σ2ϕ2 − 1

2
σψ̄ψ − ξ̄ψϕ+

λ

2
(ϕ2 − N

2g̃
)

]
.

� (107)

Spontaneous supersymmetry breaking is related to the possibility that the Lagrange 
multiplier fields acquire nonvanishing vacuum expectation value. To appreciate this 
point, we make the shifts σ → σ +m2 and λ → λ+ λ0, where m2 and λ0 are the vac-
uum expectation value of the fields σ and λ, i.e. 〈σ〉 ≡ m2 and 〈λ〉 ≡ λ0. Rotational 
invariance implies 〈ξ〉 = 0. These shifts provide masses for bosons and fermions,

Lmass = −1

2
(m4 − λ0)ϕ

2 − m2

2
ψ̄ψ.� (108)

Thus, whenever λ0 �= 0, spontaneous supersymmetry breaking takes place since it 
induces an imbalance between the boson and fermion masses, independent of the value 
of m2.

As the dependence on the fields ϕ and ψ, ψ̄ is at the most quadratic, they can be 
integrated out in the partition function. This produces an eective action that can be 
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arranged in an expansion in powers of 1/N. To this end, after the above shifts, we make 
an appropriate rescaling of the Lagrange multiplier fields, σ → σ/

√
N , λ → λ/

√
N  and 

ξ → ξ/
√
N , which aect the interaction terms in the second line of (107),

Lint =
1√
N
σϕ(a2∇2 −m2)ϕ− 1

2N
σ2ϕ2 − 1

2
√
N
σψ̄ψ − 1√

N
ξ̄ψϕ+

λ

2
√
N
(ϕ2 − N

2g̃
).� (109)

The corresponding Feynman rules of the theory are depicted in figures 5 and 6. In 
addition to the factors of N coming from the vertices, whenever there is a bosonic or 
fermionic loop this produces a factor of N in the numerator, as the loop is produced by 
contracting N fields. The fermionic propagator is

Sab( p) =
iδab

p̃µγµ − (a2p2 +m2) + iε
= iδab

p̃µγ
µ + (a2p

2 +m2)

p̃2 − (a2p2 +m2)2 + iε
,� (110)

ψ-line

ϕ-line

σ-line

λ-line

ξ-line

Figure 5.  Feynman rules—type of lines.

∼ 1√
N

∼ 1
N

∼ 1√
N

∼ 1√
N

∼ 1√
N

∼
√

N

Figure 6.  Interaction vertices obtained from (109).
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and the bosonic one reads

∆ab( p) =
iδab

p̃2 − (a2p2 +m2)2 + λ0 + iε
.� (111)

The eective action obtained upon integration over the fields ϕ, ψ, and ψ̄ has the 
structure of an 1/N expansion,

Seff [σ,λ, ξ] = N
1
2S1 +N0S2 +O(N− 1

2 ),� (112)

where S1 represents the one-point functions of σ and λ,

S1 =

∫
dxΓ(1)

σ (x = 0)σ(x) +

∫
dxΓ

(1)
λ (x = 0)λ(x),� (113)

with dx ≡ dx0ddx and Γ
(1)
σ (x = 0) and Γ

(1)
λ (x = 0) given by the corresponding 1PI dia-

grams of figure 7, which are of order N
1
2. Notice that we have extracted the factor of 

N
1
2 to exhibit it explicitly in (112). The Gaussian contribution S2 involves the two-point 

functions,

S2 = − i

2

∫
dxdyσ(x)Γ(2)

σσ(x− y)σ(y)− i

2

∫
dxdyλ(x)Γ

(2)
λλ (x− y)λ(y)

− i

2

∫
dxdyξ̄(x)Γ

(2)
ξξ (x− y)ξ(y),

� (114)

with Γ(2)’s given by the corresponding 1PI diagrams of figure 8.
In order to have a well defined large N expansion we shall impose that the contrib

utions of S1 vanish. Therefore, in the strict limit N → ∞ the eective action is domi-
nated by the saddle point given by the quadratic contribution S2, precisely as in the 
case of the partition function of the supersymmetric quantum spherical model (15). 
Now it remains to identify the parameters of the two theories. We can do this simply 
by analyzing the contributions in S1. The sum of the two diagrams in the top of figure 7 
leads to
∫

dk0
2π

ddk

(2π)2
a2k

2 +m2

k̃2 − (a2k2 +m2)2 + λ0 + iε
−

∫
dk0
2π

ddk

(2π)2
a2k

2 +m2

k̃2 − (a2k2 +m2)2 + iε
= 0,� (115)

Figure 7.  One-loop contributions to the 1PI one-point functions. All these diagrams 
are of order 

√
N .
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whereas the sum of the diagrams in the bottom of figure 7 implies,
∫

dk0
2π

ddk

(2π)2
i

k̃2 − (a2k2 +m2)2 + λ0 + iε
− 1

2g̃
= 0,� (116)

where d = 1, 2. The gap equation (115) implies that λ0 = 0 and then supersymmetry is 
not spontaneously broken. With this, the equation (116) reduces to

∫
dk0
2π

ddk

(2π)2
i

k̃2 − (a2k2 +m2)2 + iε
=

1

2g̃
.� (117)

In order to compare with the constraint equation  of the supersymmetric spherical 
model, we need to integrate over the component k0, which gives

∫
ddk

(2π)2
1√

a1k2 + (a2k2 +m2)2
=

1

g̃
.� (118)

There is one last step to compare this equation with the constraint equation (27), which 
we rewrite here for convenience,

1 =

√
g

2

∫
ddq

(2π)d
1

γ + 2U
∑

i cos(qi)
.� (119)

We need to take the continuum limit in this expression. To this, we reinsert the lattice 
spacing a through qi → aqi, and then take the limit a → 0, so that the Brillouin zone 
[−π

a
, π
a
] extends to the infinity. Thus the integrals over momentum components become 

unlimited as in (118). With this, the above equation becomes

2
√
gad−1

=

∫
ddq

(2π)d
1(

γ−γc
a

)
+ a|U |q2 +O(a3)

,� (120)

recalling that γc = 2d|U |. Comparison of this expression with (118) leads to the follow-
ing identification of the parameters,

Figure 8.  One-loop contributions to the 1PI two-point functions. All these 
diagrams are of order N0. Only these diagrams survive in the strict large N limit.
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1

g̃
⇔ 2

√
gad−1

,

a1 ⇔ 0,

a2 ⇔ a|U |,

m2 ⇔
(
γ − γc

a

)
,

� (121)

completing thus the discussion of the equivalence of the two models.
As a final comment, we recall the computation of the correlation function with the 

presence of the term α cos q in section 5. In that case we did not discuss how to further 
modify the theory in a way compatible with supersymmetry. This is automatic in the 
nonlinear sigma model, since it is associated with the term a1k

2 in (118). This comes 
from the bosonic propagator or equivalently from the bosonic quadratic part of the 
Lagrangian. The parameter a1 is also included in the fermionic quadratic part of the 
Lagrangian (105) as well as in the supersymmetry transformations (104). We see clearly 
that the contributions involving a1 yield to a relativistic structure when a2 → 0. In 
this sense, the oscillating behavior appearing in the correlation function (92) for α �= 0 
can be thought as due to a competition between Lorentz (z = 1) and Lifshitz (z = 2) 
scalings.

7. Discussions and conclusions

We conclude the work with a brief summary of the main results along with additional 
comments. We presented here an extensive analysis of the critical behavior of supersym-
metric quantum spherical spins for the case of short-range interactions. Starting with 
the case of zero temperature, we found that the system undergoes a quantum phase 
transition without spontaneous supersymmetry breaking. In particular, for dimensions 
2  <  d  <  4, the critical behavior is nontrivial in the sense that it is not characterized by 
mean-field critical exponents. Of course, above the upper critical dimension we recover 
the mean-field results.

In the case of finite temparature the supersymmetry is always broken by thermal 
eects. This allows for an additional saddle point solution with µ �= 0, which is not 
available in the case of zero temperature. In our analysis, we kept the parameter µ 
fixed at an arbitrary value compatible with the saddle point conditions. Hence, µ can 
be viewed as defining a one-parameter family of models which, interestingly, splits into 
two universality classes as we consider the solutions with µ = 0 and µ �= 0. For µ �= 0, 
the model exhibits nontrivial critical behavior for dimensions 2  <  d  <  4, whereas that 
for µ = 0, nontrivial critical behavior occurs for 4  <  d  <  6.

Among the quantities studied, it interesting to further discuss the fermionic con-

densate 〈
∑

r ψ̄rψr〉, since it exhibits an unusual temperature dependence. In principle, 
we would expect that any quantity involving the pairing of degrees of freedom would 
be destroyed by thermal fluctuations. However, our results show that the fermionic 
condensate actually increases with T. This is a consequence of the constraint structure 
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of the model. To further appreciate this point, one may compute the fermionic con-

densate from the thermodynamic identity ∂f
∂HF

, without taking into account that all 

the parameters are tied by the saddle point equations (54) and (55). In doing this, we 
are in eect ignoring the constraints of the model. In this case, it is easy to see that 
the condensate does vanish for very high temperatures. Now, taking into account the 
constraint equations, this aects the dependence on the temperature of the fermionic 
condensate, producing the unusual behavior shown in (74).

The dependence of the fermionic condensate on T is not very sensitive to the specific 
form of the interaction in the model. To understand this, we notice first that for T < Tc, 
equation  (63) implies that all the temperature dependence comes from the factor β 
in front of the integral, since γ is fixed at γc, regardless the form of the interaction. 
Moreover, for T > Tc the numerical analysis shows that the behavior of the condensate 
is dictated essentially by the limit of high temperatures, where also the interaction has 
little influence. Therefore, the temperature dependence is more closely related with 
the constraint structure of the model, and this is supported by the fact that the same 
behavior is observed in the model with mean-field interactions [19].

Although the investigation of the one-dimensional correlation function in section 5 
shows that the model does not have competing interactions, it also indicates that with 
a suitable deformation of the theory we can in principle generates such competing 
orderings. Of course, care is needed to deform the theory in a way compatible with 
supersymmetry. While this is automatic in the field theoretical corresponding model, 
it is less obvious in terms of quantum spherical spins. Nevertheless, it constitutes an 
interesting eect to be pursued in future investigations, mainly due to the potential to 
produce rich phase diagrams with modulated phases, what can be useful in the appli-
cability of the model.

Finally, the connection with the supersymmetric nonlinear sigma model extends the 
series of equivalences between variations of spherical models and the large N limit of 
field theoretical models with short-range interactions. In addition to placing the super-
symmetric quantum spherical spins in a broader context, this helps to alleviate the 
issues raised up by the (spatial) nonlocal nature of the constraints of the model.

The main eorts henceforth are in an attempt to establish applications of the pres-
ent studies in concrete physical systems. Given the rich phenomenology involved, we 
do expect that this can be achieved in several situations.
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