Tensor Networks Based DMRG Study on Open Quantum **Systems**

Heitor P. Casagrande*, Gabriel T. Landi - IFUSP Group Seminar, UFMG - May. 09, 2019 heitor.casagrande@usp.br

- The Quantum Many-Body Problem
- Large number of interacting

particles

• Quantum framework

Containing Chaos - Michel Lang, 2015

- The Quantum Many-Body Problem
- In order to store every possible state of a quantum system

- The Quantum Many-Body Problem
- In order to store every possible state of a quantum system

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

- The Quantum Many-Body Problem
- In order to store every possible state of a quantum system

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

"Highly Non-Trivial" - Simulation would need to store 2^N possible configurations

- The Quantum Many-Body Problem
- In order to store every possible state of a quantum system

Solution: Tensors ?

- High Order Data \implies High Dimensionality \implies High Computational Cost
 - Tensors store big branches of information and are relatively easy and inexpensive to be used

Solution: Tensors ?

• High Order Data \implies High Dimensionality \implies High Computational Cost

Ulrich Schollwöck - The density-matrix renormalization group in the age of matrix product states - arxiv:1008.3477

Solution: Tensors ?

• High Order Data \implies High Dimensionality \implies High Computational Cost

Ulrich Schollwöck - The density-matrix renormalization group in the age of matrix product states - arxiv:1008.3477

- Tensor with index-oriented structures
 - Shall be used as approximations for our states and operators

- Tensor with index-oriented structures
 - Shall be used as approximations for our states and operators

$$A^{x_1x_2x_3} = \sum_{y_1y_2} B^{x_1}_{y_1} B^{x_2}_{y_1y_2} B^{x_3}_{y_2} \longrightarrow$$

Ulrich Schollwöck - The density-matrix renormalization group in the age of matrix product states - arxiv:1008.3477

• Tensor Networks have been proving more and more useful in a myriad of applications

arXiv.org > quant-ph > arXiv:1809.08258

Quantum Physics

A tensor network annealing algorithm for two-dimensional thermal states

A. Kshetrimayum, M. Rizzi, J. Eisert, R. Orus

(Submitted on 21 Sep 2018 (v1), last revised 10 Oct 2018 (this version, v2))

arXiv.org > cond-mat > arXiv:1904.12793	
Condensed Matter > Strongh C	
Breaking the entanglement has	
Marek M. Rams, Michael Zwolet	Tensor network simulati
(Submitted on 29 Apr 2019)	find ation of quantum transport
(Submitted on 21 Sep 2018 (v1), last revised 10 Oct 2010	

• Many-body wavefunction as a superposition of basis states

• Many-body wavefunction as a superposition of basis states

• Many-body wavefunction as a superposition of basis states

• Many-body wavefunction as a superposition of basis states

 $|\Psi\rangle=\!\Psi^{0000000}\left|0000000\right\rangle+$

• Many-body wavefunction as a superposition of basis states

$$\begin{split} |\Psi\rangle = & \Psi^{0000000} \, |0000000\rangle + \\ & \Psi^{1000000} \, |1000000\rangle + \end{split}$$

• Many-body wavefunction as a superposition of basis states

$$\begin{split} |\Psi\rangle = &\Psi^{0000000} |0000000\rangle + \\ &\Psi^{1000000} |1000000\rangle + \\ &\Psi^{0100000} |0100000\rangle + \end{split}$$

• Many-body wavefunction as a superposition of basis states

$$\begin{split} |\Psi\rangle = &\Psi^{0000000} |0000000\rangle + \\ &\Psi^{1000000} |1000000\rangle + \\ &\Psi^{0100000} |0100000\rangle + \\ &\Psi^{0010000} |0010000\rangle + \dots \end{split}$$

$$|\Psi\rangle = \sum_{s} \Psi^{s_1 s_2 s_3 \dots s_N} |s_1 s_2 s_3 \dots s_N\rangle$$

Spin Chains $|\Psi\rangle = \sum \Psi^{s_1 s_2 s_3 \dots s_N} |s_1 s_2 s_3 \dots s_N\rangle$ $\sum A_{x_1}^{\sigma_1} A_{x_1, x_2}^{\sigma_2} ... A_{x_{N-1}}^{\sigma_N}$ x_1, x_2, \dots, x_{N-1}

Matrix Product State Ansatz

Spin Chains Matrix Product State Ansatz

- - Computing norm of a MPS

 $\langle \Psi | \Psi \rangle$

• Variational method to search for the Ground State of a system

 $H|\Psi\rangle=E\,|\Psi\rangle$

• Sweeps over 1D chain

• Minimize parameters in order to reach GS configuration

DMRG?

• Density Matrix Renormalization Group

Density matrix formulation for quantum renormalization groups

Steven R. White Phys. Rev. Lett. **69**, 2863 – Published 9 November 1992

An article within the collection: Letters from the Past - A PRL Retrospective

• Recall Singular Value Decomposition (SVD) operation

• Recall Singular Value Decomposition (SVD) operation

• Upon truncating over the Singular Values one can <u>reduce dimensionality</u> to reach a controlled approximation of the system Steady State

• C++ library

Intuitive tensor contraction
 A - C and index management
 B - D -

• Built-in (super easy to use) DMRG routine, MPS norm calculation, expected operator values, etc.

= A*B*C*D

• C++ library

//Define Hilbert space of N spin-one sites
int N = 100;
auto sites = SpinOne(N);

• Intuitive tensor contraction

and index management

• Built-in <u>(super easy to use)</u> DMRG routine, MPS norm calculation, expected operator values, etc.

• C++ library

```
//Define Hilbert space of N spin-one sites
int N = 100;
auto sites = SpinOne(N);
//Set up random initial wavefunction
auto psi = MPS(sites);
```

• Intuitive tensor contraction

and index management

• Built-in <u>(super easy to use)</u> DMRG routine, MPS norm calculation, expected operator values, etc.

• C++ library

• Intuitive tensor contraction

and index management

```
//Define Hilbert space of N spin-one sites
int N = 100;
auto sites = SpinOne(N);
//Set up random initial wavefunction
auto psi = MPS(sites);
//Perform 5 sweeps of DMRG
auto sweeps = Sweeps(5);
//Specify max number of states kept each sweep
sweeps.maxm() = 50, 50, 100, 100, 200;
```

 Built-in (super easy to use) DMRG routine, MPS norm calculation, expected operator values, etc.

• C++ library

• Intuitive tensor contraction

and index management

```
//Define Hilbert space of N spin-one sites
int N = 100;
auto sites = SpinOne(N);
//Set up random initial wavefunction
auto psi = MPS(sites);
//Perform 5 sweeps of DMRG
auto sweeps = Sweeps(5);
//Specify max number of states kept each sweep
sweeps.maxm() = 50, 50, 100, 100, 200;
//Run the DMRG algorithm
dmrg(psi,H,sweeps);
```

 Built-in (super easy to use) DMRG routine, MPS norm calculation, expected operator values, etc.

• XXZ Heisenberg Spin Chain

$$H = \sum_{i} \left\{ \sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \Delta \sigma_{i}^{z} \sigma_{i+1}^{z} \right\}$$

• Dissipators

$$\begin{split} D_i(\rho) &= \gamma f_i \left[\sigma_i^- \rho \sigma_i^+ - \frac{1}{2} \sigma_i^+ \sigma_i^+ \rho - \frac{1}{2} \rho \sigma_i^+ \sigma_i^- \right] + \\ \gamma (1 - f_i) \left[\sigma_i^+ \rho \sigma_i^- - \frac{1}{2} \sigma_i^- \sigma_i^+ \rho - \frac{1}{2} \rho \sigma_i^- \sigma_i^+ \right] \end{split}$$

• XXZ Heisenberg Spin Chain

$$H = \sum_{i} \left\{ \sigma_{i}^{x} \sigma_{i+1}^{x} + \sigma_{i}^{y} \sigma_{i+1}^{y} + \Delta \sigma_{i}^{z} \sigma_{i+1}^{z} \right\}$$

• Dissipators

$$D_{i}(\rho) = \gamma f_{i} \left[\sigma_{i}^{-} \rho \sigma_{i}^{+} - \frac{1}{2} \sigma_{i}^{+} \sigma_{i}^{+} \rho - \frac{1}{2} \rho \sigma_{i}^{+} \sigma_{i}^{-} \right] + \gamma (1 - f_{i}) \left[\sigma_{i}^{+} \rho \sigma_{i}^{-} - \frac{1}{2} \sigma_{i}^{-} \sigma_{i}^{+} \rho - \frac{1}{2} \rho \sigma_{i}^{-} \sigma_{i}^{+} \right]$$

• Usual Lindblad Master Equation, with baths as Dissipators

• Use DMRG to reach the non-equilibrium steady state

• Usual Lindblad Master Equation, with baths as Dissipators

- Use DMRG to reach the non-equilibrium steady state
- Our goal is to reach something analogous to $H|\Psi\rangle = E|\Psi\rangle$

Vectorization

• Or Choi's isomorphism: $|\sigma_j\rangle\langle\sigma'_j| \longrightarrow |\sigma_j\sigma'_j\rangle$

$$\operatorname{vec}\begin{pmatrix}a&b\\c&d\end{pmatrix} = \begin{pmatrix}a\\c\\b\\d\end{pmatrix}$$

$\operatorname{vec}(ABC) = (C^{\mathrm{T}} \otimes A)\operatorname{vec}(B)$

Jian Cui, J. Cirac, M. C. Bañuls PRL, 10.1103/PhysRevLett.114.220601 G. T. Landi, E. Novaes, M. J. de Oilveira, D. Karevski - PRE 90, 042142 (2014)

Vectorization

• For example:

$$-i[H,\rho] \longrightarrow -i(\mathbf{1} \otimes H - H^T \otimes \mathbf{1}) |\rho\rangle$$

• From which we reach the standard variational search setup after doing the same for every other term in the Master Eq.

$$\mathscr{L}^{\dagger}\mathscr{L}|\rho\rangle = 0 \qquad \longrightarrow \qquad H|\Psi\rangle = E|\Psi\rangle$$

• Now we reach the same scenario of the usual DMRG implementations

• Focused in Magnetization Flux along the chain

$$J_k = 2\alpha \left\langle \sigma_k^x \sigma_{k+1}^y - \sigma_k^y \sigma_{k+1}^x \right\rangle$$

G. T. Landi, E. Novaes, M. J. de Oilveira, D. Karevski - PRE 90, 042142 (2014)

Technical study of convergence by varying internal code parameters, namely

• Bond Dimension

• Since doing sweeps with low bond dimension is computationally not demanding, we implemented a warm round up until an energy threshold is reached

GS convergence (log) X sweeps L = 100.100 ********* 0.010 ********* ******** 0.001 20 40 60 80 100 120 140 Warm up

• For increasing values of L we reach convergence as well

• For increasing values of L we reach convergence as well

• Even though it takes longer, it does not make the simulation unviable

• For different values of Δ

• We can then compare it to the analytical values*

* G. T. Landi, D. Karevski - PRB 91 174422 (2015)

Conclusions

• Reached a viable simulation protocol up to L = 50 easily doable in a simple desktop. This is remarkable

- Assured convergence by warming up and then dynamically changing BD with increasing sweeps
- Starting from physical state usually keeps the system well-behaved

• Code to be uploaded in Git to be used

Thanks!

