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The Quantum Many-Body Problem
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Quantum many-body problem is solving behavior of
electrons in matter

e continuum problem
e three dimensional

* strong interaction (repulsion) between electrons

Credit: MARK GARLICK/SCIENCE PHOTO LIBRARY/Getty Images
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Interestingly, we know exactly what to do

0 A
Just solve ZE‘\M = H|U)

With H given by

=5 [0+ o] bet g [ ulra)ifil
| 1 Z,
u(r,r)=|r_r,‘ U(r):_zﬁ—ra‘

The "electronic structure problem”
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Paul Dirac remarked in 1929

The underlying physical laws necessary for the mathematical theory of
a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these
laws leads to equations much too complicated to be soluble. It
therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to
an explanation of the main features of complex atomic systems
without too much computation.

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical
Character, Vol. 123, No. 792 (6 April 1929)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Can simplify various ways:
* Born-Oppenheimer approximation (classical nuclei)
* project electron motion to certain orbitals

* treat high & low energy states with approximations
such as LDA density functional
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Can even reduce to model systems, fewer
dimensions:

o ® o o o® o oo S o o o s\

But size of problem grows exponentially with
number of electrons
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Quantum wavefunction assigns an amplitude
to each classical state:

1 o o ® o o ® o o o W o o o &
2 O O W O O ®- O O O ® o O o ®m

3: o0 ® o 00O ® OO0 O M O O OQ®F

Four states per site {0, 1, |, Tl}

So 4N states given N sites
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Could try to store all the amplitudes, but

N =10, 40 ~ 109

N = 20, 420 ~ 102

N = 30, 4% ~ 1078

For N > 130, number of amplitudes
greater than number of atoms in
the known universe
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But can "nature's computer"” really work this
way?

Are the amplitudes of a realistic wavefunction all
different?

Or is there some relationship between them?
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Many-body wavefunction is a weighted sum
(superposition) of basis states

V) =
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Recall that the following
[ TLELETTT)

is shorthand for

T ) ) T T T T

(tensor product of basis states)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



General discussion applies to any basis, for
example fermions in "orbital basis"

Y= @000 1100000 )
_|_qy1010000| 1010000 >

L loto0to 9010010 ) + ...

(122|001 010 0) = ¢3(x1)P5(72) — P3(T2)P5(71)
Pt
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Let's write the wavefunction

v) =

TITTTTTT

g )
T A E N
PR\ /A R
I /2R I SR i o
+ ...

in a more compact form ...
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Many-body wavefunction in compact form

‘\I/> __ Z \:[1518283"°8N|818283 . 3N>

] T

amplitudes basis

Po15283° SN  gmplitude tensor
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Examples
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Simplest state

) =1TT)=1T1)

ot =1 , all other amplitudes zero

Example of a product state
Has zero entanglement (factorized)
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More interesting state

1

ﬁ\THMI

Also a product state (no entanglement)
Not obvious in z basis though!
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Maximally entangled state

1 1

ﬂ\THH 73

"Singlet" state of two spin 1/2's

V) = 1T

Cannot be written as a product state in any basis
transformation of individual sites

Entangled because spins (anti-)correlated
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Entanglement
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Can evaluate entanglement of simple states "by inspection”
But what about more complicated states?

How to be sure whether state is entangled?
How to quantify amount of entanglement?
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Intuition:
e limited information in two spins

* more information shared between spins, less
information about each separately
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Intuition:
e limited information in two spins

* more information shared between spins, less
information about each separately

Low entanglement intuition:

t
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Intuition:
e limited information in two spins

* more information shared between spins, less
information about each separately

Low entanglement intuition:

T

Q)

Observe state of first spin only: 7
Remains pure
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Intuition:
e limited information in two spins

* more information shared between spins, less
information about each separately

High entanglement intuition:
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Intuition:
e limited information in two spins

* more information shared between spins, less
information about each separately

High entanglement intuition:

T
l

OO
4

1 1
Observe state of first spin only: 5 T §¢
Highly mixed
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Quantify by using reduced density matrix

W) = W25 52)
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Quantify by using reduced density matrix

S1 S9
S18 |
|\If> — Pl 2‘8182> ( )
s
3 E : S’Sm —
Ps1 = W \118182
¢ )
S I U
S1

= Trof| W) (V]
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Why reduced density matrix?

Characterizes all observables of spin #1:

(|01 W)
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Why reduced density matrix?

Characterizes all observables of spin #1:

(T|O1|T) = > \110\11 152

515782

= Tr[p101] = ) pai O
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Reduced density matrix in extreme cases

Case #1: trivial product state

S1So ( 0
poise _ [O O] )

1)



Case #2: singlet state \W>:%\T>H> %IMM
s1sa 1[0 1
v =il o)
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Summary of cases:

Case #1: product state

Case #2: singlet state
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) =[11)
11 O
P1—[O 0

W)= 1] ])

V2

|

one non-zero
eigenvalue

1
\@\H\M

two non-zero
eigenvalues



Entanglement Entropy

Convenient to summarize eigenvalues as an "entropy"

Let eigenvalues of p be {p,}

Define "von Neumann entanglement entropy" as

Sox == pnIn(py)
= —Tr[pIn(p),

Quantifies sharing of information between spins

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Entanglement Entropy

Case #1: product state |U) = |+ 1)
py = 1T O
0O O

SVN — an ln(pn)

=—1-In(1)—0-In(0) =0+0
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Entanglement Entropy

L)

1
Case #2: singlet state |¥) = —|1)|{) 7

V2

1 1 1 1 1
() 3n () -0
2 2 2 2 2

— 111(2) maximum possible!
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Entanglement Entropy

Important note: if reduced density matrix not diagonal,
must diagonalize to get eigenvalues

For example,

Y] B o[[1 1
P1 = 12 12 2l 1 1] o -1 1
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~

Test Your Knowledge! @

Compute the entanglement entropy of the following state:

1 1 1 1
U) =St 51t + 5l )+ 514

\118182 _ 1/2 1/2
1/2 1/2

Recall: pg'; — Z Ps152g* — gyl

§152
S2



Rényi Entropy

von Neumann entropy just one way to summarize
density matrix eigenvalues

Alternative is Rényi entropy with Rényi index «

1 1
Sa = In Tr|p®| = In Z(pn)a

1 — « 1l — «

n

Defined to reproduce von Neumann entropy as a — 1

lim Sa — OvN
a—1
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Second Rényi Entropy

The second Rényi entropy with o = 2

is especially interesting

So = — In Tr[p?]

Can be measured in experiment and by quantum Monte Carlo

Mott insulat fluid
a ottt Insulator adiabatic melt supertiul
(00 00 >
T [Trrr 1 T T | I ' ' | I miXed
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S 2>
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Islam, et al. arxiv:1509.01160
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Hastings, Gonzalez, Kallin, Melko, PRL 104, 157201 (2010)




Many-Body Entanglement
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To discuss many-body wavefunctions, very helpful to introduce
tensor diagrams

Simple way to notate large tensors & sums

109 203 304 4 O5

LA ELLS
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N-index tensor represented as "blob" with N lines

818283840000 oo o0 oo SN

] GE——
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Diagrams for simple tensors
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Joining lines implies contraction, can omit names
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Undecorated line means identity tensor
(Kronecker delta tensor)

5
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~~

Test Your Knowledge! @

Write a "classical" (index) expression for the following

diagrams:
o900 (3) @
. & 0 &

Which ones give a scalar result?

(1)
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How is entanglement defined for many-body wavefunctions?

What does entanglement reveal about wavefunctions?

Which wavefunctions?
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Many-Body Entanglement

Define entanglement by dividing sites into region "A" and "B"
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Many-Body Entanglement

Define entanglement by dividing sites into region "A" and "B"
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Many-Body Entanglement

Trace over region B to get reduced density matrix of A

V)

(V|
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Many-Body Entanglement

Diagonalize p4 to get eigenvalues

|
>

P1

P2

P = p3
P4
P5
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Many-Body Entanglement

Use eigenvalues of p4 to compute Syn

P1
P2

P4
P5

SyN = — an hl(pn)
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Many-Body Entanglement

What is the maximum amount of entanglement?

G

: : : _ 5—N/2
maximum entropy if all eigenvalues same, P, = 2 /

PA isa 2V/2 « 9N/2 matrix

9N/2 eigenvalues, trace has to be 1

oN/2
1 _
SyN = Z Pn ln pn = —2V/7 IN/2 111(2 N/Q)

— gln(z) ~ N  "volume law"
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Many-Body Entanglement

Fact: randomly chosen wavefunctions have Lon
maximum entropy with probability 1.0 \""\\’j

Hilbert space:

S~N
max entangled

™~ S not max
entangled
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Many-Body Entanglement

Which wavetfunctions live in the special region
that is not maximally entangled?

Hilbert space:

S~N
max entangled

S not max
entangled
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Consider ground states of 1D Hamiltonians

Heisenberg spin chain:

H=) S; Sju
j

Hubbard chain:

H = —t Z(C;r',acﬂl,a ™ C;L'—I—l,acjﬁ) T Z Unjpngy

J,0 J

1D "electronic structure" Hamiltonian:

H = / 6@ - 302 +v@]e@ + [ ule -2 n(n@)

x,x’
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By ground state we mean

H\Y,) =FE,|¥,) Eoy<E{<E,<...

Then the ground state is |¥()

(May be degenerate, meaning |E; — Ey| ~ e~V )
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Special cases of ground states

Case #1: Heisenberg ferromagnet

H=-) S;-Sj
J

Vo) =|TTTTTT)=1T)T)INTHUTTIT)
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Special cases of ground states

Case #1: Heisenberg ferromagnet

H=-) S;-Sj
J

o) = [ 11111 1) =111 )

T

zero entanglement
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Special cases of ground states

Case #2: "Majumdar-Ghosh chain”
1
H=) 8;8ii+5 .8 S
J J

Ground state a product of singlets:

TUg)= & ¢ ¢ ¢



Special cases of ground states

Case #2: "Majumdar-Ghosh chain”
1
H=) 8;8ii+5 .8 S
J J

Ground state a product of singlets:

TUp)= & o ¢ ¢ ¢ ¢ >

entanglement S=In(2)

Non-extensive entanglement (not volume law)
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How typical are these cases?

As system size N increases, is following possible?

N
|

In(2)
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How typical are these cases?

As system size N increases, is following possible?
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How typical are these cases?

As system size N increases, is following possible?

W) = ///‘\N\

S = 3In(2)
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How typical are these cases?

As system size N increases, is following possible?

W) = NN

S =41n(2)

Would give a "volume law" of entanglement: S ~ N

But Hamiltonian would be non-local:

H=S1-Sg+5S5-S7-+8S3-S¢+...
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What is the case for local Hamiltonians?

Around 2000-2005 many researchers observed for 1D systems,
that S,x ~ const. ~ NV for the ground state

But logarithmic violations also observed (Vidal, 2003)
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What is the case for local Hamiltonians?

Around 2000-2005 many researchers observed for 1D systems,
that S,x ~ const. ~ NV for the ground state

But logarithmic violations also observed (Vidal, 2003)

Then in 2007, M. Hastings proved:

For 1D, local Hamiltonians with a gap between
ground and excited states, the entanglement
entropy of a bipartition is independent of system

sizeas N — oo

this is the "area law" or "boundary law"
Hastings, J. Stat. Mech. P08024 (2007)
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Intuition of boundary law

All entanglement between A and B due to entangled spins
near their boundary

A

B
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Intuition of boundary law

All entanglement between A and B due to entangled spins
near their boundary

A

B

S

Local H and gap required implies a correlation length ¢
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