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Review of Previous Lecture



Reduced density matrix

Trace over region B to get reduced density matrix of A

A B
f—H/_H

Eigenvalues of p4 define entanglement between A and B
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Boundary law implies limited entanglement of ground states

Entanglement between A and B due to spins near boundary
(for ground state of gapped, local Hamiltonian)

A

B

I

Local H and gap implies a correlation length ¢
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Truncating Wavefunctions



Boundary law means entanglement much less than it could be

So density matrix eigenvalues fall quickly...
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Suggests an approximation

ldea of truncating density matrix spectrum
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Implication of boundary law (= area law):

Number of eig. vals m needed for accuracy
doesn't grow with N
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Why approximate density matrix?

Reduced density matrix determines all observables in region A
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Any observable in region A can be written as

(0) = (¥|0|w) = Tr|pa0

If we diagonalize pa = an|n> (n]

n

(0) = Tr|pa0| = 3" pu(n|Oln)
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discarding small pn means small error in <@>



Ability to truncate p4 means the following

There is an isometry (rotation + projection) from sites of A
to truncated basis of pa
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U is first m columns of unitary diagonalizing p4



Proposition: following approximation holds
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Where € = Z P, is the sum of discarded eigenvalues
n=m-1 of DA

Why?



To prove, compute overlap (V| (ﬁlﬁhﬂ))




Can approximately rewrite |U) as follows
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The upshot is we can factorize any ground state
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m

2N dimensional 'vector two (2V2 x m) 'matrices’

huge reduction in
parameters!



Density matrix approach is "roundabout" however
Simpler approach is singular value decomposition (SVD)

Recall, for any rectangular matrix:

00000 A1 00000

00000 - Ao 00000

00000 T A3 00000

00000 A 00000
M A V

U and V are unitary, and singular values A\, are real & positive



Consider a numerical SVD example:
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Keep fewer and fewer singular values:
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Keep fewer and fewer singular values:
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Keep fewer and fewer singular values:

U A \
1/2 -1/2 1/2 0.933 0 0 0.707107 0.707107 0
1/2 -1/2 -1/2 0 0 0 -0.707107 0.707107 0
1/2 1/2 1/2 0 0 0 0 0 0 1
1/2 1/2 -1/2 — - —

0.329773 0.329773
— Ma — 0.329773 0.329773
— 3 — 0.329773 0.329773

0.329773 0.329773

Truncating SVD =

Controlled
approximation for M

o O O O

|Ms — M||* =0.13 = (0.3)* + (0.2)°



Diagrammatically, SVD looks like:

00000 A1 00000

00000 - A2 00000
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M A V

Let's apply it to our wavefunction



Treat wavefunction as matrix by grouping indices

(s152838455)(Ses7SgS9S10)  __ (s1528384S5) (s6s78859S10)
U = N ul A,V
T

(81 82838485)(86878889810)




Multiplying singular vals into V, get same factorization as before

(8182838485)(86878889810)

(AV)

Matrix U is the same as from diagonalizing density matrix



Central idea of tensor networks:

can factorize (s1 s2 s3) (s4 S5 S¢), but what is special about this
bond or partition?

why not factorize all partitions at once?

etc.



Motivates following factorization

O-O-0-0-0-0-0-0

Known as matrix product state

Key example of a tensor network



Matrix Product States



Wavefunction just a rule to
map spin configurations to numbers \Jy51525354555635758
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Simplest rule: store every amplitude separately



Wavetfunction a "machine” mapping configurations to numbers
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Wavetfunction a "machine” mapping configurations to numbers

(R S

v
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Can make up any rule assigning patterns to numbers
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How about this rule:

* to each spin state (up, down) associate a matrix

* multiply matrices to get the probability



Pictorially:



Pictorially:

0 — M7

| — M



Compute wavefunction by multiplying matrices together

\IJT¢TT$ ~



Compute wavefunction by multiplying matrices together

1



Compute wavefunction by multiplying matrices together

\IJT¢TT¢ ~ MlTMzi



Compute wavefunction by multiplying matrices together



Compute wavefunction by multiplying matrices together

\IJT¢TT¢ ~ MJMJMSTMJ



Compute wavefunction by multiplying matrices together

\IJT¢TT¢ ~ MJMzngTMJMé



Compute wavefunction by multiplying matrices together

\IJTLTTi ~ MJMngTMJMé

2

VAR MM My M My



Compute wavefunction by multiplying matrices together

\IJTLTTi ~ MJMngTMJMé

VAR MM My M My

2

\IJT¢¢TT MJM;M;MJMJ

X



Ansatz known as matrix product state

§185283854S85 S1 S S3 S4q S5
) = M M52 M52 My* M-



More detail & diagrammatic form

§1828354S85 ___ S1 S2 S3 S4 S5
\ = M M52 My> M+ M-

> MM, M2, M, M

109 oo QL3 304
{a}



More detail & diagrammatic form

§1828354S85 ___ S1 S2 S3 S4 S5
\ = M M52 My> M+ M-

> MM, M2, M, M

109 oo QL3 304
{a}

O-0-0-b-4



Key facts about matrix product states

O-0-0=0-0

m

e |linear size of matrices (dimension of bond indices) known as
the bond dimension m (sometimes X or D)

* for large enough m, can represent any state (m = 2V?)

e entanglement of left-right cut bounded by log(m), so
boundary law guaranteed



Computations with Matrix Product States



Key reason to use matrix product states (MPS) is many
computations become efficient
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By contrast, all operations with full wavefunction inefficient
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Consider computing norm of full wavefunction



Key reason to use matrix product states (MPS) is many
computations become efficient

By contrast, all operations with full wavefunction inefficient

Consider computing norm of full wavefunction

— E :\11315253343536373839310\:[]
18}

§518283845586575859S510

Requires summing 2'° terms



Is there a more efficient strategy to compute norm of MPS?



Is there a more efficient strategy to compute norm of MPS?

(VW) = .... Yes!



Is there a more efficient strategy to compute norm of MPS?

(VW) = .... Yes!
(1) g:



Is there a more efficient strategy to compute norm of MPS?

(W|W) = .... Yes!
(1) g: —

U



Is there a more efficient strategy to compute norm of MPS?

(W|W) = .... Yes!




Is there a more efficient strategy to compute norm of MPS?

(W|W) = .... Yes!
(2) . | — .;

etc. until all tensors are contracted



Full contraction process:

(W]) =

DS



Full contraction process:

(W]) =

|pieeie:



Full contraction process:

(W]) =



Full contraction process:

(W]) =

|



Full contraction process:

(W]) =



Full contraction process:

(W]) =

jne:



Full contraction process:

(W]) =



Full contraction process:

(W]) =

S



Full contraction process:

(VW) =

equals a scalar (why?)



Another key computation is an expectation value




Another key computation is an expectation value
O—0O—C0O—C0O—C

Using similar procedure as norm:




Another key computation is an expectation value
O—0O—C0O—C0O—C

Using similar procedure as norm:




Another key computation is an expectation value
O—0O—C0O—C0O—C

Using similar procedure as norm:




What is the scaling of the computational cost ?

To calculate, break computation into separate steps,

such as:

Then use rule for cost of tensor contraction:
(dimension of contracted indices)
x (dimension of uncontracted indices)



Complicated tensor contraction

€
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Can always be written as matrix mult. with grouped indices



Complicated tensor contraction
J
Can always be written as matrix mult. with grouped indices



To compute scaling, consider index dimensions

Computation of C equivalent to:
for 11=1:dy, 12=1:d2, 1s5=1:ds
for 13=1:d3, 14=1:d4
CLi1,12,15] = A[l11,12,13,14]*%B[13,14,15]

end
end



Computation of C:
for 11=1:d1, 12=1:d2, 1s5=1:d5

for 13=1:ds3, 14=1:d4
CLiq,12,15] = A[i1,12,13,14]*%B[13,14,15]

end
end

Each i, loop takes d, operations to complete

Overall scaling: (didads) X (dsdy)

(dim. contracted indices) x (dim. uncontracted indices)



Summary of scaling rule

Whenever you see a tensor contraction
di ‘ d3
o )
(]
/

Multiply dimension of every index (just once)

dy

cost = (di-dy-d3-ds-ds)



~~

Test Your Knowledge! @

Write down the cost of the following tensor contractions
(letters are index dimensions):

t1 a
M -0-O- & O Ib
2



What is the scaling of calculations with MPS?



What is the scaling of calculations with MPS?

Consider norm of MPS bond dimension m, site dimension d
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Two key operations

o



What is the scaling of calculations with MPS?

Consider norm of MPS bond dimension m, site dimension d

m

Two key operations

m
(1) l I ?d :| | | scalingis m3d
m_ m



What is the scaling of the computational cost ?

Consider norm calculation, MPS bond dimension m,
site dimension d

m

Two key operations

(g -



What is the scaling of the computational cost ?

Consider norm calculation, MPS bond dimension m,
site dimension d

m

Two key operations

m m
(2) @ — U: scalingis m3d
m



What is the scaling of the computational cost ?

Consider norm calculation, MPS bond dimension m,
site dimension d

(VW) = d

So overall scaling of norm calculation is

m3 d



Rule of thumb: most every operation needed to manipulate
MPS can be made to scale as

Intuition: MPS involves multiplying mxm matrices

Scaling of mxm matrix multiplication is m?3



Examples of Matrix Product States



Example #1: singlet state

1 1
\‘I’>=E|T>|¢> \/§|¢>W>
1)
= I:%M %u:l 1)

How to see this is an MPS?






Example #2: AKLT wavefunction

The AKLT wavefunction is the exact ground state of the
following S=1 Hamiltonian

1
H = Z Sj - Sj+1t 3 Z(Sj Sjt1)°
J J

In the same phase as S=1 Heisenberg model, plus 'small’
perturbation of (S-S)? biquadratic term



Can construct AKLT wavefunction as follows

Start with 2N spin 1/2's in singlet pairs

r— O6—0 o6—0 o6—0 O6—0 06—

o—eo = [T)[L)——7L)T)

S| -



Can construct AKLT wavefunction as follows

Act on pairs of S=1/2's with projection operator P

r— O6—0 o6—0 o6—0 O6—0 06—

T = P = (] + o) STy



Can construct AKLT wavefunction as follows

Act on pairs of S=1/2's with projection operator P




Can construct AKLT wavefunction as follows

After projection, blue ovals are S=1 spins

—R SR S S & o—




Can construct AKLT wavefunction as follows

After projection, blue ovals are S=1 spins

—R SR S S & o—

Can predict interesting properties:
* doubly degenerate entanglement spectrum

e emergent 5=1/2 edge spins



Tensor approach to AKLT

1
D =51
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Tensor approach to AKLT
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Tensor approach to AKLT

T

1
NG L))

A = (] oy STy




Tensor approach to AKLT




Tensor approach to AKLT
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Tensor approach to AKLT




Put into MPS form




Put into MPS form

Contract pairs of tensors:




Put into MPS form

Contract pairs of tensors:

N S Y N N N




Nice form of AKLT matrix product state with
periodic boundary conditions

Can actually show the following:

‘\PAKLT> = Ir [M81M82M83 . 'MSN] |818283 c . SN>

where 9
M*T =4/= 0"
3
1
MO__ _O_z
3
2
M~ = —/ -0



Takeaway

e MPS guaranteed to obey boundary law, as do all 1D ground
states (of gapped, local Hamiltonians)

* MPS can capture certain interesting states exactly

* maybe they are a useful class of wavefunction to optimize!



