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Review of Previous Lecture



Motivated matrix product state (MPS) ansatz for ground states
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Calculations of MPS with bond dimension m
scale as m3

m




Gauging Matrix Product States



Matrix product state representation of a state
is highly redundant
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Matrix product state representation of a state
is highly redundant
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Matrix product state representation of a state
is highly redundant

Still represents the same state (same observables / amplitudes)

Internal parameters differ though



Huge freedom to manipulate parameters, but which such
"gauge"” transformations are interesting or useful?

Interesting gauges can be motivated from two-site MPS

Consider arbitrary two-site wavefunction



Use SVD to factorize the W tensor




Could treat as an MPS, just with extra "bond tensor"
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Or contract A with U or V to restore standard MPS form
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Note that U and V tensors have the following nice property
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Realize a similar property beyond the two-site case?
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Start with generic MPS — no special properties
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Multiply first two tensors together, then SVD (no truncation!)
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Multiply second two tensors together, then SVD (no truncation!)
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Multiply second two tensors together, then SVD (no truncation!)
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Multiply third pair together, then SVD (no truncation!)
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Multiply third pair together, then SVD (no truncation!)
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Repeating for all tensor pairs, left to right, gives
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Because yellow —|£|— tensors were from
left-hand side of SVD's, they are "left orthogonal®
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Can do the same procedure from right to left

T

Because red —i— tensors were from
left-hand side of SVD's, they are "right orthogonal”
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Or partway from left, partway from right
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Or partway from left, partway from right

SO
\~

"orthogonality center" site

G - C D - D

"left orthogonal” "right orthogonal”



MPS gauging important for many reasons:
e accurate truncations of MPS
e efficient computation of observables
e good conditioning properties for optimization algorithms

 connections to unitary quantum circuits (Quantum
computing)



Efficient computation of observables

Say we want expectation value of operator (0 = H

If (O acts on block of sites including ‘center’ site,
can cancel all other MPS tensors
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Efficient computation of observables

Say we want expecation value of operator (O = H

Much smaller diagram to computel



Accurate truncation of MPS

Say we act on the MPS with some operator () = H

And affected sites include 'center' site
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Accurate truncation of MPS

Say we act on the MPS with some operator () = H

And affected sites include 'center' site
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Multiply into MPS tensors acted on by O



Accurate truncation of MPS

Say we act on the MPS with some operator () = H

And affected sites include 'center' site

e

Contract to form new "bond tensor"



Accurate truncation of MPS

Say we act on the MPS with some operator () = H

And affected sites include 'center' site

SVD to restore MPS form

Ok to truncate SVD?



Accurate truncation of MPS

OO amn -5

truncated
SVvD

Can show small local error incurred in truncated SVD of bond
translates to small global error for whole MPS




Accurate truncation of MPS

orthogonal orthogonal
change of basis change of basis
/_H /_H

OO amn -5

truncated
SVvD

Can show small local error incurred in truncated SVD of bond
translates to small global error for whole MPS




Accurate truncation of MPS

Important: acting with some operator (O = H

away from orthogonality center

and performing local truncation could give
a large global error




Accurate truncation of MPS

Important: acting with some operator (O = H

away from orthogonality center

and performing local truncation could give
a large global error




Matrix Product Operators



ldea of a matrix product operator (MPO):
chain of tensors like an MPS, but two sets of indices

(up and down; bra and ket) just like an operator

800

Very useful for algorithms involving MPS, such as
DMRG




To motivate MPO construction, consider
a two-site operator

1 1
S1-So = 5755 + 531 Sy + 551_32
Write as dot product of operator-valued vectors
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To motivate MPO construction, consider
a two-site operator

1 1
S1-S2 = 5785 + 551 Sy + 5575

Write as dot product of operator-valued vectors

53
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More generally, will involve operator-valued matrices
Consider the Hamiltonian:

H = 8785 + S35;
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Consider the Hamiltonian:
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More generally, will involve operator-valued matrices
Consider the Hamiltonian:

H = S7S; + 882 = S§2SZIy + 1,52S?

Can write as




More generally, will involve operator-valued matrices
Consider the Hamiltonian:

H = S7S5 4+ 5555 (= S7;S51s+ 1,5555)

Can write as

I, 0 0 I3 Iy 13
S5 0 0 & — | S5 I3
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More generally, will involve operator-valued matrices
Consider the Hamiltonian:

H = S7S5 4+ 5555 (= S7;S51s+ 1,5555)

Can write as

I 13

%2 13 | = 87850 + 15555
I:() Sz Il:l 55 53



Chaining the pattern will give Hamiltonian for
arbitrarily big system

H:ZS; i+1
J
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Why this pattern?

H =

[

J

Z

7+1



View as a "machine" or "automaton"

I, 0 0
S 0 0
0 57 I

Result:
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View as a "machine" or "automaton"

State 2

Choose an
operator

Result: I, I, S7



View as a "machine" or "automaton"
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View as a "machine" or "automaton"
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View as a "machine" or "automaton"
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View as a "machine" or "automaton"

State 1
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Result: I, I, S; S; I



Familiar 1D Hamiltonians as MPOs

Transverse-field Heisenberg
Ising model model
1 1
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To make MPO construction accessible,
AutoMPO in ITensor library

int N = 100;
auto sites = SpinOne(N);

auto ampo = AutoMPO(sites);
for(int j = 1; j < N; ++3J)
{
ampo += 0.5,"S+" 3,"S-"J+1; 1
ampo += 0.5,"S-",j,"S+",j+1; H= EE: S+S_ 39750 155
ampo += Sz",3j,"Sz",j+1; /

}

auto H = MPO(ampo);



MPOs can even capture "long range" interactions
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MPOs can even capture "long range" interactions
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DMRG



The density matrix renormalization group (DMRG) is the
best method for finding ground states of 1D Hamiltonians

Want to solve H|\IJ> — E|\If>

Treat H as MPO

O-O--0-0-0)



Important: MPS should be in definite gauge
l.e. most tensors unitary

GGG
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Important: MPS should be in definite gauge
l.e. most tensors unitary

GGG
0688



This way, left/right tensors define an
orthonormal basis




This way, left/right tensors define an
orthonormal basis



This way, left/right tensors define an
orthonormal basis



Project Hamiltonian into this basis
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Project Hamiltonian into this basis
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Doing the same on the right gives




Doing the same on the right gives




"Projected"” eigenvalue problem




Can efficiently multiply projected H times \@}

Order important!
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Can efficiently multiply projected H times \@}

Order important!
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Can efficiently multiply projected H times \@}

Order important!

2 ~m?3
3 ~ m?
4 ~ m?
5~m3
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Use Lanczos or Davidson to solve
(iterative eigensolver)

- -

E.R. Davidson, J. Comput. Phys., 17, 87 (1975)



SVD improved wavetfunction (with truncation)
to restore MPS form and shift orthogonality center

Number of singular values kept m is called
"number of states kept" in DMRG

@Ses- W



SVD improved wavetfunction (with truncation)
to restore MPS form and shift orthogonality center

Number of singular values kept m is called
"number of states kept" in DMRG
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Grow projected Hamiltonian tensor from left




Grow projected Hamiltonian tensor from left




Grow projected Hamiltonian tensor from left




Grow projected Hamiltonian tensor from left

Recall right-hand projected H tensor from memory
(saved in an array when made earlier)

-




lterating leads to sweeping procedure




lterating leads to sweeping procedure

. Solve eigenproblem




lterating leads to sweeping procedure

. Solve eigenproblem

II. SVD wavefunction




lterating leads to sweeping procedure

. Solve eigenproblem

II. SVD wavefunction

I1l. Shift projected H L [:] [:]




lterating leads to sweeping procedure




lterating leads to sweeping procedure




lterating leads to sweeping procedure




lterating leads to sweeping procedure




lterating leads to sweeping procedure




lterating leads to sweeping procedure




DMRG can be used to get impressive results (in 1993!)

PHYSICAL REVIEW B VOLUME 48, NUMBER 6 1 AUGUST 1993-11

Numerical renormalization-group study of low-lying eigenstates of the
antiferromagnetic S = 1 Heisenberg chain

Steven R. White
Department of Physics, University of California, Irvine, California 92717

David A. Huse
ATET Bell Labs, Murray Hill, New Jersey 07974

We present results of a numerical renormalization-group study of the isotropic S = 1 Heisenberg
chain. The density-matrix renormalization-group techniques used allow us to calculate a variety
of properties of the chain with unprecedented accuracy. The ground state energy per site of the
infinite chain is found to be Open-ended S = 1 chains have effective
S = 1/2 spins on each end, with exponential decay of the local spin moment away from the ends, with
decay length £ =2 6.03(1). The spin-spin correlation function also decays exponentially, and although
the correlation length cannot be measured as accurately as the open-end decay length, it appears

that the two lengths are identical. The string correlation function shows long-range order, with
g(oo) = —0.374325096(2). The excitation energy of the first excited state, a state with one magnon

with momentum ¢ = 7, is the Haldane gap, which we find to be|A =2 0.41050(2)] We find many
low-lying excited states, including one- and two-magnon states, for several different chain lengths.



DMRG can be run in parallel over separate computers

Parallel S=1 Heisenberg chain calculation:

Sweep =1
E1 =-9948119 E2=-99.32340 E3=-99.32340 E4=-99.48119
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Stoudenmire, White, PRB 87, 155137 (2013)



DMRG can also be used to study quasi-2D systems

(a) W)

Figure from: Motruk, Zaletel, Mong, Pollmann, arxiv:1512.03318



With careful finite-size scaling,
2D DMRG competitive with quantum Monte Carlo

Magnetization of square-lattice Heisenberg model:
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White, Chernyshev, PRL 99, 127004 (2007)



Using discrete set of 'orbitals', can study continuum
quantum Hall systems on cylinders

Density plots of fractional "quasi-hole" excitations:
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Zaletel, Mong, PRB 86, 245305



DMRG for two-dimensional systems (cylinders)
requires extreme care
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Scaling is: N, eV

Like exact diagonalization, but only exponential in one
direction (N,), linear in other direction

Only Ny ~ 10-20 usually reachable



Why exponential in y direction?

If 2D ground state obeys boundary law,
means S ~ N,

A

Ny

Entanglement of MPS is bounded by log(m)

—> S ~ N, ~ log(m)

— m o~ eV



Takeaway

* '‘Gauging' MPS important for accurate truncation,
efficient measurement

e Matrix product operators (MPOs) can represent Hamiltonians
in a generic way

* DMRG is a powerful algorithm for optimizing MPS



