Tensor Networks and Applications

E.M. Stoudenmire

Apr 2018 - Sao Paulo

SIMONS FOUNDATION

Review of Previous Lecture

'Gauging' an MPS bestows it with useful properties

"orthogonality center" site

"left orthogonal"

"right orthogonal"

MPOs can compactly and generically represent Hamiltonians

 $\begin{bmatrix} I_{j} \\ S_{j}^{+} \\ S_{j}^{-} \\ S_{j}^{z} \\ 0 \quad \frac{1}{2}S_{j}^{-} \quad \frac{1}{2}S_{j}^{+} \quad S_{j}^{z} \quad I_{j} \end{bmatrix}$

Heisenberg model

$$H = \sum_{j} \mathbf{S}_{j} \cdot \mathbf{S}_{j+1}$$

DMRG algorithm for optimizing MPS

$$\tilde{H}|\tilde{\Psi}\rangle = E|\tilde{\Psi}\rangle$$

Beyond Matrix Product States

Besides matrix product state network, other very interesting networks are PEPS and MERA

MERA

(critical systems)

Evenbly, Vidal, PRB **79**, 144108 (2009)

Verstraete, Cirac, cond-mat/0407066 (2004)

Orus, Ann. Phys. 349, 117 (2014)

(2D systems)

Most straightforward extension of matrix product states to two-dimensional lattices

Most straightforward extension of matrix product states to two-dimensional lattices

Most straightforward extension of matrix product states to two-dimensional lattices

Powerful algorithms to address infinite 2D systems

Figure from: Corboz, PRB 94, 035133 (2016)

MERA Tensor Network

The MERA tensor network generalizes matrix product state to a layered structure

Key motivation of PEPS and MERA is capturing scaling of entanglement beyond 1D, gapped case

Two basic types of behavior (dimensions d=1,2):

Key motivation of PEPS and MERA is capturing scaling of entanglement beyond 1D, gapped case

Two basic types of behavior (dimensions d=1,2):

Boundary law: $S \sim L_A^{d-1}$

Key motivation of PEPS and MERA is capturing scaling of entanglement beyond 1D, gapped case

Two basic types of behavior (dimensions d=1,2):

Boundary law: $S \sim L_A^{d-1}$

Boundary law times log correction: $S \sim \log(L_A) L_A^{d-1}$

- **1.** Boundary law: $S \sim L_A^{d-1}$
- **2.** Boundary law times log correction: $S \sim \log(L_A) L_A^{d-1}$

Intuition behind these two behaviors:

- 1. Product state + local fluctuations: all entanglement near boundary between A and B
- 2. Scale invariant. Boundary law contribution at each scale, $log(L_A)$ rescaling transformations until region A shrinks to a point

Based on numerical & field theory evidence, can make following table of expected scaling:

Dimension	Gap ?	Scaling S with L _A
1	gapped	const.
1	critical	$\log(L_A)$
2	gapped	L_A
2	gapless, Fermi points	L_A
2	gapless, Fermi surface	$L_A \log(L_A)$

To motivate why PEPS and MERA are a good idea make following observation:

Consider a matrix (= density matrix) having internal 'tensor network' structure

For simplicity, assume all index lines of size D

Then ρ is D⁸ x D⁸ matrix

But can be written as sum of outer products of only D vectors (each of dimension D⁸)

Call linear dimension of ρ "R" (= D⁸ in example)

Then ρ has a kernel (null space) of dimension R-D

At most D of the vectors forming ρ can be linearly independent

So rank of ρ is R-(dimension of kernel) = R-(R-D) = D

Can only have D non-zero eigenvalues

More generally, can show rank of a "structured" matrix is minimum of product of dimensions of lines needed to cut into two pieces

More generally, can show rank of a "structured" matrix is minimum of product of dimensions of lines needed to cut into two pieces

If matrix is a density matrix, then maximum entropy occurs when all eigenvalues = 1/rank

$$\implies S_{\max} = \log(\operatorname{rank})$$

Let's apply this argument to various tensor networks

$$S_{max}(\rho) = \log(D_1 D_2 D_3)$$

Matrix product state (MPS)

Matrix product state (MPS)

Independent of system size = boundary law

Matrix product state (MPS)

Independent of system size = boundary law

Matrix product state (MPS)

 $S_{max} = log(m)$

Independent of system size = boundary law

PEPS wavefunction

PEPS wavefunction

PEPS wavefunction

PEPS wavefunction

 $S_{max} = log(D^{L_A}) = L_A log(D)$

MERA wavefunction

MERA wavefunction

MERA wavefunction

Number of layers intersecting min cut of region A is $log(L_A)$
Min-cut Argument

MERA wavefunction

Number of layers intersecting min cut of region A is $log(L_A)$ $S_{max} = log(D^{log(L_A)}) = log(L_A) log(D)$

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

Dimension	Gap ?	Scaling S with L _A
1	gapped	const.
1	critical	$\log(L_A)$
2	gapped	L_A
2	gapless, Fermi points	L_A
2	gapless, Fermi surface	$L_A \log(L_A)$

Dimension	Gap ?	Scaling S with L _A	
1	gapped	const.	MPS
1	critical	$\log(L_A)$	
2	gapped	L_A	
2	gapless, Fermi points	L_A	
2	gapless, Fermi surface	$L_A \log(L_A)$	

Dimension	Gap ?	Scaling S with L _A	
1	gapped	const.	MPS
1	critical	$\log(L_A)$	MERA
2	gapped	L_A	
2	gapless, Fermi points	L_A	
2	gapless, Fermi surface	$L_A \log(L_A)$	

Dimension	Gap ?	Scaling S with L _A	
1	gapped	const.	MPS
1	critical	$\log(L_A)$	MERA
2	gapped	L_A	
2	gapless, Fermi points	L_A	
2	gapless, Fermi surface	$L_A \log(L_A)$	

Dimension	Gap ?	Scaling S with L_A	
1	gapped	const.	MPS
1	critical	$\log(L_A)$	MERA
2	gapped	L_A	
2	gapless, Fermi points	L_A	$\int & MERA$
2	gapless, Fermi surface	$L_A \log(L_A)$	

Dimension	Gap ?	Scaling S with L _A	
1	gapped	const.	MPS
1	critical	$\log(L_A)$	MERA
2	gapped	L_A	
2	gapless, Fermi points	L_A	$\int & MERA$
2	gapless, Fermi surface	$L_A \log(L_A)$	"branching MERA"

MERA layered architecture captures power-law correlations

 ${\mathcal X}$

► X

MERA layered architecture captures power-law correlations

 ${\mathcal X}$

► X

MERA layered architecture captures power-law correlations

MERA layered architecture captures power-law correlations

 \mathcal{X}

Introduction to DMRG for Quantum Chemistry

A large part of quantum chemistry is calculating energies of molecules within the Born-Oppenheimer approximation

A standard approach pioneered by John Pople is to use *Gaussian basis functions* to approximate the continuum

Cartoon of Gaussian basis sets:

Basis sets also include linear combinations of Gaussians:

$$b_n(\mathbf{r}) = \sum_{i=1}^{N_n} c_{n,i} e^{-\zeta_{n,i}(\mathbf{r} - \mathbf{r}_A)^2}$$

And multiplicative factors: $x^p y^q z^s$

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

Fixed nuclei Hamiltonian – "electronic structure" problem:

$$H = \int_{\mathbf{r}} \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \left[-\frac{1}{2} \nabla^{2} + v(\mathbf{r}) \right] \hat{\psi}_{\sigma}(\mathbf{r})$$

$$= \frac{1}{2} \int_{\mathbf{r}} \frac{1}{2} \hat{\psi}_{\sigma}(\mathbf{r}) \hat{$$

$$+\frac{1}{2}\int_{\mathbf{r}\mathbf{r}'}\frac{1}{|\mathbf{r}-\mathbf{r}'|}\hat{\psi}^{\dagger}_{\sigma}(\mathbf{r})\hat{\psi}^{\dagger}_{\sigma'}(\mathbf{r}')\hat{\psi}_{\sigma'}(\mathbf{r}')\hat{\psi}_{\sigma}(\mathbf{r})$$

Basis set approach: define $\hat{c}_n = \int_{\mathbf{r}} \phi_n(\mathbf{r}) \hat{\psi}(\mathbf{r})$

transform to discrete \hat{c}_n basis and compute ground state

Orbital basis Hamiltonian (*i,j,k,l* label orbital 'sites'):

$$H = \sum_{ij} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{ijkl} V_{ijkl} c_{i\sigma}^{\dagger} c_{j\sigma'}^{\dagger} c_{k\sigma'} c_{l\sigma}$$

$$t_{ij} = \int_{\mathbf{r}} \phi_i(\mathbf{r}) \left[-\frac{1}{2} \nabla^2 + v(\mathbf{r}) \right] \phi_j(\mathbf{r})$$

$$V_{ijkl} = \int_{\mathbf{r}_1,\mathbf{r}_2} \frac{\phi_i(\mathbf{r}_1)\phi_j(\mathbf{r}_2)\phi_k(\mathbf{r}_2)\phi_l(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

Orbital basis Hamiltonian (*i,j,k,l* label orbital 'sites'):

$$H = \sum_{ij} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \sum_{ijkl} V_{ijkl} c_{i\sigma}^{\dagger} c_{j\sigma'}^{\dagger} c_{k\sigma'} c_{l\sigma}$$

$$t_{ij} = \int_{\mathbf{r}} \phi_i(\mathbf{r}) \left[-\frac{1}{2} \nabla^2 + v(\mathbf{r}) \right] \phi_j(\mathbf{r})$$

$$V_{ijkl} = \int_{\mathbf{r}_1,\mathbf{r}_2} \frac{\phi_i(\mathbf{r}_1)\phi_j(\mathbf{r}_2)\phi_k(\mathbf{r}_2)\phi_l(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

Point of using Gaussians is computing integrals quickly!

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

Wavefunction in orbital basis:

$$|\Psi\rangle = \sum_{\{n\}} \Psi^{n_1 n_2 \cdots n_k} |n_1 n_2 \cdots n_k\rangle$$

$$n_j = \{0, \uparrow, \downarrow, \uparrow\downarrow\}$$
 orbital occupancy basis

$\Psi^{n_1n_2\cdots n_k}$ tensor with 4^k components

Simple approximation: single Slater determinant

$$\Psi^{n_1 n_2 \cdots n_k} \approx \sum_{\{i\}} \psi^{n_1} \psi^{n_2} \psi^{n_3} \cdots \psi^{n_k}$$

Occupancy of orbitals independent of each other How to improve?

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

Add internal indices — include correlations

Add internal indices — include correlations

$$\Psi^{n_1 n_2 \cdots n_k} \approx \sum_{\{i\}} \psi^{n_1} \psi^{n_2} \psi^{n_3} \cdots \psi^{n_k}$$

Add internal indices — include correlations

$$\Psi^{n_1 n_2 \cdots n_k} \approx \sum_{\{i\}} \psi^{n_1} \psi^{n_2} \psi^{n_3} \cdots \psi^{n_k}$$

Add internal indices — include correlations

$$\Psi^{n_1 n_2 \cdots n_k} \approx \sum_{\{i\}} \psi^{n_1}_{i_1} \psi^{n_2}_{i_1 i_2 i_2} \psi^{n_3}_{i_2} \cdots \psi^{n_k}$$

Add internal indices — include correlations

$$\Psi^{n_1 n_2 \cdots n_k} \approx \sum_{\{i\}} \psi^{n_1}_{i_1} \psi^{n_2}_{i_1 i_2} \psi^{n_3}_{i_2 i_3} \cdots \psi^{n_k}_{i_{k-1}}$$

Results in matrix product state form of wavefunction

DMRG for Quantum Chemistry

DMRG has many advantages for chemistry, especially when wavefunction strongly correlated

Modest-size MPS wavefunction can represent sum of <u>exponentially many</u> Slater determinants

Yet DMRG can struggle for:

- strong "dynamic" correlations
- molecules extended in 2D or 3D

DMRG for Quantum Chemistry

But current basis-set DMRG approach has additional problems not fundamental to DMRG itself

Orthogonalizing basis set produces long tails, despite efforts to localize functions

Resulting Hamiltonian has N⁴ terms, and also DMRG wavefunction hard to represent (highly entangled)

Alternatives to pure basis-set approach?

Two Continuum Approaches

Consider 1D particles in a box

Approach 1: basis set $c_n = \int_x \phi_n(x) \hat{\psi}(x)$

$$H = -\frac{1}{2} \int_{x} \hat{\psi}^{\dagger}(x) \frac{\partial^{2}}{\partial x^{2}} \hat{\psi}(x) \quad \rightarrow \quad H = \sum_{nm} t_{nm} c_{n}^{\dagger} c_{m}$$

Loss of locality

- Must compute integrals
- + Variational
Two Continuum Approaches

Consider 1D particles in a box

Approach 2: grid approximation $c_j = \sqrt{a} \ \hat{\psi}(x_j)$

 $H = -\frac{1}{2} \int_{x} \hat{\psi}^{\dagger}(x) \frac{\partial^{2}}{\partial x^{2}} \hat{\psi}(x)$ $H \approx -\frac{1}{2a^{2}} \sum_{j} (c_{j}^{\dagger}c_{j+1} - 2n_{j} + c_{j+1}^{\dagger}c_{j})$ $+ \mathcal{O}(a^{2})$

- + Local / short range
- + No integrals to compute
- Not variational

Can use grid + DMRG for interacting many-body physics in 1D continuum:

Wagner et al., PRB 90, 045109 (2014)

Stoudenmire, Wagner, White, Burke, PRL 109, 056402 (2012)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

What about 3D continuum? (molecules, cold atoms)

1. Basis set DMRG: works well, but could scale better

Too many sites!

3. Hybrid grid + basis set DMRG...

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

Slicing Approach

Slice 3D chemical basis sets along x-direction:

Map to 1D 'chain' with 1000's of sites (small $\Delta x = a$):

- Can reach chemical accuracy for $a \lesssim 0.1$
- Scalable to 1000's of atoms

Slices roughly equivalent to using basis set of "functions":

$$\phi_{nj}(\mathbf{r}) = \delta^{\frac{1}{2}}(x - x_n)\varphi_{nj}(y, z)$$
$$x_n = n a$$

Functions on different slices $n' \neq n$ automatically ortho.

In transverse direction, orthogonalize the basis set [$\varphi_{nj}(y,z)$ orthogonal for same n and $j' \neq j$]

1. On each slice, collect standard basis functions from each atom, projected onto the slice

 $\phi_{niA}(y,z) = \phi_{iA}(x_n, y, z)$

Projected functions are not normalized

2. Orthogonalize projected functions symmetrically, truncating any with negligible contribution

Example #1: H₂ molecule, slice through nucleus

Original basis

Example #1: H₂ molecule, slice through nucleus

Orthogonal basis

Example #2: H₂ molecule, slice through bond

Original basis

Example #2: H₂ molecule, slice through bond

Orthogonal basis

$$\phi_{nj}(\mathbf{r}) = \delta^{\frac{1}{2}}(x - x_n)\varphi_{nj}(y, z)$$

Kinetic Energy:

Delta function in x really means "grid approximation" to Hamiltonian

Replace
$$\frac{\partial^2}{\partial x^2}$$
 with higher-order discretized derivative

Not variational, but can keep grid error below basis error (controlled: goes to zero as grid spacing "a" goes to zero)

$$\phi_{nj}(\mathbf{r}) = \delta^{\frac{1}{2}}(x - x_n)\varphi_{nj}(y, z)$$

Interaction Energy:

Normally must deal with N^4 interaction terms

$$V_{ijkl} = \int_{\mathbf{r}_1,\mathbf{r}_2} \frac{\phi_i(\mathbf{r}_1)\phi_j(\mathbf{r}_2)\phi_k(\mathbf{r}_2)\phi_l(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

$$\phi_{nj}(\mathbf{r}) = \delta^{\frac{1}{2}}(x - x_n)\varphi_{nj}(y, z)$$

Interaction Energy:

Normally must deal with N^4 interaction terms

$$V_{ijkl} = \int_{\mathbf{r}_1,\mathbf{r}_2} \frac{\phi_i(\mathbf{r}_1)\phi_j(\mathbf{r}_2)\phi_k(\mathbf{r}_2)\phi_l(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

But treat slices as orthogonal. Then V_{ijkl} non-zero only if i, l on same slice and j, k on same slice

$$\phi_{nj}(\mathbf{r}) = \delta^{\frac{1}{2}}(x - x_n)\varphi_{nj}(y, z)$$

Interaction Energy:

Normally must deal with N^4 interaction terms

$$V_{ijkl} = \int_{\mathbf{r}_1,\mathbf{r}_2} \frac{\phi_i(\mathbf{r}_1)\phi_j(\mathbf{r}_2)\phi_k(\mathbf{r}_2)\phi_l(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

But treat slices as orthogonal. Then V_{ijkl} non-zero only if i, l on same slice and j, k on same slice

Number of terms: $N^4 \rightarrow N_x^2 N_{\rm orb}^4$

Start from fixed nuclei Hamiltonian:

$$H = \int_{\mathbf{r}} \hat{\psi}_{\sigma}^{\dagger}(\mathbf{r}) \left[-\frac{1}{2} \nabla^2 + v(\mathbf{r}) \right] \hat{\psi}_{\sigma}(\mathbf{r})$$

+
$$\frac{1}{2} \int_{\mathbf{rr'}} v_{ee}(\mathbf{r} - \mathbf{r'}) \hat{\psi}^{\dagger}_{\sigma}(\mathbf{r}) \hat{\psi}^{\dagger}_{\sigma'}(\mathbf{r'}) \hat{\psi}_{\sigma'}(\mathbf{r'}) \hat{\psi}_{\sigma}(\mathbf{r})$$

Define
$$\hat{c}_{nj\sigma} = \sqrt{a} \int_{y,z} \varphi_{nj}(x,y) \ \hat{\psi}_{\sigma}(x_n,y,z)$$

and transform to $\hat{c}_{nj\sigma}$ basis

Discrete (n,j) labels can be viewed as a "ladder" lattice

Hamiltonian turns into three pieces

H =

Hamiltonian turns into three pieces

$$H = \sum_{n} H_n^{\text{(slice)}}$$

Hamiltonian turns into three pieces

$$H = \sum_{n} H_n^{\text{(slice)}} + T^{\text{(grid)}}$$

Hamiltonian turns into three pieces

$$H = \sum_{n} H_n^{\text{(slice)}} + T^{\text{(grid)}} + V$$

$$H = \sum_{n} H_n^{\text{(slice)}} + T^{\text{(grid)}} + V$$

$$H_n^{(\text{slice})} = \sum_{ij} t_n^{ij} c_{ni}^{\dagger} c_{nj} + \sum_{ijkl} V_n^{ijkl} c_{ni}^{\dagger} c_{nj}^{\dagger} c_{nk} c_{nl}$$

Full complexity of orbital basis, but confined to each slice $(N_{\rm orb})^4$ terms but $N_{\rm orb}$ is small

$$H = \sum_{n} H_n^{\text{(slice)}} + T^{\text{(grid)}} + V$$

$$T^{(\text{grid})} = -\frac{1}{2a^2} \sum_{nj} (c_{nj}^{\dagger} c_{n+1,j} - 2n_{nj} + c_{n+1,j}^{\dagger} c_{nj})$$

Grid kinetic energy: hop without changing orbital j

Can use higher-order discrete deriv. to reduce error in a

$$H = \sum_{n} H_n^{\text{(slice)}} + T^{\text{(grid)}} + V$$

$$V = \sum_{nn'} \sum_{ijkl} V_{mjk}^{nil} (c_{ni}^{\dagger} c_{nl}) (c_{mj}^{\dagger} c_{mk})$$

Operators c^{\dagger} and c paired within rungs

Consists of $N^2 N_{\rm orb}^4$ terms (<< N^4)

Can get even better scaling with compression (matrix product operator) tricks

Results for Hydrogen Chains

Density plot – chain of 10 hydrogen atoms

Spacing R=2.8; cc-pvDZ derived basis set

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

Advantages of Slicing Approach

Other main advantage of slicing approach is simpler Hamiltonian.

$$H = \sum_{j} H_{j}^{(\text{slice})} + T^{(\text{grid})} + V$$

- $\sum_{j} H_{j}^{(\text{slice})} + T^{(\text{grid})}$ parts are very short range, easy for DMRG
- V contains $N^2 (N_{\rm orb})^4$ terms, but can compress into a matrix product operator (MPO) of bond dimension only about $M_{\rm MPO} \sim 100$, weakly dependent on system size

$$N^2 (N_{\rm orb})^4 \rightarrow (M_{\rm MPO})^2$$

Linear scaling to 1000 hydrogen atoms

Advantages of Slicing Approach

Other advantanges to explore

- can optimize transverse functions within DMRG
- can use tensor networks (tree network; MERA) to initialize and optimize
- easier for applying time-dependent DMRG in chemistry context?

Conclusions & Future directions

- Hybrid grid + basis set ("sliced" basis) approach can extend usefulness of DMRG for chemistry
- Better scaling and treatment of correlations
- Approach is ideal for 1D trapped cold atoms too
- New MPO technology can be used for real-time evolution / dynamics studies
Finite Temperature Systems with MPS

Finite Temperature Systems with Matrix Product States

Two different, complementary techniques:

- purification / ancilla
- minimally entangled typical thermal states (METTS)

Highlight of applications

Given Hamiltonian, for example \hat{H}

$$\hat{H} = \sum_{\langle ij \rangle} \vec{S}_i \cdot \vec{S}_j$$

Compute finite T observables

Lots of interesting physics at finite T (especially in 2 or 3 dimensions)

- Critical behavior
- Magnetization plateuax
- Pseudogap crossover in high Tc materials
- Quenches & dynamics from finite T systems (Bonnes, Essler, Lauchli)

Usual prescription: "just" obtain all eigenstates

$$\hat{H}|\epsilon_n\rangle = \epsilon_n|\epsilon_n\rangle$$

Then finite T density matrix is

$$\hat{\rho} = \frac{1}{Z} \sum_{n} e^{-\epsilon_n/T} |\epsilon_n\rangle \langle \epsilon_n |$$

Usual prescription: "just" obtain all eigenstates

$$\hat{H}|\epsilon_n\rangle = \epsilon_n|\epsilon_n\rangle$$

Thermal averages given by

$$\langle \hat{A} \rangle = \frac{1}{Z} \sum_{n} e^{-\epsilon_n/T} \langle \epsilon_n | \hat{A} | \epsilon_n \rangle$$

But eigenstates terrible numerically!

• Most are very highly entangled (volume law)

But eigenstates terrible numerically!

- Most are very highly entangled (volume law)
- Exponentially small energy spacing

But eigenstates terrible numerically!

- Most are very highly entangled (volume law)
- Exponentially small energy spacing
- Poor (worst) basis for sampling specific heat

But eigenstates terrible numerically!

- Most are very highly entangled (volume law)
- Exponentially small energy spacing
- Poor (worst) basis for sampling specific heat
- Retain "quantum" behavior at high T

Why tensor networks for finite T numerics?

• No sign problem (can treat fermions, frustrated magnets)

- No sign problem (can treat fermions, frustrated magnets)
- No sampling error in some regimes

- No sign problem (can treat fermions, frustrated magnets)
- No sampling error in some regimes
- Starting point for dynamics

- No sign problem (can treat fermions, frustrated magnets)
- No sampling error in some regimes
- Starting point for dynamics
- Interesting perspective on finite T physics

Two major approaches for finite T:

1. Ancilla or purification

2. METTS sampling (minimally entangled typical thermal states)

Surprisingly simple idea: directly make density matrix

Leverage algorithms for time evolving MPS

Surprisingly simple idea: directly make density matrix

Overview:

- 1. start with identity operator
- 3. take trace expectation value of operator

 $\operatorname{Tr}\left[e^{-\beta/2H}\hat{A}e^{-\beta/2H}\right]/Z$

 $| | | | \hat{I}_1 \hat{I}_2 \hat{I}_3 \hat{I}_4$

View starting identity operator as a "wavefunction"

For case of spin 1/2 system, each pair mapped to wavefunction as:

$$|\uparrow\rangle_1\langle\uparrow|_2+|\downarrow\rangle_1\langle\downarrow|_2 \longrightarrow |\uparrow\rangle_1|\uparrow\rangle_2+|\downarrow\rangle_1|\downarrow\rangle_2$$

Easy to represent as a matrix product state (MPS)

View starting identity operator as a "wavefunction"

Picture is that even or "ancilla" sites thermalize odd "physical" sites

Tracing out ancillae gives infinite T density matrix for physical sites

Imaginary time evolution:

Assume we have obtained
$$e^{-\tau H} = \left| - \right| + \left| - \right|$$

Want to apply it as

Imaginary time evolution:

Assume we have obtained
$$e^{-\tau H} =$$

Equivalent to


```
Apply to odd, or "physical" sites
```

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

After first step, physical+ancilla "wavefunction" will be entangled

Represent as an MPS

Continue time evolving physical sites (odd sites)

Final MPS proportional to $e^{-\beta/2H}$

Measure local operators as

(up to proper normalization) © Edwin Miles Stoudenmire, Flatiron Institute, 2018

How well does it work?

In practice, reach $T \approx J$

At lower T, similar to DMRG with bond dimension $\,m^2$

Scaling is therefore
$$(m^2)^3 = m^6$$

Key advantage: can measure at all T's on the way down

1D Example: S=1/2 chain (Fei

FIG. 2. Specific heat and magnetic susceptibility of a S=1/2 spin chain of length L=64, compared to exact $L=\infty$ results using the Bethe ansatz.

Feiguin, White, PRB 72, 220401(R) (2005)

2D Example: S=1/2 triangular lattice Heisenberg

Bruognolo, Zhu, White, Stoudenmire, arxiv:1705.05578

Minimally Entangled Typical Thermal States

Purification has key drawback:

costly at low temperatures (even if polynomial)

Minimally entangled typical thermal states (METTS) designed to get around this problem (White, 2009)

Minimally Entangled Typical Thermal States

Think of replacing trace by explicit summation

Minimally Entangled Typical Thermal States

Think of replacing trace by explicit summation

Rewrite in a suggestive way

$$=\frac{1}{Z}\sum_{\mathbf{s}}\langle \mathbf{s}|e^{-\beta H/2}\hat{A}e^{-\beta H/2}|\mathbf{s}\rangle$$

$$= \frac{1}{Z} \sum_{\mathbf{s}} P(\mathbf{s}) \langle \phi(\mathbf{s}) | \hat{A} | \phi(\mathbf{s}) \rangle \qquad |\phi(\mathbf{s})\rangle = e^{-\beta H/2} |\mathbf{s}\rangle / P^{\frac{1}{2}}(\mathbf{s})$$
$$P(\mathbf{s}) = \langle \phi(\mathbf{s}) | \phi(\mathbf{s}) \rangle$$

Suggests a sampling method

Can sample with following algorithm:

1. given product state $|\mathbf{s}\rangle$ compute $|\tilde{\phi}(\mathbf{s})\rangle = e^{-\beta H/2} |\mathbf{s}\rangle$

2. compute estimator $\langle \phi(\mathbf{s}) | \hat{A} | \phi(\mathbf{s}) \rangle$

3. collapse to obtain new product state $|\phi(\mathbf{s})\rangle \longrightarrow |\mathbf{s}'\rangle$ (no rejection step vs. Metropolis)


```
(Step #3 should seem mysterious)
```

Assuming steps #1 and #2 can be done using MPS

Why is collapse the right thing to do? $|\phi(\mathbf{s})\rangle \longrightarrow |\mathbf{s}'\rangle$

Define collapse to be selection of $\, \left| {{{
m{s}}'}
ight
angle \,$

with probability $|\langle {f s}' | \phi({f s})
angle |^2$

Markov chain with transition probability

$$p_{\mathbf{s}\to\mathbf{s}'} = |\langle \mathbf{s}' | \phi(\mathbf{s}) \rangle|^2$$

Can show obeys detailed balance

$$\frac{P(\mathbf{s})}{Z} p_{\mathbf{s} \to \mathbf{s}'} = \frac{P(\mathbf{s}')}{Z} p_{\mathbf{s}' \to \mathbf{s}}$$

Efficient algorithm for collapsing an MPS

Say 'down' is picked for site 1

 $\downarrow \bigcirc \\ \downarrow \bigcirc \\ \downarrow \bigcirc \\ \checkmark$ \downarrow \downarrow \downarrow \downarrow \downarrow

Say 'down' is picked for site 1

Interestingly, will draw product state $|{\bf s}\rangle$ with probability $|\langle {\bf s}|\psi\rangle|^2~$ in a single run of the algorithm

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

Having computed N states $|\phi(\mathbf{s}_1)\rangle, |\phi(\mathbf{s}_2)\rangle, |\phi(\mathbf{s}_3)\rangle, \ldots$

Estimate expectation values as

$$\langle \hat{A} \rangle \simeq \frac{1}{N} \sum_{j=1}^{N} \langle \phi(\mathbf{s}_j) | \hat{A} | \phi(\mathbf{s}_j) \rangle$$

Computing each state $|\phi(\mathbf{s})
angle$ has similar cost to ground state DMRG for low T

For higher T even cheaper

Overall scaling like βNm^3

Can also choose collapse basis to minimize autocorrelation:

Collapsing into z basis at high T "remembers" prev. state

Switching to x and z basis on alternating steps mixes rapidly

States $|\phi(\mathbf{s})
angle$ are called METTS

$$|\phi(\mathbf{s})\rangle \propto e^{-\beta H/2}|\mathbf{s}\rangle$$

"Typical" because

- averaging them gives correct thermal result
- product states at high T, ground state at low T
- if system breaks symmetries, METTS do too
- expectation values converge rapidly

Example of a METTS:

IOP Institute of Physics Φ DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 9. Properties of a METTS produced for the 100 site S = 1 Heisenberg chain at T = 0.1, central 80 sites. In the main plot, the solid lines (red, green and black) show the three components of $\langle \vec{S} \rangle$, while the (blue) boxes show $|\langle \vec{S} \rangle|$. The entanglement entropy on each bond is shown in the top inset, while the expectation value of each Hamiltonian bond term is shown in the bottom inset.

Movie of the METTS algorithm (S=1/2 Heisenberg ladder, ~eta=5)

METTS produced for the *frustrated* XXZ model ($\Delta=5$)

$$\hat{H} = J_1 \sum_{\langle i,j \rangle} \left(\hat{S}_i^x \hat{S}_j^x + \hat{S}_i^y \hat{S}_j^y + \Delta \hat{S}_i^z \hat{S}_j^z \right) + J_2 \sum_{\langle \langle i,j \rangle \rangle} \left(\hat{S}_i^x \hat{S}_j^x + \hat{S}_i^y \hat{S}_j^y + \Delta \hat{S}_i^z \hat{S}_j^z \right),$$

Using METTS to obtain thermodynamic properties

Test on unfrustrated case $(J_2 = 0)$

Using METTS to obtain thermodynamic properties

Apply to frustrated case $(J_2/|J_1| = 0.2)$

Using METTS to obtain thermodynamic properties

Susceptibility of triangular lattice Heisenberg model

Interesting separation of quantum vs. classical fluctuations

"Quantum specific heat"
$$C^q = \frac{\beta^2}{N} \sum_i \frac{P(i)}{\mathcal{Z}} \left[\langle H^2 \rangle_i - \langle H \rangle_i^2 \right]$$

Classical part of specific heat $(C - C^q)$ is precisely the sample variance of the energy

Stoudenmire, White, NJP 12, 055026 (2010)

Summary of Finite Temperature Methods

Purification effective for higher T

METTS sampling efficient for lower T

Can apply both to 2D and frustrated / fermionic systems

Future Directions

Many interesting ideas to improve both methods

- exploit freedom to apply arb. unitary to collapse basis (entangled collapses)
- mix ancilla (traced) and METTS (collapsed) sites
- make better use of symmetries [Binder, Barthel, PRB **95**, 195148]
- apply mixed state truncation protocol for dynamics [White, Mong, Zaletel, Refael arxiv:1707.01506]