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Review of Previous Lecture



'‘Gauging' an MPS bestows it with useful properties
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MPQOs can compactly and generically represent
Hamiltonians

I, Heisenberg

St model
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DMRG algorithm for optimizing MPS
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Beyond Matrix Product States



Besides matrix product state network, other
very interesting networks are PEPS and

MERA

PEPS
(2D systems)
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(critical systems)

Evenbly, Vidal, PRB 79, 144108 (2009)
Verstraete, Cirac, cond-mat/0407066 (2004)
Orus, Ann. Phys. 349, 117 (2014)



PEPS Tensor Network

Most straightforward extension of matrix product states
to two-dimensional lattices
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PEPS Tensor Network

Most straightforward extension of matrix product states
to two-dimensional lattices
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PEPS Tensor Network

Powerful algorithms to address
infinite 2D systems

Figure from: Corboz, PRB 94, 035133 (2016)
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MERA Tensor Network

The MERA tensor network generalizes matrix
product state to a layered structure
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Entanglement Scaling

Key motivation of PEPS and MERA is capturing
scaling of entanglement beyond 1D, gapped case

Two basic types of behavior (dimensions d=1,2):

region B

A

region A
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Entanglement Scaling

Key motivation of PEPS and MERA is capturing
scaling of entanglement beyond 1D, gapped case

Two basic types of behavior (dimensions d=1,2):

Boundary law: S ~ L% *

region B

A

region A
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Entanglement Scaling

Key motivation of PEPS and MERA is capturing
scaling of entanglement beyond 1D, gapped case

Two basic types of behavior (dimensions d=1,2):
Boundary law: S ~ L% *

Boundary law times log correction: S ~log(L4) L%

A

region A

region B
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Entanglement Scaling region B

L

region A

1. Boundary law: S ~ L%

2. Boundary law times log correction: S ~ log(La) LY "

Intuition behind these two behaviors:

1. Product state + local fluctuations: all entanglement
near boundary between A and B

2. Scale invariant. Boundary law contribution at
each scale, log(La) rescaling transformations until
region A shrinks to a point
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Entanglement Scaling

Based on numerical & field theory evidence, can
make following table of expected scaling:

Dimension Gap ? Scaling S with La
1 gapped const.
1 critical log(L 4)
2 gapped L A
2 gapless, Fermi points LA
2 gapless, Fermi surface Lalog(La)
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Min-cut Argument

To motivate why PEPS and MERA are a good idea
make following observation:

Consider a matrix (= density matrix) having internal
'tensor network' structure
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Min-cut Argument

For simplicity, assume all index lines of size D

Then p is D% x D8 matrix

But can be written as sum of outer products of only
D vectors (each of dimension D?3)
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Min-cut Argument

Call linear dimension of p "R" (= D8 in example)

Then p has a kernel (null space) of dimension R-D

At most D of the vectors forming p can be
linearly independent
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Min-cut Argument

So rank of p is R-(dimension of kernel) = R-(R-D) =D

Can only have D non-zero eigenvalues
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Min-cut Argument

More generally, can show rank of a "structured”
matrix is minimum of product of dimensions of lines
needed to cut into two pieces

not a min cut
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Min-cut Argument

More generally, can show rank of a "structured”
matrix is minimum of product of dimensions of lines
needed to cut into two pieces

rank(p) = D1 D> D3
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Min-cut Argument

If matrix is a density matrix, then maximum entropy
occurs when all eigenvalues = 1/rank

—> Shax = log(rank)

Smax( P) = log( D1 D2 D3 )
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Min-cut Argument

Let's apply this argument to various tensor networks
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Min-cut Argument

Matrix product state (MPS)

) O-0-0-0-0-0-0-0
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Min-cut Argument

Matrix product state (MPS)
O—0O—0O—-C C‘ “ ‘. O
- oo
OmOmOn® C’ " " O

Independent of system size = boundary law
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Min-cut Argument

Matrix product state (MPS)

000 Q Q
it ..
OmOmOm® Q

Independent of system size = boundary law
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Min-cut Argument

Matrix product state (MPS)

000 Q Q
it ..
OmOmOm® Q

Smax = log( m )

Independent of system size = boundary law
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Min-cut Argument

PEPS wavefunction
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Min-cut Argument

PEPS wavefunction

min cut
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Min-cut Argument

PEPS wavefunction
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Min-cut Argument

PEPS wavefunction

/ min cut
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Min-cut Argument

MERA wavefunction
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Min-cut Argument

MERA wavefunction

min cut
1 ~ ..... ~
A\ A ZANERAN A\ AN
g g ) g g g g
KARAAARARALD LN
000000000000000

A
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Min-cut Argument

MERA wavefunction

min cut
1 ~ ..... ~
A\ A ZANERAN A\ AN
g g ) g g g g
KARAAARARALD LN
000000000000000

A

Number of layers intersecting min cut of region A
is log(L 4)
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Min-cut Argument

MERA wavefunction

min cut
1 ~ ..... ~
A\ A ZANERAN A\ AN
g g ) g g g g
KARAAARARALD LN
000000000000000

A
Number of layers intersecting min cut of region A

is log(L 4)
Smax = log( D'°9t24)) = log( L) log( D)
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Entanglement Scaling

MPS, MERA, and PEPS realize most cases

Dimension Gap ? Scaling S with La
1 gapped const.
1 critical log(L 4)
2 gapped L A
2 gapless, Fermi points LA
2 gapless, Fermi surface Lalog(La)
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Entanglement Scaling

MPS, MERA, and PEPS realize most cases

Dimension Gap ? Scaling S with La
1 gapped const. MPS
1 critical log(L 4) MERA
2 gapped La
PEPS
2 gapless, Fermi points LA
2 gapless, Fermi surface Lalog(La)
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Entanglement Scaling

MPS, MERA, and PEPS realize most cases

Dimension Gap ? Scaling S with La
1 gapped const.
1 critical log(L 4)
2 gapped L A
2 gapless, Fermi points LA
2 gapless, Fermi surface Lalog(La)
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Entanglement Scaling

MPS, MERA, and PEPS realize most cases

Dimension Gap ? Scaling S with La
1 gapped const. MPS
1 critical log(L 4) MERA
2 gapped L A
PEPS
2 gapless, Fermi points La & MERA
2 gapless, Fermi surface Lalog(La) "branching

© Edwin Miles Stoudenmire, Flatiron Institut

e, 2018

MERA"



MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

Matrix product state captures only
exponential correlations
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MERA Tensor Network

MERA layered architecture captures
power-law correlations

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



MERA Tensor Network

MERA layered architecture captures
power-law correlations

5% Gy

» U

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



MERA Tensor Network

MERA layered architecture captures
power-law correlations

» U
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MERA Tensor Network

MERA layered architecture captures
power-law correlations
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Introduction to DMRG for Quantum Chemistry



A large part of quantum chemistry is calculating energies
of molecules within the Born-Oppenheimer approximation

Figure credit: igmol.org
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A standard approach pioneered by John Pople is to use
Gaussian basis functions to approximate the continuum

Figure credit: igmol.org
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Consider an H, molecule

Cartoon of Gaussian basis sets:
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Consider an H> molecule

Cartoon of Gaussian basis sets:

® o
Basis sets also include linear combinations of Gaussians:
N,
b(r) = Cp e ST TTA)
1=1

And multiplicative factors: 2"y?z*
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Fixed nuclei Hamiltonian — "electronic structure" problem:

H= [ Gi6) | 5V* + (o) | do o)

A WL )

2 Jopr [T —1|"°

Basis set approach: define ¢, = /gbn(r)zﬁ(r)

transform to discrete ¢, basis and
compute ground state
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Orbital basis Hamiltonian (i,j,k,l label orbital 'sites'):

H = E twcwcijE Vijkicl, jg/ckaf(iza
17kl

by = [ i1 |-5 V7 ()| 6500

1 — I

= [ BeE)oute (e
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Orbital basis Hamiltonian (i,j,k,l label orbital 'sites'):

H = E twcwcijE Vijkicl, jg/ckaf(iza
17kl

i = [ 6i(e) [~ 4 vlw)| 040

= [ BeE)oute (e

1 — I

Point of using Gaussians is computing integrals quickly!
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Wavefunction in orbital basis:

‘\If> __ Z PNz Nk |n1n2 o nk>
{n}

n; =10, 1, |, T/} orbital occupancy basis

P2 tensor with 4 components

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



MPS Approximation

Simple approximation: single Slater determinant
\Ijnan”'nk ~ Z wnl wnzwn:% .. wnk
14}

Occupancy of orbitals independent of each other

How to improve?

© Edwin Miles Stoudenmire, Flatiron Institute, 2018 Chan and Sharma' Annu’ ReV. Phys’ Chem' 201 1 '62:465-48



MPS Approximation

Add internal indices —— include correlations
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MPS Approximation

Add internal indices —— include correlations

\Ijnan”'nk ~ Z wnl wnzwn:% c . wnk
1}
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MPS Approximation

Add internal indices —— include correlations

Jranzn Z wnl wngwng o wnk
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MPS Approximation

Add internal indices —— include correlations

Jranzn Z wnl wngwng o wnk

1112

{2} \/ \/
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MPS Approximation

Add internal indices —— include correlations

Jranzn Z wnl wngwng o wnk

1119 1213 lk—1

{2} \/\_/\/\/

Results in matrix product state form of wavefunction

© Edwin Miles Stoudenmire, Flatiron Institute, 2018 Chan and Sharma' Annu’ ReV. Phys’ Chem' 201 1 '62:465-48



DMRG for Quantum Chemistry

DMRG has many advantages for chemistry,
especially when wavetfunction strongly correlated

Modest-size MPS wavefunction can represent sum
of exponentially many Slater determinants

Yet DMRG can struggle for:
e strong "dynamic" correlations
* molecules extended in 2D or 3D

Chan and Sharma, Annu. Rev. Phys. Chem. 2011.62:465-48
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DMRG for Quantum Chemistry

But current basis-set DMRG approach has additional
problems not fundamental to DMRG itself

Orthogonalizing basis set produces long tails,
despite efforts to localize functions

Resulting Hamiltonian has N terms, and also DMRG
wavefunction hard to represent (highly entangled)

Alternatives to pure basis-set approach?

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Two Continuum Approaches

Consider 1D particles in a box

/\/
Approach 1: basis set ¢, = / D (2)0() /\

1 [ - 0% -
_ T > __ E T

- Loss of locality
- Must compute integrals

4+ Variational

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Two Continuum Approaches

Consider 1D particles in a box

Approach 2: grid approximation ¢; = v/a 12(%‘)

1 R 0% -
H:?/QCW)@ CN

1
H~ -5 Z(C;Cjﬂ =20 + ¢}y 1¢5)

! + O(a?)
+ Local / short range

+ No integrals to compute

- Not variational
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Can use grid + DMRG for interacting
many-body physics in 1D continuum:

0.5

0.4 —

n(xr) 93-
O..l—

0

0

v(@) s HUNANANNNNAANANNADNANNNN]E

Wagner et al., PRB 90, 045109 (2014)
Stoudenmire, Wagner, White, Burke, PRL 109, 056402 (2012)



What about 3D continuum? (molecules, cold atoms

1. Basis set DMRG: works well, but could scale better

Too many sites!

3. Hybrid grid + basis set DMRG...

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Slicing Approach

Slice 3D chemical
basis sets along q C( § ééé{ q{ ®
x-direction:

Map to 1D 'chain'
with 1000's of sites
(small Az =a):

e Can reach chemical accuracy for a < 0.1

e Scalable to 1000's of atoms

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Sliced Basis Set

Slices roughly equivalent to using
basis set of "functions":

b (r) = 62 (2 = )P (4, 2) I
e L

n= 12 3 4 5 6 7 8 9

Functions on different slices n’ # n automatically ortho.

In transverse direction, orthogonalize the basis set
[ ©n;(y, 2) orthogonal for same n and j' # 4]
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Constructing a Sliced Basis

1. On each slice, collect standard basis functions from
each atom, projected onto the slice

¢niA (?J; Z) — ¢iA (xna Y, Z)

Projected functions are not normalized

2. Orthogonalize projected functions symmetrically,
truncating any with negligible contribution

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Constructing a Sliced Basis

Example #1: H, molecule, slice through nucleus

—— A=l j=1 |
0.6 :
0.4- : T
0.2- - Orbitals taken from cc-pvTZ,
' S orbitals only
0.0 .
i 8

Original basis
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Constructing a Sliced Basis

Example #1: H, molecule, slice through nucleus

Orbitals taken from cc-pvTZ,
S orbitals only

Orthogonal basis
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Constructing a Sliced Basis

Example #2: H, molecule, slice through bond

—— A=1&2,j=1 |
0.6 - i
0.4- - ?
0.2 - Orbitals taken from cc-pvTZ,
' S orbitals only
0.0 .
T 8

Original basis
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Constructing a Sliced Basis

Example #2: H, molecule, slice through bond

Orbitals taken from cc-pvTZ,
S orbitals only

Orthogonal basis
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Sliced Basis Set

1

Onj(r) = 02 (2 — 2 )pn;(y, 2)
Kinetic Energy:

Delta function in x really means "grid approximation”
to Hamiltonian

82
Replace 52 with higher-order discretized derivative

Not variational, but can keep grid error below basis error
(controlled: goes to zero as grid spacing "a" goes to zero)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Sliced Basis Set

1

Dnj(r) = 02(x — Xn)Pnj(y, 2)
Interaction Energy:

Normally must deal with N* interaction terms

V:ijkl:/ di(r1)d;(r2)dn(re)di(ry)

1 — I
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Sliced Basis Set

1

Dnj(r) = 02(x — Xn)Pnj(y, 2)
Interaction Energy:

Normally must deal with N* interaction terms

Vijkzzf ¢i(r1)9;(r2)or(ra)e(ry)

1 — I

But treat slices as orthogonal. Then Vi non-zero
only if ¢,/ on same slice and j,k on same slice
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Sliced Basis Set

1

Dnj(r) = 02(x — Xn)Pnj(y, 2)
Interaction Energy:

Normally must deal with N* interaction terms

Vijkzzf ¢i(r1)9;(r2)or(ra)e(ry)

1 — I

But treat slices as orthogonal. Then Vi non-zero
only if ¢,/ on same slice and j,k on same slice

Number of terms: N% — Nf} N(jlrb
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Form of Hamiltonian

Start from fixed nuclei Hamiltonian:

H= [ Gix) |- 5V2 + (o) | do o)

A

Y,z

and transform to ¢, basis

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Form of Hamiltonian

Discrete (n,j) labels can be viewed as a "ladder" lattice

orbital # |

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Form of Hamiltonian

Hamiltonian turns into three pieces

H =

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Form of Hamiltonian

Hamiltonian turns into three pieces

H — Z Héslice)

=3 @ » O

=2 @ - O

=1 @ - -
n=1 n=2 n=3
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Form of Hamiltonian

Hamiltonian turns into three pieces

H = Z H,,(?JSHCG) n T(grid)

rrt

=3 —@ @ @ @
=2 —@ @ @ O
i=1 —@ @ o O
n=1 n=2 n=3 n= n=
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Form of Hamiltonian

Hamiltonian turns into three pieces

H — Z Héslice) n T(grid) n v

n=1 n=2 n=3 n=4 n=>5
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. . slice ri
Form of Hamiltonian H= Y HNppeid y

slice) 17 T 11kl T 7
[ stice) — g tle) cni+ g V25 ey e ik
i ikl

Full complexity of orbital basis, but confined to each slice

(Norb)* terms but N4, is small

o
00
00
00
00
00

n=1 n=2 n=3 n=4 n=5
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. . slice ri
Form of Hamiltonian H= Y HNppeid y

. 1
rid
Tend) — 502 E :(Cjzjcn—l-l,j — 2Npj + CLHJ%J)

nj

Grid kinetic energy: hop without changing orbital j

Can use higher-order discrete deriv. to reduce error in a

i
N W

| S S @
Il Il
—

'y
1Y

Il
—
-

Il
N

Il
w

Il
S

n n n
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. . slice ri
Form of Hamiltonian H= Y HNppeid y

V= LL "zzlk ancnl)( injcmk)

nn’ 19kl

Operators c¢' and ¢ paired within rungs

Consists of N? N2, terms (<< N*)

O

Can get even better scaling with compression
(matrix product operator) tricks

© Edwin Miles Stoudenmire, Flatiron Institute, 2018
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Results for Hydrogen Chains

—+x



Density plot — chain of 10 hydrogen atoms

2
1
y 0D 00 00 00 OV
-1
2
~10 -5 0 5 10
0.000  0.004  0.008  0.012 0.0_16

Spacing R=2.8; cc-pvDZ derived basis set
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Chains of N, = 10 hydrogen atoms, spacing R (fixed nuclei)

1 | - +-  STO-6G Basis Set |

\ _

>\ \ .-
o) 4 \ -~ N
— \ ,’*
= -5.0 ‘ -
g ° ] \ /’ B
LTJ \ g

_ \ P o

\ Pid
b
_ \* -, n
7
\ Pl
\ 7
7] \ P -
\\+ /,/
N N\\ f”-'_ B
-P
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Chains of N, = 10 hydrogen atoms, spacing R (fixed nuclei)

| - =- STO-6G Basis Set |

] \ —=— Sliced STO-6G i

—4.5 - n

5 ] i

1)) . i
P

= —5.0 - B
(1]

—5.5 - -
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Chains of N, = 10 hydrogen atoms, spacing R (fixed nuclei)

| - ==  STO-6G Basis Set |
| I —s— Sliced STO-6G |
—4.5 _ \ \ --- Double ¢ Basis Set |
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Chains of N, = 10 hydrogen atoms, spacing R (fixed nuclei)

© Edwin Miles

— ) —

STO-6G Basis Set
—=— Sliced STO-6G
Double ¢ Basis Set
—e— Sliced Double ¢
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Chains of N, = 10 hydrogen atoms, spacing R (fixed nuclei)

-\
-t — .
_ AT
vt - -
_405_ ‘u‘ |
"W ——
IT
4 \
1 Y - -

STO-6G Basis Set
Sliced STO-6G
Double ¢ Basis Set
Sliced Double ¢
Triple ¢ Basis Set
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Chains of N, = 10 hydrogen atoms, spacing R (fixed nuclei)

© Edwin Miles

i \‘ - == STO-6G Basis Set |
| ' —=— Sliced STO-6G i
4.5 \ - - - Double ( Basis Set
\ —e— Sliced Double ¢
| \ - -~ Triple ¢ Basis Set |
] ‘5‘ —+— Sliced Triple ¢ I
—5.0 -
—5.5 -
| | | | | | | | | | | | | | | | | | | | | | | | | |
1.0 1.5 2.0 2.5 3.0 3.5
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Advantages of Slicing Approach

Other main advantage of slicing approach is

simpler Hamiltonian.

. (slice) :
H = ZHj 4 plerid) o/

J

slice :
e > H" 7@ parts are very short range, easy for DMRG
J

« V contains N*(N,,)* terms, but can compress into a
matrix product operator (MPO) of bond dimension only
about Mypo ~ 100, weakly dependent on system size

N*(Now)* — (Mypo)?

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Linear scaling to 1000 hydrogen atoms

-0.482

-0.484

-0.486

E / N (Hartree)

-0.488

© Edwin Miles Stoudenmire, Flatiron Institute, 2018
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Advantages of Slicing Approach

Other advantanges to explore
* can optimize transverse functions within DMRG

e can use tensor networks (tree network; MERA) to

initialize and optimize

* easier for applying time-dependent DMRG in

chemistry context?

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Conclusions & Future directions

» Hybrid grid + basis set ("sliced" basis) approach can
extend usefulness of DMRG for chemistry

« Better scaling and treatment of correlations
» Approach is ideal for 1D trapped cold atoms too

 New MPO technology can be used for real-time
evolution / dynamics studies

© Edwin Miles Stoudenmire, Flatiron Institute, 2018






Finite Temperature Systems
with MPS



Finite Temperature Systems with Matrix Product States

Two different, complementary techniques:

e purification / ancilla

* minimally entangled typical thermal states (ME

Highlight of applications
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Finite Temperature Quantum Mech

Given Hamiltonian, for example H

Compute finite T observables

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Finite Temperature Quantum
Lots of interesting physics at finite T (especially in 2 or 3 dimensions)

e Critical behavior
* Magnetization plateuax
* Pseudogap crossover in high Tc materials

* Quenches & dynamics from finite T systems (Bonnes, Essler, Lauchli)

o
S
;H
C
|.u<]
=
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Finite Temperature Quantum

Usual prescription: "just" obtain all eigenstates

ﬁ|en> = €n|€n)

Then finite T density matrix is

.1 .
p=—> e Mew)(en

n

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Finite Temperature Quantum

Usual prescription: "just" obtain all eigenstates

ﬁ|en> = €n|€n)

Thermal averages given by

A 1 VoS
_ _en/T
) = 23 e/ Tl e

n
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Finite Temperature Quantum

But eigenstates terrible numerically!

* Most are very highly entangled (volume law)
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Finite Temperature Quantum

But eigenstates terrible numerically!

* Most are very highly entangled (volume law)

e Exponentially small energy spacing
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Finite Temperature Quantum

But eigenstates terrible numerically! HM>

* Most are very highly entangled (volume law)
e Exponentially small energy spacing

* Poor (worst) basis for sampling specific heat
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Finite Temperature Quantum

But eigenstates terrible numerically! HM>

* Most are very highly entangled (volume law)
e Exponentially small energy spacing
* Poor (worst) basis for sampling specific heat

® Retain "quantum" behavior at high T

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Finite T With Tensor Networks

Why tensor networks for finite T numerics?
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Finite T With Tensor Networks

Why tensor networks for finite T numerics?

* No sign problem (can treat fermions, frustrated magnets)
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Finite T With Tensor Networks

Why tensor networks for finite T numerics?

* No sign problem (can treat fermions, frustrated magnets)

* No sampling error in some regimes
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Finite T With Tensor Networks

Why tensor networks for finite T numerics?

* No sign problem (can treat fermions, frustrated magnets)
* No sampling error in some regimes

e Starting point for dynamics
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Finite T With Tensor Networks

Why tensor networks for finite T numerics?

* No sign problem (can treat fermions, frustrated magnets)
* No sampling error in some regimes
e Starting point for dynamics

* Interesting perspective on finite T physics

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Finite T With Tensor Networks

Two major approaches for finite T:

1. Ancilla or purification

2. METTS sampling (minimally entangled typical thermal states)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

Surprisingly simple idea: directly make density matrix

Leverage algorithms for time evolving MPS

o—TH I_I_I_I_I_l
~ OO0 [vsir)
5) OO0 .
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Ancilla / Purification Method
Surprisingly simple idea: directly make density matrix

Overview:

1. start with identity operator ‘ ‘ ‘

2. evolve in imaginary time for time [(3/2

times

e ()
e

3. take trace expectation value of operator ﬁ

Trle P/2H Ae=FB/2H) /7

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

View starting identity operator as a "wavefunction”

w
&)

| AU

a
(o))

For case of spin 1/2 system, each pair mapped to wavefunction as:

(Tl + 112 - M) 2 H )2

Easy to represent as a matrix product state (MPS)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

View starting identity operator as a "wavefunction”

w
&)

| UV

a
(o))

Picture is that even or "ancilla” sites thermalize odd "physical"” sites

Tracing out ancillae gives infinite T density matrix for physical sites

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

Imaginary time evolution:

Assume we have obtained e_TH — |_|_|_|

Want to apply it as

w
U1
~N

N e —

N
(o))
o)
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Ancilla / Purification Method

Imaginary time evolution:

Assume we have obtained e_TH — |_|_|_|

Equivalent to

— T

1 2 3 4 5 6 7 8
NV
Apply to odd, or "physical"” sites

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

After first step, physical+ancilla "wavefunction" will be entangled

Represent as an MPS

uuu\f - 600555454
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Ancilla / Purification Method

Continue time evolving physical sites (odd sites)

————+——
O-0—-0-0-0-0-0-4
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Ancilla / Purification Method

Final MPS proportional to e P/2H

O—0—-0-0-0-b-b

OP—00—00—09
———
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Ancilla / Purification Method

Measure local operators as

o Tr[e F/2H A ¢=F/2H]

(up to proper normalization)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

How well does it work?

Infinite T: — 6‘(5 6‘(5 6'(5 6‘(5
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Ancilla / Purification Method

How well does it work?

00 &0 -0 -0

Infinite T: | | | |

iz bbb b = bbELELL

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

How well does it work?

00 &0 -0 -0

Infinite T: | | | |

e § 4

o554
AR
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Ancilla / Purification Method

How well does it work?

00 &0 -0 -0

Infinite T: | | | |

e § 4

AU ||||||||

2x the entanglement!

O-0-O-0-0-0-0=0

—
I
<

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

How well does it work?
In practice, reach '~ J
At lower T, similar to DMRG with bond dimension m2

Scaling is therefore (m2)3 = mP°

Key advantage: can measure at all T's on the way down

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Ancilla / Purification Method

1D Example: S=1/2 chain (Feiguin & White 2005)

Q41—

1 —— 11 10.16
Bethe Ansatz | ~
#% | ° DMRG L=64 - | 10.15

0.3 | 0.14
0.13
>

O 02 - S
0.12
0.1 ﬂ .0.11
10.10
0 —"+——1t—1— —t 11— 0.09

0.0 05 10 15 2000 05 1.0 15 2.0

T/, T,

FIG. 2. Specific heat and magnetic susceptibility of a S=1/2
spin chain of length L=64, compared to exact L= results using
the Bethe ansatz.

Feiguin, White, PRB 72, 220401(R) (2005)
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Ancilla / Purification Method

2D Example: S=1/2 triangular lattice Heisenberg
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Bruognolo, Zhu, White, Stoudenmire, arxiv:1705.05578



Minimally Entangled Typical Thermal States

Purification has key drawback:

costly at low temperatures (even if polynomial)

Minimally entangled typical thermal states (METTS)
designed to get around this problem (White, 2009)
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Minimally Entangled Typical Thermal States

Think of replacing trace by explicit summation

1 n
ETr[e_BH/ZAe_BH/Q]

1
:EZ
$1828384

51 59 S3 S4
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Minimally Entangled Typical Thermal States

Think of replacing trace by explicit summation

1 n
ETr[e_BH/ZAe_BH/Q]

S1 S2 S3 S4 <513283S4|
| o~BH/?
51525354 e—BH/Q

S1 S2 S3 S4 ‘81828384>
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Minimally Entangled Typical Thermal States

Rewrite in a suggestive way

S1 59 S3 S4
§158283S54

S1 S92 S3 S4

1 n
=~ > (s|e” P2 AemPHIs)

= 2 S PEGEIAE)  [6(s) = PSP

P(s) = (o(s)|o(s))
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Minimally Entangled Typical Thermal States

Suggests a sampling method

sample states |@(S))

l

(A=Y T2 (61 Alo(s)

P(s)

with probability
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Minimally Entangled Typical Thermal States

Can sample with following algorithm:

1. given product state |S) compute \&(s)) — e_BH/Q‘S>

2. compute estimator <¢(S)‘A|¢(S)>

3. collapse to obtain new product state d(s)) g |S/>

(no rejection step vs. Metropolis)

(Step #3 should seem mysterious)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Minimally Entangled Typical Thermal States

Assuming steps #1 and #2 can be done using MPS

Why is collapse the right thing to do? ‘gb(S» > |S/>

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Minimally Entangled Typical Thermal States

Define collapse to be selection of ‘S/>

with probability ‘ <S/ | ¢(S)> ‘2

Markov chain with transition probability

Ps—s = |(8'](s))["

Can show obeys detailed balance

P(s) P(s’)

A Ps—s’ — 7 Ps’ —s

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Minimally Entangled Typical Thermal States

Efficient algorithm for collapsing an MPS

60066644
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Minimally Entangled Typical Thermal States

Efficient algorithm for collapsing an MPS

60066644
TITPT oY
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Minimally Entangled Typical Thermal States

Efficient algorithm for collapsing an MPS
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Minimally Entangled Typical Thermal States

Efficient algorithm for collapsing an MPS
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Minimally Entangled Typical Thermal States

Efficient algorithm for collapsing an MPS

b

1 |

Select spin up, probability ,OIT — 4) , or down with /0% = ¢
T !
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Minimally Entangled Typical Thermal States

Say 'down' is picked for site 1

16

P W W

b 605554
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Minimally Entangled Typical Thermal States

Say 'down' is picked for site 1

16
$454664-64
Hf_/
repeat for sites 2,3,...,N
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Minimally Entangled Typical Thermal States

00006664
v

6 66666 06 0

Interestingly, will draw product state |s) with probability
[{s|1))|* in a single run of the algorithm
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Minimally Entangled Typical Thermal States

Having computed N states |¢(Sl)>, ‘¢(82)>7 ‘¢(Sg)>, -

Estimate expectation values as

. 1
(A) NZ (s5))

J=1
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Minimally Entangled Typical Thermal States

Computing each state ‘¢(S)> has similar cost to ground
state DMRG for low T

For higher T even cheaper

Overall scaling like BNm?

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Minimally Entangled Typical Thermal States

Can also choose collapse basis to minimize autocorrelation:

Collapsing into z basis at high T "remembers" prev. state
§~~~A l
z

Switching to x and z basis on alternating steps mixes rapidly

7 T t

X
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Minimally Entangled Typical Thermal States

States |((S)) are called METTS D(s)) x e_BH/2‘8>

"Typical" because
® averaging them gives correct thermal result

e product states at high T, ground state at low T

e if system breaks symmetries, METTS do too

* expectation values converge rapidly

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Example of a METTS:

20 40 60 80
Site Number

Figure 9. Properties of a METTS produced for the 100 site S = 1 Heisenberg
chain at 7 = 0.1, central 80 sites. In the main plot, the solid lines (red, green
and black) show the three components of (5), while the (blue) boxes show [(S)].
The entanglement entropy on each bond i1s shown in the top inset, while the
expectation value of each Hamiltonian bond term is shown in the bottom inset.
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Minimally Entangled Typical Thermal States

Movie of the METTS algorithm (S=1/2 Heisenberg ladder, 5 = 5)




inimally Entangled Typical Thermal States

ETTS produced for the frustrated XXZ model —

(a) T/A =1.25

2 T QT Y QY Nz Oz
G267 + SVSY 1 AG2S?
2 1 J ) ] 1 7 ,

) T/A = 0.4167

fobt

5‘
-
AN W

7N,

4
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Minimally Entangled Typical Thermal States

Using METTS to obtain thermodynamic properties

Test on unfrustrated case (J; = 0)
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Minimally Entangled Typical Thermal States

Using METTS to obtain thermodynamic properties

Apply to frustrated case (J2/lJ4] = 0.2)

06 I I I I

(a) "~ METTSNXN,
i B3 0.65
0.4 iy -~ e -8x4 A 0.6
N O\\%\ -e-10x5
& \ -=-12X06 0.55 -
0.2F 3;\ S e 14X 71 0.5 N
=\ B OF 3
\ﬁ: N
0 ] ] ] _0. 5 .
8 (b) I I - I \Q 7
6f N - O
N | g ,ﬁ-\ \-s- - N
il< 4 #ﬁ// /*\\R\\\ i N
7 SF =g
B g —a— & —B — f SE = ]
|zt Srweoa .
% = ] ] ] ] ] ] 0 ] ] ] ]
2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Temperature T/A Temperature T/A

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Minimally Entangled Typical Thermal States

Using METTS to obtain thermodynamic properties

Susceptibility of triangular lattice Heisenberg model
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Minimally Entangled Typical Thermal States

Interesting separation of quantum vs. classical fluctuations

"Quantum specific heat"

. B — P(i)
¢ _Nz zZ

1

(H?); — (H)]

1

Classical part of specific heat (C' — C'?) is precisely the sample

variance of the energy

© Edwin Miles Stoudenmire, Flatiron Institute, 2018
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Summary of Finite Temperature Methods

Purification effective for higher T
METTS sampling efficient for lower T

Can apply both to 2D and frustrated / fermionic systems
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Future Directions

Many interesting ideas to improve both methods

* exploit freedom to apply arb. unitary to collapse basis (entangled
collapses)

* mix ancilla (traced) and METTS (collapsed) sites
e make better use of symmetries [Binder, Barthel, PRB 95, 195148]

* apply mixed state truncation protocol for dynamics
[White, Mong, Zaletel, Refael arxiv:1707.01506]



