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Machine learning galvanizing industry & science

Language Processing

biasing collective force

Materials Science / Chemistry



Google rebranded a "machine learning first company"”

The Great A.I. Awakening

How Google used artificial intelligence to transform Google

Translate, one of its more popular services — and how machine
learning is poised to reinvent computing itself.

TECHNOLOGY

Why A.IL. Researchers at Google Got Desks Next to the Boss
By CADE METZ FEB. 19, 2018 o o ° D

Neural nets replace linguistic
approach to Google Translate

arXiv.org > quant-ph > arXiv:1802.06002

Quantum Physics

Classification with Quantum Neural Networks on Near Term Processors

Edward Farhi, Hartmut Neven
(Submitted on 16 Feb 2018)

Quantum machine learning



Examples of Machine Learning



Image recognition

ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky
University of Toronto
kriz@cs.utoronto.ca

Ilya Sutskever
University of Toronto
ilya@cs.utoronto.ca

Geoffrey E. Hinton
University of Toronto
hinton@cs.utoronto.ca

2012 paper that launched recent deep learning craze (20k citations)
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ImageNet:

e 1.2 million training
images (150k test)

e 1000 categories
® 15% neural net error

o 26% next best error



Sound prediction

Visually Indicated Sounds

Andrew Owens'
Antonio Torralba'

MIT

Phillip Isola®! Josh McDermott!
Edward H. Adelson! ~ William T. Freeman'*
U.C. Berkeley 3Google Research

CNN

LST™M
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Predicted soundtrack
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http://vis.csail.mit.edu
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Image Generation

man man woman
with glasses without glasses without glasses

woman with glasses

UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

Alec Radford & Luke Metz
indico Research

Boston, MA

{alec, luke}@indico.io

Soumith Chintala
Facebook Al Research
New York, NY
soumith@fb.com



Success at tasks previously thought impossible
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What is machine learning?




What is machine learning?

Data driven problem solving

Any system that, given more data, performs
increasingly better at some task

Framework / philosophy, not single method
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Software 2.0

Andrej Karpathy
A Director of Al at Tesla. Previously Research Scientist at OpenAl and PhD student at Stanford. | like
w to train deep neural nets on large datasets.

Nov 11,2017 - 7 min read

2

https://medium.com/@karpathy/software-2-0-a64152b37c35



Basics of Machine Learning



Example of a Dataset — Fashion MNIST
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Anatomy of a Dataset

training set test set



Anatomy of a Dataset

training set test set

validation set




Anatomy of a Dataset

training set test set

validation set 1




Anatomy of a Dataset

training set test set

validation set 2




Anatomy of a Dataset

training set test set

validation set 3




Anatomy of a Dataset

training set test set

validation set 4




Types of learning tasks:

a priori knowledge

e Supervised learning (labeled data)

* Unsupervised learning (unlabeled data)

e Reinforcement learning (‘reward' data) low



Supervised Learning

Given labeled training data (labels A and B)

Find decision function f(x)

f(x) >0 x € A

f(x) <0 x € B

Example: identify photos of alligators and bears




Supervised Learning
Typical strategy:

given training set {x,,y;}, minimize cost function

1

- N2 _ r—|—1 X cA
C = N Z(f(xj) Ys) Yj 1_1 x; € B
J

by varying adjustable params of f

Cost function measures distance of trial function f(x;)
from idealized "indicator" function y;



Unsupervised Learning

Given unlabeled training data {x,}
*Find function f(x) such that f(x,) ~ p(x;)
 Find function f(x) such that ‘f(Xj)|2 ~ p(X;)

* Find data clusters and which data belongs to
each cluster

* Discover reduced representations of data
for other learning tasks (e.g. supervised)



Unsupervised Learning

Typical approach for inferring p(x)

Given data {x; }, maximize log likelihood
L= logp(x;)
J
by varying p

Can view log likelihood as distance measure between

p(x) and pdata(X) = Z 0(x — X;)
("Kullback-Leibler divergénce")



Reinforcement learning

Many flavors, but have common features

e environment & agent with states s, ,ﬁm
* agent actions a, ,f.tm\,

* reward R(sy) for being in state s, \Store_ @

Agent

Goal: determine a policy P(s,)—an ,
best actions to maximize reward in fewest steps

hidden layer

/ probability of
XK moving UP
»xv’:‘%‘A
S50

S
R
oo,
' Va\ ®

raw pixel

Example: learning "Pong"
by observing screen state




General Philosophy of Machine Learning

e Solution to problem just some function y(x)

» Parameterize very flexible functions f(x)
(prefer convenient over "correct")

« Of all f that come closest to ¥ for training data,
prefer the simplest f




Bias-Variance Tradeoff

y(x) — ideal solution function
f¥(x) — best possible hypothesis
fp(x) — best hypothesis given training data

all functions

hypothesis space

° f7(x)

'S' variance

@ fD (X)




Bias-Variance Tradeoff

Two extreme situations

y(‘X)

low variance: will generalize!

high bias: poor results

low bias: good result possible

high variance: might overfit




Model Architectures



Let's discuss the 3 most used types of models
(increasing complexity)

*The linear model
* Kernel learning / support vector machines

e Neural networks



The linear model
f(X) — W - X + W()
Where W and W/, are the weights to be learned

Can be surprisingly powertul, and a usetul
starting point

0.15 T T | I I
\ : k=n/4, exact
k=mn/2, exact
0.1 [ : k=3mn/4, exact
DMRG
linear prediction
0.05
07
%)
T -0.05
0.1 F [
-0.15 10 o I L I m 7
oo O 25 %9 75 19918 191 Barthel, Schollwéck, White, PRB 79, 245101

I : L:
0 5 10 15 20 25 30
time t



Kernel learning

Want f(x) to separate classes, say




Kernel learning

Want f(x) to separate classes, say

Linear c{assifi.er. f(x) =W -x
may be insufficient




Kernel learning

Apply non-linear "feature map" x — ®(x)

/=




Kernel learning

Apply non-linear "feature map" x — ®(x)

A

NFZ/




Kernel learning

Apply non-linear "feature map" x — ®(x)

it

Decision function f(x) =W - ®(x)

A




Kernel learning

JEZ

Decision function f(x) =W - ®(x)

Linear classifier in feature space



Kernel learning

Example of feature map

X = (mlv L2, 333)

q)(X) — (1, L1, L2, X3, L1, L1X3, .213'2373)

x is "lifted" to feature space



Kernel learning

Technical notes:

e Also called "support vector machine" when using a
particular choice of cost function

e Name "kernel learning" comes from idea that o (x)
may be too high dimensional, yet K;; = ®(x;) - ®(x;)
may be efficiently computable, enough to optimize

* Very generally, optimal weights have the form
W=> a;®(x)
J

a result known as the "representer theorem"



Kernel learning

Kernel learning still popular among academics & for
certain applications (e.g. life sciences)

But "kernelization" approach scales as N3 where N
is size of training set — very costly!

Thus kernel methods not popular with engineers

Tomorrow: learning kernel models with tensor
network weights



Neural networks

Current favorite of M.L. engineers

output

Often notated diagrammatically
(not a tensor diagram!)



Neural networks

Actually very simple: compute a function f(x) as



Neural networks

Actually very simple: compute a function f(x) as

e Multiply input x by rectangular "weight" matrix W,




Neural networks

Actually very simple: compute a function f(x) as
e Multiply input x by rectangular "weight" matrix W,

e Point-wise evaluate components of x’ = WW;x by
some non-linear function [e.g. o(z}) = 1/(1 — e”i %) ]




Neural networks

Actually very simple: compute a function f(x) as
e Multiply input x by rectangular "weight" matrix W,

e Point-wise evaluate components of x’ = WW;x by
some non-linear function [e.g. o(z}) =1/(1 — €% 7") ]

e Multiply result by second weight matrix W5

[ | ||

X1 Vi o V2
/

L3




Neural networks

Actually very simple: compute a function f(x) as
e Multiply input x by rectangular "weight" matrix W,

e Point-wise evaluate components of x’ = WW;x by
some non-linear function [e.g. o(z}) = 1/(1 — e”i %) ]

e Multiply result by second weight matrix W5

* Plug new components into non-linearities, etc.

Wl W2
o
L3 —




Neural networks

Additional facts:

 Non-linearities o(x) called "neurons”

® Other neurons include tanh and RelLU J

* Neural net with more than one weight matrix is "deep”

e Number of neurons is arbitrary, but with enough can
represent any function

-371- Wl W2
2 %O/\__;O
L3




Neural networks

Many successful neural nets include "convolutional layers”
These have sparser weight layers with few parameters.

\ 55
27
O 13
1
- - 3
11 \ t 3 - =1 |13
224 27 3 g

Stride\| ¢ | Pooling pooling

Recent upsurge of neural nets since 2012 (ImageNet paper)

"Deep learning" often associated with 3 researchers:

j a
Yann LeCun (Facebook)  Geoff Hinton (Vector/Google) Yoshua Bengio (Montreal)



Other model types

Graphical models
very similar to tensor networks, except
- always interpreted as probability
- non-negative parameters only

Boltzmann machines

identical to random-bond classical Ising (T=1)
Jij values learnable parameters
generate data by sampling subset of spins

Decision trees

make decisions about input by taking
forking paths



Selected Physics Applications



Phase recognition

phasebook phasebook

@ S5
K

Stripy +x String—net condensed st
Friends: Friends:
Lev Landau Michael Levin
Werner Heisenberg Xiao-Gang Wen

View Monte Carlo configurations as input data,
train model (supervised or unsupervised) to distinguish phases

Some relevant pPapers.

e Carrasquilla, Melko, Nature Phys. (2017) [supervised]

e Wang, PRB 94, 195105 [unsupervised]

e Broecker, Carrasquilla, Melko, Trebst Scientific Reports 7, 8823 (2017) [from aux. field QMC]
e Broecker, Assaad, Trebst arxiv:1707.00663 [unsupervised]

e ... and quite a few others ...



Learning to Control Quantum Systems

How to apply time-dependent field to quantum system
and reach some target state?

Treat fidelity as "reward" and train reinforcement learning agent
to work out best protocol

SEA=1(+=0.00)=0.00 "F,(t=0.00) =0.200

€1

.....

reward:
cpisode 8819 1) F(T)=0.99918

Bukov, Day, et al., arxiv:1705.00565



Many Other Creative Ideas

Learning quantum Monte Carlo updates
J. Liu, Y. Qi, et al. arxiv:1610.03137

L. Huang, L. Wang, arxiv:1610.02746
L. Wang, arxiv:1702.08586

H. Shen, J. Liu, L. Fu, arxiv:1801.01127

Neural Net Representations of Wavefunctions

G. Carleo, M. Troyer, arxiv:1606.02318

D. Deng, X. Li, S. Das Sarma, arxiv:1609.09060, arxiv: 1701.04844
S. Clark, arxiv:1710.03545

Learning Density Functionals

J. Snyder, et al., arxiv:1112.5441
F. Brockherde, et al., arxiv:1609.02815
L. Li, et al., arxiv:1609.03705



Machine Learning Research Culture

One sub-community is academic: papers often
involve theorems

Another community is engineering-oriented: papers
focus on results, developments are intuitive/faddish

Conference talks/posters valued above journal articles

Strong industry ties: Google, Microsoft, etc. have
booths at conferences, grad students poached often



Recommended Resources

* Online book by Michael Nielsen (quant. computing author)
http://neuralnetworksanddeeplearning.com

e Caltech Lectures by Yaser Abu-Mostafa CS 156
Available on YouTube. Companion book "Learning from Data"

e M.L. review article by Pankaj Mehta, David Schwab
aimed at physicists

 TensorFlow examples (MNIST demo)

* Blogs of Chris Olah and Andrej Karpathy


http://neuralnetworksanddeeplearning.com

Tensor Network Machine Learning

Stoudenmire, Schwab, Advanced in Neural Information
Processing Systems (NIPS), 29, 4799 [arxiv:1605.05775]

© Edwin Miles Stoudenmire, Flatiron Institute, 2018




Many physics ideas in machine learning

02000000
000000

Boltzmann Machines

ST T

Ising Model

Renormalization Group

Deep Belief NetWOI’kS Mehta, Schwab, arxiv:1410.3831

Let's apply more ideas to M.L!

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Analogy between wavefunctions & M.L. models

machine learning — model functions

Q00O
QOO O
O000000

Neural Nets

physics — wavefunctions

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Analogy between wavefunctions & M.L. models

machine learning — model functions

Q00O
QOO O
O000000

Neural Nets

Q000
QOO0 O
OO000000

Neural Quantum
States

physics — wavefunctions

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Analogy between wavefunctions & M.L. models

machine learning — model functions

Q00O
QOO O
O000000

Neural Nets

Q000

9000 909000

OO000000

Neural Quantum
States

Tensor Network
States

physics — wavefunctions

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Analogy between wavefunctions & M.L. models

machine learning — model functions
Q000

G00e 909009

G000000 Tensor Network
Neural Nets Weights

Q000

9000 909000

OO000000

Neural Quantum
States

Tensor Network
States

physics — wavefunctions

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



\ /‘\ /.\ %
Are tensor networks useful for
machine learning? AAAAAAA

"MERA" tensor network

Tensor networks can represent weights of
useful and interesting machine learning models

Realized benefits: Future benefits?
 Linear scaling * Interpretability / theory
» Adaptive weights  Better algorithms

« Learning data "features"” * Quantum computing

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Raw data vectors

°7ajN>

X = (331733273737 .

Q—2MFhe Nd o
O~nNmMmAVvwe oo o~
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VAN X YD ~oD
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01234.—5‘ T 00 N
S—NMYT 9O Fe
V—chm>x Yo No o
QN M T NS Ny

r; € 10,1]

Example: grayscale images,
components of x are pixels

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Propose following model

f(x) = W - d(x)

_ 81 ,.52,.53 SN R
— E Weisgsssny 1 Ty Xg® Ty s; = 0,1
S

Weights are N-index tensor
Like N-site wavefunction

Cohen et al. arxiv:1509.05009
Novikov, Trofimov, Oseledets, arxiv:1605.03795
Stoudenmire, Schwab, arxiv:1605.05775

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



N=3 example:
fx) =W @(x) = ) Wiss, a7 25°25

= Wooo + Wigo x1 + Woio 22 + Woo1 3
+ Wiito 129 + Wio1 z123 + Wo11 2223

+ Wi z1x223

Contains linear classifier, plus other "feature maps”

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



More generally, apply local "feature maps" ¢% (z;)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



X = input

For example, following local feature map

(s s

d(x;) = {COS (51;]-),8113 (551;])} z; € (0,1]

Picturesque idea of pixels as "spins”

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



X = input

@ = local feature map

Total feature map @(x)

BN (x) = 671 (01) © 6 (12) @ -+ © 6™ ()

» Tensor product of local feature maps / vectors
» Just like product state wavefunction of spins

* Vector in 2" dimensional space

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



X = input

@ = local feature map
Total feature map ®(x)
More detailed notation
X = |x1, X2, T3, ... , IN] raw inputs
B(x) — -le(fl?l)-@ [p1 () ] ; [ p1(x9 ] I [p1 (@) ] foature
o) | | p2(@d)| | P2(xa) P (xN) vector

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Total feature map ®(x)

Tensor diagram notation

S1

2(x) = O

¢

© Edwin Miles Stoudenmire, Flatiron Institute, 2018

S
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R
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S
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-

X = input

@ = local feature map

raw inputs

feature
vector



Construct decision function f(x) =W . ®(x)

© Edwin Miles Stoudenmire, Flatiron Institut

e, 2018

OO0 0000 ax



Construct decision function

© Edwin Miles Stoudenmire, Flatiron Institut

e, 2018

F(x) = W - &(x)




Construct decision function

F(x) = W - &(x)




Construct decision function

F(x) = W - &(x)




Main approximation

W — ﬁ) order-N tensor

matrix

?_?_CP_CP_Q_Q product
state (MPS)

X

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Main approximation

W — ﬁ) order-N tensor
matrix
state (MPS)
~ PEPS

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Linear scaling
Can use algorithm similar to DMRG to optimize

N = size of input

Scalingis N - Np-m°

Nt = size of training set

m = MPS bond dimension

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Why should this work at all?

Linear classifier f(x) =V -x exactly m=2 MPS

W =
1 0 1 0 1 0
[V() 1 ] Vl i VQ i ‘73 i
i =1 o] f(x) =W - &(x)
V,=10 Vj % () = |1, =)

Novikov, Trofimov, Oseledets, arxiv:1605.03795



Experiment: handwriting classification (MNIST)

/

Train to 99.95% accuracy on 60,000 training images

Obtain 99.03% accuracy on 10,000 test images
(only 97 incorrect)

Stoudenmire, Schwab, arxiv:1605.05775



Papers using tensor network machine learning

Expressivity & priors of TN based models

e Levine et al., "Deep Learning and Quantum Entanglement: Fundamental Connections
with Implications to Network Design" arxiv:1704.01552

e Cohen, Shashua, "Inductive Bias of Deep Convolutional Networks through Pooling
Geometry" arxiv:1605.06743

e Cohen et al., "On the Expressive Power of Deep Learning: A Tensor Analysis" arxiv:
1509.05009

Generative Models

e Han et al., "Unsupervised Generative Modeling Using Matrix Product States" arxiv:
1709.01662

e Sharir et al., "Tractable Generative Convolutional Arithmetic Circuits" arxiv:
1610.04167

Supervised Learning

* Novikov et al., "Expressive power of recurrent neural networks", arxiv:1711.00811

e Liu et al., "Machine Learning by Two-Dimensional Hierarchical Tensor Networks: A
Quantum Information Theoretic Perspective on Deep Architectures”, arxiv:
1710.04833

e Stoudenmire, Schwab, "Supervised Learning with Quantum-Inspired Tensor
Networks", arxiv:1605.05775

* Novikov et al., "Exponential Machines", arxiv: 1605.03795

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Related uses of tensor networks

Compressing weights of neural nets (& other models)

Yu et al., Advances in Neural Information Processing (2017), arxiv:1711.00073
Izmailov et al., arxiv:1710.07324 (2017)

Yang et al., arxiv:1707.01786 (2017)

Garipov et al., arxiv:1611.03214 (2016)

Novikov et al., Advances in Neural Information Processing (2015) (arxiv:1509.06569)

Large scale linear algebra (PCA/SVD)
Lee, Cichocki, arxiv: 1410.6895 (2014)

Feature extraction & tensor completion

Bengua et al., arxiv:1606.01500, arxiv:1607.03967, arxiv:1609.04541 (2016)
Phien et al., arxiv:1601.01083 (2016)
Bengua et al., IEEE Congress on Big Data (2015)

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Tensor Network Machine Learning Studies

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Unsupervised Generative Modeling Using MPS

Zhao-Yu Han, Jun Wang, Heng Fan, Lei Wang, Pan Zhang

* Map data to product state, tensor network weights

* Squared output is probability — "Born machine”

 "Perfect" sampling (no autocorrelation)

L1 X2 XT3 T4 L5 Tg

p(x) = A)—CB—CB—CB—CB—CB

70

sol AN D§€1
LGS} gs ‘
1y etls
' o
ol ¢ 727 o
Q

301

20

10F ) ) . .
In(|7|[)becmmmeeceaee e = R p—— S —— S——— =T

WY W

"
[ /
v T 3
2~ 1 §
Negative Log-Likelihood Ré;:onstructing. Testing Images

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Machine Learning By Hierarchical Tensor Networks...
Ding Liu, Shi-Ju Ran, Peter Wittek, Cheng Peng, Raul Blazquez Garcia, Gang Su, Maciej Lewenstein

* Supervised learning with tree tensor networks

¢ Tests on MNIST, CIFAR-10

e Studied properties of the trained model (feature representations, entanglement)
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Model Architecture Data Representation at
Different Scales

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Deep Learning and Quantum Entanglement...

Yoav Levine, David Yakira, Nadav Cohen, Amnon Shashua

* "ConvAC" deep neural net = tree tensor network

* Tensor network rank as capacity of model

e Experiment on "inductive bias" of model architecture

|71
s PN e
|70 |7‘0 |7”o
YNy N N

\
M ‘ M ‘ M ‘ M ‘ M ‘ M ‘
Vinputs {

Tree Network as a
Deep Neural Net

© Edwin Miles Stoudenmire, Flatiron Institute, 2018
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Global Task

accuracy

10 15 20 25
# of channels parameter - r

accuracy

Local Task

10 15 20 25
# of channels parameter - r

Inductive Bias Experiment



Learning Relevant Features of Data...

E.M. Stoudenmire

* Unsupervised determination of tree tensor network (compress data)

* Supervised training of top layer

* Excellent performance with "features" determined by tree tensors

® 8 ® 8 supervised top layer
/\ /\ /\ /\
A'A A'A A'A A'A unsupervised tree
00000000000000000000000000000000 data input

086686, 6bbbds
090000 990090

89% accuracy on mixed training
Fashion MNIST data set supervised / unsupervised

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Tensor Network Learning on Quantum Computers

Tensor networks equivalent to quantum circuits

o~ o~ o~ o~

s 32 S 3
[ 1 [ 1

D=1 ( )

N s B s B
_ | | | |
—_— ( ) )
[ T 1T T T T T 1
(€ ) ( ) ) ( )
T T T T T T 1 .

—\

~ ~

—\
—\

=\
—\

Proposal for learning based on MPS:
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Qubit-efficient
generative model:
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Huggins, Patil, Whaley, Stoudenmire, arxiv:1803.11537
Grant, Benedetti, et al., arxiv:1804.03680
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Conclusions & Future Directions

* Quantume-inspired tensor networks an intriguing
alternative to traditional machine learning models

* Better scaling, interesting algorithms, opportunities
for theoretical insights

* Continue pushing interpretability, algorithms

* Promising as a framework for machine learning with
quantum computing

© Edwin Miles Stoudenmire, Flatiron Institute, 2018



Learning Relevant Features of Data



For amodel f(x)=W - ®(x)
Given training data {x; }

Can show optimal W is of the form
W=> a;dx;)
J

Holds for wide variety of cost functions / tasks

"representer theorem”

Scholkopf, Smola, Miiller, Neural Comp. 10, 1299 (1998)



M S . S
View & (xj) — <I>j as a tensor

666666 v
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J




Representer theorem says

) = C#S 03
WS Oéj

Really just says weights in the span of {®7}



Can choose any basis for span of {7}
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Can choose any basis for span of {7}
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Can choose any basis for span of {7}

/M - c‘—uT—‘—‘—S 38
s "




Why switch to US basis?

Orthonormal basis

Can discard basis vectors corresponding to small s. vals.

Can compute U, fully or partially using tensor networks



Computing U? efficiently

Detfine feature space covariance matrix
(similar to density matrix)

1 Uﬁ
HS
— i — 2
P N (I)lj (SV)
Uy

Strategy: compute U? iteratively as a layered (tree)
tensor network



For eftficiency, exploit product structure of ®



Compute tree tensors from reduced matrices

/ /
81 82 / /
E : é) é) [l
P12 = —
9 € training Q Q
S1 592
S1 592
/ /
S1 59
/ /
ST S
1 ©2 U
Truncate small
P12 = — P12 .
eigenvalues
UT



Compute tree tensors from reduced matrices

/ /
S3 Sy
P34 = =
]Etrammg
S3 54
/
S3 54
/ /
S3 54
Usy
Truncate small
P34 — — Ps4 ,
eigenvalues
UT
S3 5S4 34



Having computed a tree layer, rescale data

505563605883 ..

:é) é) é) é) é) é‘bl(x)



With all layers, have approximately diagonalized p

NV VA VA VA VA VA VA VA VA VA VA VA VA VA VAV

\/ \/ \/ \/ \/ \/ \/ \/
\/ \/ \/ \/ U
\/ \/
\/
~ 8
IO A
A A
Z \ Z \ Z \ Z \ Z \ Z \ Z \ Z \

AP AP A PJA P AP AP A G AP AP AP AP AP AP AP AP A

Equivalent to kernel PCA,
but linear scaling with size of data set



Can view as unsupervised learning of representation
of training data

2\ Z 2\ 2\ 2\

2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\

ANLNLNLNLNLNLNLNLNLN NN NN NN
0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]0]j0]j0]J0J0]0J0]0]0]0)0



Use as starting point for supervised learning

Only train top tensor for supervised task

fi(x) = ——

2\ N\ 2\ 2\

2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\

ANLNLNLNLNLNLNLNLNLN NN NN NN
0]0]0]0]0]0]0]0]0]0]0]0]0]0)0]0]0]0]0]0]0]0]0]0]0]0]0]0]l0]0]0]0



Experiment: handwriting classification (MNIST)

—
= N
= =
N

2\ 2\ 2\ 2\

2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\
CNLNLNLNILNLNLNLDNILNLDN NN LN\ LN\

Cutoff 6x104 gave top indices sizes 328 and 444
Training acc: 99.68% Test acc: 98.08%



Refinements and Extensions



No reason we must base tree around p

Could reweight based on importance of samples

i bbb
DA+ 14- 4



Another idea is to mix in a "lower level" model
trained on a given task (e.g. supervised learning)

pr =

Ly 0d00bb . bbbbbs

1

PPPPPP? PPPPP°?

It =1, tree provides basis for provided weights

If 0 < pu<1,treeis "enriched" by data set



Experiment: mixed correlation matrix for MNIST

Using p* = (1—p)p+py W)WY
14

with trial weights trained from a linear classifier
and u© = 0.5

Train acc: 99.798% Test acc: 98.110%
Top indices of size 279 and 393.

Comparable performance to unmixed case with
top index sizes 328 and 444



Also no reason to build entire tree

2\ 2\ N\ 2\

2\ 2\ 2\ 2\ 2\ 2\ 2\ 2\
A YA A YA PAY A AP AP ANY AP AP A AP AP AN A

Approximate top tensor by MPS



Experiment: "fashion MNIST" dataset
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28x28 grayscale
60,000 training images
10,000 testing images
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"fashion MNIST" dataset

ranged from 11 to 30
* Top MPS bond dimension of 300

*Dimension of top "site" indices

*Used 4 tree tensor layers

Experiment

and 30 sweeps
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"fashion MNIST" dataset

Experiment

*Used 4 tree tensor layers

YT YT Y T T T Yy Y Y YT T Y Y Y YL

ranged from 11 to 30
* Top MPS bond dimension of 300

*Dimension of top "site" indices

and 30 sweeps

: 88.97%

Test acc

in acc: 95.38%

Tra



Experiment: "fashion MNIST" dataset

)
4
mi
§
LR )
i
tH

*Used 4 tree tensor layers

e Dimension of top "site" indices e e
nm -u&“ﬂﬁh-a-fiuﬁul fa - fﬂﬂ
ranged from 11 to 30 it

* Top MPS bond dimension of 300
and 30 sweeps

Train acc: 95.38% Test acc: 88.97%

Comparable to XGBoost (89.8%), AlexNet (89.9%),
Keras Conv Net (87.6%)

Best (w/o preprocessing) is GooglLeNet at 93.7%



Much Room for Improvement

*Use MERA instead of tree layers
* Optimize all layers, not just top, for specific task

*[terate mixed approach: feed trained network into
new covariance/density matrix

» Stochastic gradient based training



Recap & Future Directions

* Trained layered tensor network on real-world data
in unsupervised fashion

*Specializing top layer gives very good results on
challenging supervised image recognition tasks

*Linear tensor network approach gives enormous
flexibility. Progress toward interpretability.

2\ 2\ 2\ Z \

2\ Z \ Z \ Z \ 2\ 2\ 2\ 2\
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