ITensor
ITensor – Key features

• Tensor indices carry extra info and matching indices automatically contract
ITensor – Key features

• Tensor indices carry extra info and matching indices automatically contract

• Real/complex and dense/sparse/block-sparse tensors
ITensor – Key features

• Tensor indices carry extra info and matching indices automatically contract

• Real/complex and dense/sparse/block-sparse tensors

• Useful not only for MPS/DMRG but general tensor network algorithms
ITensor – Key features

• Tensor indices carry extra info and matching indices automatically contract

• Real/complex and dense/sparse/block-sparse tensors

• Useful not only for MPS/DMRG but general tensor network algorithms

• DMRG codes with many features (excited states; sums of Hamiltonians); combine other algs. with DMRG
ITensor – Key features

• Tensor indices carry extra info and matching indices automatically contract

• Real/complex and dense/sparse/block-sparse tensors

• Useful not only for MPS/DMRG but general tensor network algorithms

• DMRG codes with many features (excited states; sums of Hamiltonians); combine other algs. with DMRG

• AutoMPO for making Hamiltonians from code resembling hand written mathematical notation
ITensor—Intelligent Tensor—is a C++ library for implementing tensor product wavefunction calculations. It is efficient and flexible enough to be used for research-grade simulations.

Features include:

- Named indices; no need to think about index ordering
- Full-featured matrix product state and DMRG layer
- Quantum number conserving (block-sparse) tensors; same interface as dense tensors
- Complex numbers handled lazily: no efficiency loss if real
- Easy to install; only dependencies are BLAS/LAPACK and C++11

ITensors have an Einstein summation interface making them nearly as easy to multiply as scalars: tensors indices have unique identities and matching indices automatically contract when two ITensors are multiplied. This type of interface makes it simple to transcribe tensor network diagrams into correct, efficient code.

For example, the diagram below (resembling the overlap of matrix product states) can be converted to code as

\[\begin{array}{c}
A \quad C \\
B \quad D \\
\end{array} = A*B*C*D \]
Basics of C++
"Bare bones" ITensor program

program.cc

```cpp
#include "itensor/all.h"

using namespace itensor;

int main()
{
    
    <your code goes here>

}
```

compiling and running

```
$ make
$ ./program
```
C++ is a strongly typed language

```cpp
#include "itensor/all.h"

using namespace itensor;

int main()
{
    int i = 5;
    print("i = ", i);

    string s = "a string";
    print("s = ", s);
}
```
C++ is a strongly typed language

```cpp
#include "itensor/all.h"

using namespace itensor;

int main()
{
    int i = 5;
    print("i = ",i);

    string s = "a string";
    print("s = ",s);
}
```
C++ is a strongly typed language

```cpp
#include "itensor/all.h"

using namespace itensor;

int main()
{
    int i = 5;
    print("i = ",i);

    string s = "a string";
    print("s = ",s);
}
```
int i = 5;
print("i = ",i);

string s = "a string";
print("s = ",s);
C++ allows defining custom types

For example, ITensor defines a type called Index

Two ways to initialize a custom type

```
Index i1("index i1",5);       //old style
auto i2 = Index("index i2",8); //new style
```

i1 and i2 will be variables of type Index
Looping over integers in C++

```cpp
for(int n = 1; n <= 4; n += 1)
{
    println("n = ",n);
}
```

Will print:

```
n = 1
n = 2
n = 3
n = 4
```
ITensor library also provides helpful "range" and "range1" functions

```cpp
for(auto n : range(4))
{
    println("n = ",n);
}
```

Will print:

```
n = 0
n = 1
n = 2
n = 3
```
ITensor library also provides helpful "range" and "range1" functions

```cpp
for(auto n : range1(4))
{
    println("n = ",n);
}
```

Will print:

```
n = 1
n = 2
n = 3
n = 4
```
iTensor Tutorial
Consider a single-site wavefunction, for example a spin 1/2

Single-site basis:

$$| s = 1 \rangle = | \uparrow \rangle$$

$$| s = 2 \rangle = | \downarrow \rangle$$
Most general wavefunction for a spin 1/2:

$$|\psi\rangle = \sum_{s=1}^{2} \psi_{s} |s\rangle$$

The ψ_{s} are complex numbers.

Can view ψ_{s} as a tensor (one index).
Single-site wavefunction as a tensor:

\[\psi_s \rightarrow s \]

Using ITensor:

```cpp
auto s = Index("index s",2);
auto psi = ITensor(s);
```
Now initialize ψ_s First choose $|\psi\rangle = |\uparrow\rangle$

```
auto s = Index("s", 2);
auto psi = ITensor(s);
psi.set(s(1), 1.0);
PrintData(psi);
```
Now initialize ψ_s
First choose $|\psi\rangle = |\uparrow\rangle$

\[
\begin{array}{c}
\text{1} \\
\text{= 1}
\end{array}
\]

```cpp
auto s = Index("s",2);
auto psi = ITensor(s);
psi.set(s(1), 1.0);
PrintData(psi);
```
Make some operators:

```cpp
auto Sz = ITensor(s, prime(s));
auto Sx = ITensor(s, prime(s));
```

New ITensors start out set to zero

What does “prime” do?

`prime(s)` returns copy of `s` with a “prime level” of 1

Could use different indices (say `s` and `t`), but `s'` more convenient - can remove prime later
Our operators:

```cpp
auto Sz = ITensor(s,prime(s));
auto Sx = ITensor(s,prime(s));
```

Set their components:

```cpp
Sz.set(s(1),prime(s)(1), +0.5);
Sz.set(s(2),prime(s)(2), -0.5);

Sx.set(s(1),prime(s)(2), +0.5);
Sx.set(s(2),prime(s)(1), +0.5);
```
Let’s compute \(\hat{S}_x |\psi\rangle = |\phi\rangle \)

\[
(\hat{S}_x)_{s'}^s \psi_s =
\]

In code,

```
ITensor phi = Sx * psi;
```

The \(\ast \) operator *contracts all matching indices*

Indices \(s \) and \(s' \) don’t match because of their different prime levels
What state is ϕ?

$$(\hat{S}_x)_{s'}^s \psi_s = \begin{array}{c} s' \\ s \end{array} = \begin{array}{c} s' \\ \end{array}$$

```
ITensor phi = Sx * psi;
PrintData(phi);
```
What state is ϕ?

$$(\hat{S}_x)_{s'}^s \psi_s = \phi$$

```
ITensor phi = Sx * psi;
PrintData(phi);
phi = ITensor r=1: (s,2,Link,273)'
(2) 0.500
```
More interesting ψ_s: choose $\theta = \pi/4$ and

1
\[= \cos \theta/2 \]

2
\[= \sin \theta/2 \]

Real theta = Pi/4.;

psi.set(s(1),cos(theta/2));
psi.set(s(2),sin(theta/2));

PrintData(psi);
More interesting ψ_s: choose $\theta = \pi/4$ and

1
\[= \cos \theta/2 \]

2
\[= \sin \theta/2 \]

Real theta = Pi/4.;

psi.set(s(1),cos(theta/2));
psi.set(s(2),sin(theta/2));
PrintData(psi);

psi =
ITensor r=1: (s,2,Link,273)
(1) 0.92388
(2) 0.38268
Diagrammatically, measurements (expectation values) look like:

\[\langle \psi | \hat{S}_z | \psi \rangle \]

For convenience, make:

```cpp
ITensor cpsi = dag(prime(psi));
```

Calculate expectation values:

```cpp
auto zz = (cpsi * Sz * psi).real();
auto xx = (cpsi * Sx * psi).real();
```
auto \(zz = (cpsi * Sz * \psi).\text{real}(); \)
auto \(xx = (cpsi * Sx * \psi).\text{real}(); \)

Printing the results,

\[
\text{println("<Sz> = ", zz);}
\text{println("<Sx> = ", xx);
}
\]

we get the output

\[
<Sz> = 0.35355
<Sx> = 0.35355
\]

\[
\sqrt{(0.35355)^2 + (0.35355)^2} = 1/2
\]
Review:

• Construct an Index

  ```cpp
  auto a = Index("index a",4);
  ```

• Construct ITensor (indices a, b, c)

  ```cpp
  auto T = ITensor(a,b,c);
  ```

• Set ITensor components

  ```cpp
  T.set(a(2),c(3),b(1), 7.89);
  ```

• Prime an Index b → b’

  ```cpp
  prime(b)
  ```

• The * operator automatically contracts matching Index pairs
Quiz:

If we * the following tensors, how many indices remain?
Quiz:

If we * the following tensors, how many indices remain?

Diagram:

- Tensor 1 with indices a and b
- Tensor 2 with indices a and b′
Quiz:

If we * the following tensors, how many indices remain?
Code hands-on — in your ITensor folder

```bash
cd tutorial/01_one_site
```

1. Read the code "one.cc", then compile by typing "make"

 Run by typing "./one"

2. Change psi to be an eigenstate of S_x

 $|\psi\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle + |\downarrow\rangle)$

3. Compute overlap of $|\psi\rangle$ with $|\phi\rangle = \hat{S}_x |\psi\rangle$

   ```cpp
   auto phi = Sx * psi;
   phi.noprime();
   
   auto olap = (dag(psi)*phi).real();
   ```

4. Try normalizing phi before computing overlap

   ```cpp
   phi /= norm(phi);
   ```
Most general two-site wavefunction is

$$|\Psi\rangle = \sum_{s_1,s_2=1}^{2} \psi_{s_1 s_2} |s_1\rangle |s_2\rangle$$

Amplitudes are a rank-2 tensor

$$\psi_{s_1 s_2} =$$

\[\text{Diagram: two sites labeled } s_1 \text{ and } s_2\]
Let’s make a singlet

\[
\begin{align*}
&\begin{array}{c}
\text{1} \\
\text{2}
\end{array} \\
\begin{array}{c}
\text{2} \\
\text{1}
\end{array}
\end{align*} = \frac{1}{\sqrt{2}} \\
\begin{align*}
&\begin{array}{c}
\text{1} \\
\text{2}
\end{array} \\
\begin{array}{c}
\text{2} \\
\text{1}
\end{array}
\end{align*} = -\frac{1}{\sqrt{2}}
\]

Using ITensor:

```cpp
auto s1 = Index("s1", 2);
auto s2 = Index("s2", 2);

auto psi = ITensor(s1, s2);
psi.set(s1(1), s2(2), +1./sqrt(2));
psi.set(s1(2), s2(1), -1./sqrt(2));
```
Interesting ITensor fact: no dependence on Index order:

\[
\begin{align*}
\text{psi.set}(s1(1), s2(2), +1./\text{sqrt}(2)); \\
\text{psi.set}(s1(2), s2(1), -1./\text{sqrt}(2));
\end{align*}
\]

Same result as:

\[
\begin{align*}
\text{psi.set}(s1(1), s2(2), +1./\text{sqrt}(2)); \\
\text{psi.set}(s2(1), s1(2), -1./\text{sqrt}(2));
\end{align*}
\]
Let’s make the Heisenberg Hamiltonian \(\hat{H} = S_1 \cdot S_2 \)

\[
\hat{H} = S^z_1 S^z_2 + \frac{1}{2} S^+_1 S^-_2 + \frac{1}{2} S^-_1 S^+_2
\]

First create operators, for example \(S^+ \)

```cpp
class ITensor {
public:
    ITensor(string s, int prime = -1) { ... } // Constructor
    void set(string s, int prime, int value) { ... } // Set value
};

auto Sp1 = ITensor(s1, prime(s1));
Sp1.set(s1(2), prime(s1)(1), 1);
```

Multiply and add operators to make \(H \):

```cpp
class ITensor {
public:
    ITensor(string s, int prime = -1) { ... } // Constructor
    void set(string s, int prime, int value) { ... } // Set value
};

auto H = Sz1*Sz2 + 0.5*Sp1*Sm2 + 0.5*Sm1*Sp2;
```
Tensor form of \hat{H}

$$\hat{H} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Showing Index labels

$$\hat{H} = \begin{pmatrix} s'_1 \\ s'_2 \\ s_1 \\ s_2 \end{pmatrix}$$
Compute singlet energy with this Hamiltonian:

\[\hat{H} |\psi\rangle = \begin{pmatrix} s_1' & s_2' \\ s_1 & s_2 \end{pmatrix} \begin{pmatrix} \hat{H} \\ \psi \end{pmatrix} \]

\[
\hat{H} |\psi\rangle = \begin{pmatrix} s_1' & s_2' \\ s_1 & s_2 \end{pmatrix} \begin{pmatrix} \hat{H} \\ \psi \end{pmatrix}
\]

auto Hpsi = H * psi;
Hpsi.noprime();

Real E = (dag(Hpsi) * psi).real();
Print(E);
// prints: E = -0.75
Compute singlet energy with this Hamiltonian:

\[
\hat{H} |\psi\rangle = s'_1 s'_2 \hat{H} s_1 s_2 |\psi\rangle = \hat{H} \psi ; \quad E = s_1 s_2 \hat{H} \psi
\]

auto Hpsi = H * psi;
Hpsi.noprime();

Real E = (dag(Hpsi) * psi).real();
Print(E);
//prints: E = -0.75
Or compute energy in one shot:

\[E_{\text{sing}} = \text{dag}(\text{prime}(\psi)) \]

Real \(E = (\text{dag}(\text{prime}(\psi)) \ast H \ast \psi).\text{real}() \);

Print(\(E \));
//prints: \(E = -0.75 \)
For an arbitrary Hamiltonian, can find ground state by doing imaginary time evolution

\[e^{-\beta H} \left| \Psi_{\text{init}} \right> \propto \left| \Psi_0 \right> \]

```
auto beta = 10.;
auto expH = expHermitian(H,-beta);

auto psibeta = expH * psi;
psibeta.noprime();
```
For an arbitrary Hamiltonian, can find ground state by doing imaginary time evolution

\[e^{-\beta H} \Psi_{\text{init}} \propto \Psi_0 \]

\[
\begin{align*}
\text{auto beta} &= 10.; \\
\text{auto expH} &= \text{expHermitian}(H, -\text{beta}); \\
\text{auto psibeta} &= \text{expH} \times \text{psi}; \\
\text{psibeta}.\text{noprime}();
\end{align*}
\]
The density matrix renormalization group (DMRG) uses a variational wavefunction known as a **matrix product state** (MPS).

Matrix product states arise from compressing a one-dimensional wavefunction using the **singular-value decomposition** (SVD).

Let’s see how this works...
Recall:

Most general two-spin wavefunction

\[\psi_{s_1 s_2} = \]

Can treat as a matrix:

\[\psi_{s_1 s_2} = \]

\[s_1 \quad s_2 \]

\[s_1 \quad s_2 \]
SVD this matrix:

\[\psi_{s_1 s_2} = \begin{align*}
 &\begin{array}{c}
 s_1 \\
 \ \quad \text{(A)}
 \end{array} \\
 &\begin{array}{c}
 \ \quad \text{(D)}
 \ \quad \text{(B)}
 \end{array}
\end{align*} \]

Bend lines back to look like wavefunction:
Using ITensor:

Say we have a two-site wavefunction ψ

Declare A, D, B to hold results of SVD

auto $A = $ ITensor(s_1)
ITensor D, B;

Call SVD function

$\text{svd}(\psi, A, D, B)$;
What have we gained from SVD?

Generic two-spin wavefunction (say spin S):

\[(2S+1)^2\] parameters
Not clear which parameters important, unimportant

Compressed wavefunction:

SVD tells us which parameters are important, might be very few!

Later see that # parameters also scales much better
This form of wavefunction known as matrix product state (MPS)

Why? Amplitude a product of matrices:

\[|\Psi\rangle = \sum_{s_1, \alpha, \alpha', s_2} A_{s_1 \alpha} D_{\alpha \alpha'} B_{\alpha' s_2} |s_1\rangle |s_2\rangle \]

Schollwöck, Ann. of Phys. 326, 96 (2011)
Can use this form of the wavefunction to compute entanglement

$$\psi_{s_1 s_2} = \begin{array}{c}
\text{\textbullet} \\
\text{\textbullet} \\
\text{\textbullet}
\end{array}$$

$$|\Psi\rangle = \sum_{s_1, \alpha, \alpha', s_2} A_{s_1 \alpha} D_{\alpha \alpha'} B_{\alpha' s_2} |s_1\rangle |s_2\rangle$$

Define λ_α to be $\lambda_\alpha = D_{\alpha \alpha}$ (\(\lambda_\alpha\) singular values or Schmidt weights)

Then entanglement defined to be

$$S = - \sum_\alpha \lambda_\alpha^2 \log(\lambda_\alpha^2)$$
We’ll use the SVD to study the entanglement of a two-site wavefunction

cd tutorial/02_two_site

1. Read through `two.cc`; compile; and run

2. Run the program with different values for β

3. SVD the wavefunction ψ

   ```cpp
   ITensor A(s1), D, B;
   auto spectrum = svd(psi, A, D, B);
   PrintData(D);
   ```

3. Compute the entanglement entropy using the density matrix spectrum returned by svd.

 n^{th} eigenvalue (1-indexed): $\text{spectrum.eig}(n)$; // $n=1,2,3,...$

 Number of eigenvalues: spectrum.size()