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Primeiro levaram os negros
Mas não me importei com isso

Eu não era negro
Em seguida levaram alguns operários

Mas não me importei com isso
Eu também não era operário

Depois prenderam os miseráveis
Mas não me importei com isso

Porque eu não sou miserável
Depois agarraram uns desempregados

Mas como tenho meu emprego
Também não me importei
Agora estão me levando

Mas já é tarde.
Como eu não me importei com ninguém

Ninguém se importa comigo.
— Intertexto, Bertold Brecht.
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Continuando os agradecimentos à minha famı́lia, agradeço aqui à todos os meus amigos

nessa vida, que são a famı́lia que tive o prazer de escolher. Só cito nominalmente o Cabelo e
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Abstract

The physical modelling of reservoirs is a very hard problem given the uncountable number of
particles that it is composed of. In the thermal case, we can resort to the laws of thermodynam-
ics. The problem changes completelly when it is not possible to assume that the reservoir is at
thermal equilibrium. Not only one does not have memory enough to encode all of its degrees of
freedom, as one also cannot access each degree individually. Thus, to describe the effect such
reservoir induces on a system of interest, several approximations are needed, as weak coupling
between system and environment, which is supposed to be composed of independent thermal-
ized particles. To deal with these restrictions, we use the collisional model. It is an intuitive
framework that has guaranteed control over all its degrees of freedom, as one can freely choose
the initial state of its constituents.

In this work, we expose the results in the literature that extract thermodynamics out of the
collisional model when the particles that compose it are in a thermal state. Inspired by this
result, we show that a special class of non-equilibrium states exists such that thermodynamics
can also be drawn from them. This class posses a small amount of coherence in them, and
through our model we can connect the dynamics of this coherence in the reservoir with the en-
ergy it transfers to the system connected to it, paving the way to a long desired bridge between
quantum and classical resources.

Keywords: thermodynamics, coherence, open systems, quantum information, resource theory.



Resumo

A modelagem fı́sica de um reservatório é um problema extremamente difı́cil dado o incontável
número de partı́culas que o compõe. No caso térmico, podemos recorrer às leis da termo-
dinâmica. O problema toma outra forma quando é inviável assumir que o ambiente se encontra
em equilı́brio térmico. Além de não termos memória suficiente para gravar todos os seus graus
de liberdade, não temos controle experimental suficiente para acessar cada um deles individual-
mente. Portanto, para descrever o efeito que tal reservatório induz em um sistema de interesse,
precisamos de diversas aproximações e hipóteses, como acoplamento fraco entre sistema e re-
servatório, que por sua vez supõe-se ser constituı́do de partı́culas independentes inicializadas
num estado térmico. Para lidar com estas restrições, usamos neste trabalho o modelo colisional
—um modelo de ambiente intuitivo que garante controle de seus graus de liberdade, do qual
escolhe-se o estado inicial de seus constituintes.

Nesse trabalho, expomos os resultados da literatura de que a termodinâmica pode ser ex-
traı́da do modelo colisional quando as partı́culas que compõe o ambiente são térmicas. Enfim,
mostramos que existe uma classe especial de sistemas fora do equilı́brio térmico que também
respeitam as leis da termodinâmica. Os estados dessa classe possuem uma pequena quantidade
de coerência, e por meio do nosso modelo fazemos uma conexão entre a dinâmica da coerência
do ambiente e a troca de energia que ele realiza com o sistema. Esse estudo, portanto, abre
portas para a tão desejada conexão entre recursos quânticos e clássicos.

Palavras-chave: termodinâmica, coerência, sistemas abertos, informação quântica, teoria de
recursos.
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Chapter 1

Introduction

Thermodynamics arose in the context of the industrial revolution, where an operational set of

laws where needed to better describe the behavior of heat engines and refrigerators. The first

law states energy conservation, by separating the energy of the accessible degrees of freedom

(work) and the inaccessible ones (heat); the second law sets a limit on the best-case scenario

work output of an engine. The success of this framework mostly resides on the clear descrip-

tion it offers for an astonishingly broad applicability. Although the second law provides bounds

for arbitrary processes, only a restrict set of transformations, named quasi-equilibrium pro-

cesses, enjoys their saturation [1]. Thus the precise mechanisms underlying non-equlibrium

transformations are not clear: it is only possible to infer that they are lower bounded by the

quasi-equilibrium ones.

The reemergence of the atomism view in the end of the nineteenth century rendered the

axiomatic theory of thermodynamics obsolete, left to be defended only by those influenced by

the positivism movement. The atomists rewrote thermodynamics as a mechanical theory, such

as the kinetic theory of gases, putting it as a microscopic theory rather than an operational one.

This resulted in the formulation of statistical mechanics, which shed new light onto the meaning

of heat and temperature: they were thought as a statistical average over the trajectories of a

large number of particles. At the expense of a justifying connection with classical mechanics,

thermodynamics became a theory defined only for a macroscopic number of particles [2].

These results hold for classical trajectories, all derived before the advent of quantum mech-

anics. It was not until the end of XX century that research on thermodynamics pointed towards

a conciliation of its concepts with quantum physics. To enlist a few reasons of why was that so,

one could say that it would not make sense to apply a theory most relevant in the microworld to a

theory of the macroworld; One could also argue that thermodynamics is ultimately operational,

8



and no operational machine used quantum mechanical concepts such as entanglement or coher-

ence in a clear manner at the time. The actual interest in developing a theory that would define

heat and work for quantum mechanics came when thermodynamics was defined for systems

of arbitrary size through stochastic thermodynamics [3], due to the connection of information

erasure and heat dissipation as done by Landauer [4], and when it was shown that a genuine

quantum property, such as entanglement, turned possible some computational protocols that

were believed to be impossible, such as prime factorization in polinomial time [5].

In this sense, a quantum quantity such as entanglement was put on an equal footing with

a thermodyncamical quantity such as work: both are resources to be utilized for a given task.

They are all studied under the formalism of resource theories [6], where structural connections

where made both theoretically [7–9] and experimentally [10, 11].

But is there a direct bridge between quantum features and the usual thermodynamical setting

of engines and refrigerators? Research was already done in this direction with entanglement

[12] and coherence [13], but the only scenario where there is a reformulation of the laws of

thermodyncamics is in the case of squeezing [14, 15].

The objective of this work is to understand whether such reformulation can be done with

coherence. To deal with this problem, we need a way to deal with general reservoirs that are

not necessarily thermal, as thermal states yield no coherence.

A framework for studying reservoirs that has draw attention in the last decade for its out-

standing balance of simplicity and versatility is the collisional model [16–29]. It depicts the

contact with the environment as a sequence of two body interactions between the system of in-

terest and particles of an ensemble, leading to a description in terms of successive maps. If the

coupling is made weak enough, an effective differential equation can be written for some energy

scales. In particular, if the ensemble is made of thermal states, a master equation identical to

that of thermal baths is derived. In this scenerio, the discrete map is dubbed thermal opera-

tion [30, 31] and thermodynamics can be drawn from it [21].

We inspire in this result to study the case in which the particles the system collides with are

in a thermal state with a small amount of coherences. This out of equilibrium states also provide

a master equation description, where the coherences give rise to a Hamiltonian contribution.

Moreover, it is shown that the thermodynamic laws not only are still valid in this regime, as

they earn an additional structure concerning the environment’s coherence change rate. This

is made in connection with the second law, where the the change in the relative entropy of

9



coherence set a tighter bound on work extraction than the free energy difference [32].

The ouline of the dissertation goes as follows: in Chapter 2 the formalism of quantum in-

formation are briefly developed to introduce the reader to key concepts to be used throughout

the text. In Chapter 3, we present the formalism of quantum operations, which are an exten-

tion of the unitary evolution that one would learn in a standard course on quantum mechanics.

This extension is needed whenever the system of interest is composite, a crucial property of a

system to be opened to an environment. Using this framework, we combine it with information-

theoretic tools to construct a way to quantify coherence in Chapter 4. Chapter 5 devotes to a

special type of quantum operation: the master equation. It is a differential equation for a system

in contact with an environment that is widely used to model large reservoirs. Finnaly, in Chapter

6, the collisional model is presented alongside the novel results proposed by the author and his

collaborators. In the end we offer a conclusion for the presented material.

From now on, every statement is done for finite dimentional Hilbert spaces in the context of

quantum theory: no allusion to classical mechanics is done unless specified.

10



Chapter 2

Quantum information

Entropy is a key concept in physics. From the perspective of thermodynamics, it is central to

the notion of irreversibility and the emergence of the so called thermodynamic arrow of time,

as irreversible processes must be acompanied by an entropy increase [33]. However, in prob-

ability theory, it serves as a measure of randomness and disorder of a sample space through its

probability distribution [34]. As these concepts are hard to conciliate, an independent meaning

of entropy becomes elusive. However, the advent of statistical mechanics gave insight on the

connection between irreversibility and disorder [35]. Half a century ago, a new perception of

the meaning of entropy reopened the discusion on the connections entropy provides. This took

place on the development of information theory in the 1950s, where Claude Shannon proved the

noiseless coding theorem: the entropy of a probability distribution of certain events in a mes-

sage sets the limit for the message compression [36]. As the message cannot be compressed

further, its string length is defined as its information content. In the following sections, this

definition of information will be revisited in the quantum scenario, as later on the dissertation it

will be connected with thermodynamics.

2.1 Entropy as an information measure

It was stated that the Shannon entropy H of a distribution p is a measure of information. It is

written as [36]

H(p) =

d∑
n=1

pn log2 pn, (2.1)

11



where the distribution is assumed to be discrete over d possible outcomes and the logarithm is

taken on base 2, for the entropy/information is measured in bits. Now, for a general quantum

system ρ, the entropy chosen is the von Neumann entropy S (ρ):

S (ρ) = −Tr{ρ log ρ}. (2.2)

It is defined this way so that it matches the classical case when the state is a classical distribution

of its eigenstates: [37]

S (ρ) = −Tr{ρ log ρ} = −
∑

n

〈n| ρ log ρ |n〉

= −
∑

n

pn log pn, (2.3)

where ρ |n〉 = pn |n〉. The only difference is that here the natural logarithm is taken, for simpli-

city.

Although Shannon’s theorem gives entropy an operational meaning, viz. data compression,

whilst defining information, there is not a single interpretation on how entropy relates to in-

formation. One of them considers that entropy measures the lack of information an observer

has about the system before measuring it. The other considers that entropy measures the amount

of information obtained after one measures the quantum state. Hence, one can regard entropy

both as information or the lack of it, depending on whether one puts oneself before or after

the action of measurement [38]. Both views are complementary and do not interfere with one

another, thus the most convenient view will be adopted for each case at hand.

For instance, a pure state |ψ〉 〈ψ| is itself an eigenstate with probability 1, and thus the entropy

is 0. This copes well with intuition, since a pure state lacks no information: with a pure state

one knows everything there was to know about it. On the other hand, once one measures a pure

state, no new information is gained, as the state of the system as already known. Notice that it

is considered here that one can measure in the right basis as to obtain a deterministic result.

As a complementary example, consider the maximally mixed state ρmix. By definition, the

only information it contains is the dimension d of its Hilbert state. The von Neumann entropy

reflects well this notion:

S (ρmix) = −

d∑
n=1

pn log pn = −

d∑
n=1

1
d

log
1
d

= log d. (2.4)

12



Here, all pn are equal to 1/d, as a consequence of the number of possible equiprobable measure-

ment outcomes. As expected, the entropy in this case is non-zero, for the maximally mixed state

contains no information about which state the system is in, and again, returns a finite amount of

information once measured.

An important consequence of the unitarity of quantum mechanics is that entropy is con-

served:

S (ρt) = S (UρU†) = US (ρ)U† = S (ρ), (2.5)

where U is any unitary operator. In the last equality the property of unitaries to freely get inside

and outside the argument of analytical functions was used. Although trivial, the conservation

of entropy in quantum theory is a major departure from classical information theory.

The von Neumann entropy is additive for product states. For instance, if ρAB = ρA⊗ρB, then

S (ρAB) = S (ρA) + S (ρB). (2.6)

This means that the information of the joint system is the sum of the information of its parts.

It is an intuitive property if one notices that in a product state there is no connection between

the parts, and hence the information in one of them cannot interfere with the information of the

other one. Yet not always the state that lives in the joint Hilbert space of A and B can be cast as a

product state of both spaces. To better understand what happens in the latter case, it is useful to

develop the concept of relative entropy. Subsection 2.1.1 gives a brief description of the relative

entropy, and subsection 2.1.2 uses it to address the posed problem.

2.1.1 Relative entropy

A useful tool for deriving relations and building intuition on information theory is the relative

entropy, or Kullback-Leibler divergence [39]. The definition goes as follows:

S (ρ||σ) = Tr{ρ log ρ} − Tr{ρ logσ}. (2.7)

13



The main reason for using it is that it offers a non-trivial inequality regarding two different

quantum states, the Klein’s inequality [38]:

S (ρ||σ) ≥ 0, (2.8)

S (ρ||σ) = 0 iff ρ = σ. (2.9)

The proof is out of the scope of this work. Several results can be derived from it, for instance

the information gained by measuring a maximally mixed state is the highest possible in a given

dimension:

S (ρ||ρmix) = Tr{ρ log ρ} − Tr{ρ log ρmix} = −S(ρ) −
d∑

n=1

〈n| ρ log(I/d) |n〉

= −S (ρ) + log d Trρ = −S(ρ) + log d ≥ 0

where I is the identity matrix and Trρ = 1 is just the normalization of density matrix. As

imagined, the state that returns the highest amount of information after a measurement is the

maximaly mixed state:

S (ρ) ≤ log d. (2.10)

It is important to make a small digression before delving into further applications. Eq. (2.8)

tempts one to regard Eq. (2.7) as a distance between density matrices. However, that is not the

case. One way to see this is by noting that the relative entropy is not symmetrical. For instance,

consider the density matrices

ρA =

0.2 0

0 0.8

 , ρB =

0.3 0

0 0.7

 ,
then their relative entropies read

S (ρA||ρB) = 0.2 log 0.2 + 0.8 log 0.8 − 0.2 log 0.3 − 0.8 log 0.7 = 0.026,

S (ρB||ρA) = 0.3 log 0.3 + 0.7 log 0.7 − 0.3 log 0.2 − 0.7 log 0.8 = 0.028.

Furthermore, the relative entropy will not generally respect the triangle inequality S (ρ||σ) ≤

S (ρ||τ) + S (τ||σ).

14



2.1.2 Subadditivity and mutual information

The relative entropy, in particular the Klein inequality, allows a thorough discussion of the

question raised: how does the entropy of a composite quantum system living in H = HA ⊗ HB

relate to the entropy of its parts when the system is not a product state? To answer this, consider

the relative entropy between the state ρAB and ρA ⊗ ρB, where ρA = TrBρAB, ρB = TrAρAB and

TrX is the partial trace with respect to Hilbert space HX:

S (ρAB|| ρA ⊗ ρB) = −S (ρAB) − Tr{ρAB log(ρA ⊗ ρB)} (2.11)

Using Eq. (2.8) and log(ρA ⊗ ρB) = log(ρA) + log(ρB),

S (ρAB) ≤ −Tr{ρAB log ρA} − Tr{ρAB log ρB}. (2.12)

To proceed, we use the fact that the trace is a concatenation of partial traces:

S (ρAB) ≤ −TrA{TrBρAB log ρA} − TrB{TrAρAB log ρB} (2.13)

S (ρAB) ≤ −Tr{ρA log ρA} − Tr{ρB log ρB} (2.14)

S (ρAB) ≤ S (ρA) + S (ρB). (2.15)

The relation (2.15) is known as the subadditive property of the von Neumann entropy [38].

It states that the entropy of a joint system is upper bounded by the entropy of its parts, and the

bound is saturated when the system is already in a product state. In the language of information

theory, information about the system is lost if one only looks locally at its parts. This raises the

question: where does this information reside? If the information about the composite system

is not only the sum of the information about its parts, then where is the rest of it? The usual

interpretation is that it resides in the correlations between the local elements of the system, and

as such one can only access it by means of global (instead of local) operations.

This motivates the definition of the measure of information stored as correlations between

subsystems A and B, the mutual information:

I(A : B) B S (A) + S (B) − S (AB) ≥ 0. (2.16)

Notice that Eq. (2.8) provides the desired non-negativity of the mutual information, a crucial

15



property of an information measure.

16



Chapter 3

Quantum operations

The postulates of quantum dynamics impose unitary evolution to systems that are not disturbed

by an observer [37]. Thus, given that a system is ininitially in state |ψ〉, then the only possible

final state should be |ψ′〉 = U |ψ〉, where U is any unitary transformation. Notice that the purity

of the state is conserved through the evolution:

P(|ψ′〉 〈ψ′|) = Tr{|ψ′〉 〈ψ′|} = Tr{U |ψ〉 〈ψ|U†} = Tr{U†U |ψ〉 〈ψ|} = Tr{|ψ〉 〈ψ|} (3.1)

Then one could raise the following question: if unitary operators preserve purity, how does

pure states evolve into mixed states? In order to understand how this kind of transformation

takes place, this chapter delevelops the concept of quantum operations: a generalization of

unitary transformations that allow for a state to dynamically change its purity. For this merit,

the formalism of quantum operations is widely used in the open quantum systems community,

as a real experiment cannot prevent losses from occuring [38].

Quantum operations have three main representations that reflect its importance in different

scenarios. The first one is the operator-sum representation, or Kraus representation [40, 41].

This form often omits the intermediate dynamics of the system, just relating inputs and outputs.

It is a strong tool for the quantum information and quantum computation community [38], and

will be studied in Section 3.1. The second one, in connection with the theory of open quantum

systems, is the Stinespring dilation [42]. It states that every quantum operation can be cast as an

unitary evolution in an extension of the original Hilbert space, and will be covered in Section

3.2. The third one is the axiomatic definition or Choi representation, where it is proved from a

small set of physically motivated axioms that the most general equation possible is a quantum
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operation [43, 44], and will be covered in Section 3.3.

3.1 Quantum channels and the operator-sum representation

In the Kraus representation, a quantum operation Φ is written as

Φ[ρ] =
∑

i

KiρK†i , (3.2)∑
i

K†i Ki = 1, (3.3)

where the Ki are positive operators known as Kraus operators. An interpretation of the indi-

vidual Ki will be provided later on. Before that, let us explore a famous example using this

formalism, the dephasing channel Φdeph for a qubit state:

K1 =
√

1 − λ

1 0

0 1

 , (3.4)

K2 =
√
λ

1 0

0 0

 , (3.5)

K3 =
√
λ

0 0

0 1

 , (3.6)

where λ is a real parameter ranging from 0 to 1. The effect of the dephasing map on an arbitrary

state

ρ =

 p q

q∗ 1 − p

 (3.7)
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reads

K1ρK†1 = (1 − λ)ρ, (3.8)

K2ρK†2 = λ

p 0

0 0

 , (3.9)

K3ρK†3 = λ

0 0

0 1 − p

 , (3.10)

Φdeph[ρ] =

3∑
i=1

KiρK†i = (1 − λ)ρ + λρdiag, (3.11)

where ρdiag is the state ρ without its off-diagonal elements. Thus, the map is a convex com-

bination of the original density matrix and a density matrix that lost its off-diagonal elements,

the coherences. This phenomenon is known both as decoherence or dephasing, where the latter

designation coins the map’s name. This is a phenomenon that forces a quantum system to be

diagonal in a basis induced by an environment, as will be seen in Chapter 5. Notice that there

is no information on how this decoherence took place: just the initial and final states are of

interest, there is no reference to time. In Chapter 5 this map will be derived from first principles

in real a physical setup.

This example gives a glance on how to interpret the individual Kraus operators. Considering

only the action of K1 on ρ, one notices it does nothing: it is just a reescaling of the identity:

the state is the same up to normalization. Although it will play a role in the discusion, let us

overlook the normalization factors for now. The action of K2 destroys coherences by project-

ing the state onto the ground state. K3 does the same, although it projects ρ onto the excited

state. This hints that the different Kraus operators provides information on the possible events

the quantum state can experience. This interpretation of the operator-sum decomposition is

called quantum jumps dynamics, where each Kraus operator is associated with an action on the

system, or jump [45]. Here, the possible jumps for the system are projecting onto the ground

state, projecting onto the excited state, or nothing happening. The normalization factors are

then interpreted as the probability with each jump. This is very used in the light of stochastic

processes, as it is similar in structure to a random walk . In this stochastic interpretation, Eq.

(3.2) is an average over all possible transformation the state would suffer. This is transforma-

tion becomes approximately exact, but for each individual system a single stochastic trajectory

should occur. If one follows this trajectory by constantly monitoring the system, then Eq. (3.2)
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breaks down, and the system would follow individual jumps with no ensemble average:

ρn =
KnρK†n

pn
, (3.12)

where the normalization factor pn = tr{KnρK†n} is the jump probability. This is refered to as

post-selection, as the monitoring allows one to follow a desired trajectory, or dynamics, by

discharting the remaining possible outcomes. As stated before, the original formulation for a

map Φ is the averaging over the possible density matrices ρn:

Φ[ρ] =
∑

n

KnρK†n =
∑

n

pnρn. (3.13)

More will be covered on the operator-sum representation on the following sections, nev-

ertheless we finish this presentation with an important property of this type of map: different

Kraus operators may refer to the same dynamics. Take the linear transformation

Ni =
∑

j

Ui jK j. (3.14)

In order for the set of Ni to also be Kraus operators, we must have

∑
i

N†i Ni =
∑

j,k

K†j Kk

∑
i

U∗i jUik = 1. (3.15)

Since the set of operators Ki respect Eq. (3.3), it is sufficient for the Ni to be Kraus operators

that U is unitary, such that
∑

i U∗i jUik = δ jk. This implies that

∑
i

NiρN†i =
∑

j,k

KkρK†j
∑

i

U∗i jUik =
∑

j

K jρK†j . (3.16)

Thus, if the Kraus operators are all changed by a unitary transformation, the complete map does

not change. Although the map is unique, the operator-sum representation is not.

3.2 Environment perspective

For its simplicity, the operator-sum representation is very practical to derive general results for

all quantum operations. However, as it was presented, its use seems ad hoc, with no connection

20



with the postulates of quantum dynamics. The connection exists and is very beautiful, though.

Consider a closed quantum system ρ ∈ H evolving under a unitary U:

ρ′ = UρU†. (3.17)

Now, suppose this quantum system is structured, i.e. composed of ρA ∈ HA and ρB ∈ HB

where H = HA ⊗ HB and ρA(B) = trB(A) ρ. Furthermore, assume they are initially uncorrelated,

viz. ρ = ρA ⊗ ρB. The evolution for ρA alone reads

ρ′A = trB ρ
′ = trB{U(ρA ⊗ ρB)U†}. (3.18)

Since any operator U living in H = HA ⊗ HB can be written as [46]

U =
∑

i

Ai ⊗ Bi A(B)i ∈ HA(B), (3.19)

then

ρ′A =
∑

i, j

trB{AiBi(ρAρB)A†j B
†

j} =
∑

i, j

trB{AiρAA†j BiρBB†j} (3.20)

ρ′A =
∑

i, j

AiρAA†j tr{BiρBB†j} =
∑

i, j

λi jAiρAA†j , (3.21)

where λi j B tr{BiρBB†j} = λ∗ji. As the matrix formed by the λi j is hermitian, we can diagonalize

it:

λi j =
∑

k

mikλkm∗jk. (3.22)

Inserting in Eq. (3.21),

ρ′A =
∑

k

( √
λk

∑
i

mikAi

)
ρA

( √
λk

∑
j

m∗k jA
†

j

)
=

∑
k

KkρAK†k , (3.23)

Kk =
√
λk

∑
i

mikAi. (3.24)

This is the operator-sum representation of a quantum operation. Thus, the effective dynamics of

a partition of a closed system, which is described by the usual postulates of quantum mechanics,

is a quantum operation. Most impressively, the converse is true: any quantum operation in a

Hilbert space can be written as unitary dinamics in an extended Hilbert space. The construction
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of the proof is simple and is done in Ref. [38]. Both proofs together show that Eq. (3.18) is

a representation of a quantum operation as valid as Eq. (3.2), and it is called the Stinespring

dilation. The extension HB of the original system Hilbert space HA is called the environment:

it is what opens the system out of the closed unitary dynamics. Modeling an environment is

usually very hard, however some special cases are treatable and will be done later on.

3.3 Axiomatic definition of a quantum channel

It remains to be proved whether the most general evolution for a quantum state is a quantum

operation. It was proved that a quantum state can undergo an evolution more general as an

unitary mapping as long as it is part of a bigger structure. Is there yet another generalization?

The answer is negative, as we prove in this section. Independently of the nature of a map Φ that

is applied on a system ρ, one can argue that it must respect the following axioms:

A1. Normalization: tr Φ[ρ] = tr ρ = 1

A2. Linearity: Φ[αρ + βσ] = αΦ[ρ] + βΦ[σ];

A3. Complete positivity: (Φ ⊗ 1)[ρ ⊗ σ] ≥ 0

These requirements guarantee that Φ transforms a quantum state into a quantum state and

that quantum mechanics is a linear theory. Axiom A3 is a lot more subtle than A1 and A2. It

states that not only a map on a positive operator ρ should keep it positive, but it also should not

break positivity of positive extensions of ρ. This is necessery when the map acts on a subspace

of the total Hilbert space, which is arguably always the case for any real quantum state, as

experimentalists will never have control over all degrees of freedom of the universe.

A map that fulfills all three axioms is linear and completely positive and trace-preserving

(CPTP). In this section we prove that all linear CPTP maps are quantum operations, following

the set of notes [47]. Consider that the map acts on Hilbert space HA, and then construct an

exact copy HB of this space. Now define the unnormalized state

|Ω〉 =
∑

i

|i〉B |i〉A , (3.25)

where we have ommited the kroneker product for simplicity. Notice that space HB was set to
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the left. With it, we define the Choi matrix of the CPTP map Φ:

ΛΦ = (1 ⊗ Φ)(|Ω〉 〈Ω|). (3.26)

The Choi matrix is a representation of Φ, since it completely characterizes the map [43]:

Φ[ρ] = trB{(ρT ⊗ 1)ΛΦ}, (3.27)

where ρT is the transpose of ρ. As Φ is CPTP and |Ω〉 〈Ω| is positive, then ΛΦ is positive by

definition and can be diagonalized:

ΛΦ =
∑

k

λk |λk〉 〈λk| =
∑

k

|mk〉 〈mk| , (3.28)

where we defined |mk〉 =
√
λk |λk〉 for simplicity, making use of the fact that λk is positive.

Inserting Eq. (3.28) in Eq. (3.27),

Φ[ρ] = trB{(ρT ⊗ 1) |mk〉 〈mk|} =
∑
α

〈α|B (ρT ⊗ 1) |mk〉 〈mk| |α〉B (3.29)

=
∑

k

∑
α,β

〈α|B (ρT ⊗ 1) |β〉B 〈β|B |mk〉 〈mk| |α〉B (3.30)

=
∑

k

∑
α,β

ρβα 〈β|B |mk〉 〈mk| |α〉B (3.31)

Expanding |mk〉 in its subspaces, we have

|mk〉 =
∑

i, j

(Mk) ji |i〉B | j〉A , (3.32)

where Mk is a matrix of the same dimension of the original Hilbert space. Then the term

〈β|B |mk〉 〈mk| |α〉B reads

〈β|B |mk〉 =
∑

i j

(Mk) ji | j〉A δiβ =
∑

j

(Mk) jβ | j〉A , (3.33)

〈mk| |α〉B =
∑
i′ j′

(Mk)∗j′i′ 〈 j
′|A δi′α =

∑
j′

(M†

k )α j′ 〈 j′|A , (3.34)

〈β|B |mk〉 〈mk| |α〉B =
∑

j j′
(Mk) jβ(M†

k )α j′ | j〉A 〈 j
′|A . (3.35)
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With this Eq. (3.31) is written in terms only of subspace HA:

Φ[ρ] =
∑

k

∑
α,β

∑
j, j′
| j〉 (Mk) jβρβα(M†

k )α j′ 〈 j′| . (3.36)

Summing over the completeness relations, we arrive at the desired quantum operation

Φ[ρ] =
∑

k

MkρM†

k . (3.37)

This completes the proof. Using only the restriction that Φ is CPTP, we have shown that it can

be written in the operator-sum representation and thus is a quantum operation, which in turn

shows that a quantum operation is the most general possible transformation a quantum state

may go under.
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Chapter 4

Quantum coherence

Quantum coherence is a property similar to entanglement in many aspects, nonetheless it does

not rely on a partition of the system’s Hilbert space. It is associated with the existence of

off-diagonal terms in the system density matrix, e.g.

ρ =
1
2

1 1

1 1

 . (4.1)

Notice that the existence of coherence is basis dependent, as ρ is hermitian and can be

diagonalized. Still, as tempting as it may be to define physical quantities in a basis independent

fashion, coherence does appeal to reality. For instance, in the previous discussion of Chapter

2, it was stated that a pure state |ψ〉 retrieves no new information if measured in its diagonal

basis. In contrast, if measured in a basis that yields coherence, the measurement results will be

non-deterministic in nature. This is an old and well established result in quantum mechanics

and is a key concept in truly random number generation [48, 49].

Although such properties are common in the quantum realm, the denizens of the classical

world do not experience these features. A natural question then arises: why coherence does

not manifest itself in macroscopic systems? As a possible answer to this question, the theory

of open quantum systems hints at the necessity of a preferable local basis, and by consequence

of a global basis, when many body systems are considered [50]. The mechanism behind that

relates to the existence of reservoirs: Hilbert spaces much larger than the system’s own Hilbert

space, which induce the relaxation of the local system to a target state in a basis imposed by the

interaction between the system and reservoir, as will be discussed in Chapter 5.

For now, let us take into account the above discussion and regard coherence as something
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which is not easy to obtain in practice, and that usual operations in an average laboratory tend

to supress it. From this point of view, coherence can be regarded as a valuable resource for

some desired task, e.g. random number generation in the previous example.. This approach is

formalized in the framework of resource theories [6]. Several resource theories exist, where the

resource theory of entanglement [51] is arguably the most famous one.

In this chapter, Section 4.1 will take advantage of the physical appeal of the resource theory

of entanglement to develop the basic elements of a general resource theory. Then, in Section

4.2, the resource theory of coherence will be introduced, closely following Ref. [52].

4.1 General resource theories

Resource theories rely on operational constraints imposed by the nature of the experiment done.

For instance, suppose the researchers Alice and Bob live in different places, and each of them

holds a quantum state that must be isolated by heavy equipment. Alice wants to send Bob

her quantum state, but in order for her to do so, she would have to measure it, disturbing it by

consequence. Furthermore, the isolating equipment does not allow for the state to be transported

from one laboratory to another.

This scenario imposes some constraints on the possible operations for Alice and Bob: since

they are isolated from each other, they are only allowed to perform unitary operations on the

local systems and to comunicate through classical channels. These operations are called LOCC

(Local Operations and Classical Communication). The set of LOCC define all the possible op-

erations they can perform, and thus are dubbed free operations. All states that can be created in

the laboratory and achieved from them by free operations are called free states. However, as is

well known, a state that is separable cannot be transformed into a non-separable (or entangled)

state through local unitaries. Thus, a initially entangled state represents a tool that cannot be cre-

ated at will and represents a resource. Once the resource is defined, one can pose an important

question: How is this resource quantified? For instance, for a given task, such as teleportation,

how do different entangled states perform? Is one better than another? Such a question depends

on the task at hand. In the above example, an entangled pair shared by Alice and Bob provides

them a way to send her quantum state to him without disturbing it through LOCC only [53]. A

quantifier that relates to this task will stablish an ordering of the set of entangled states, where

its maximum value will correspond to the maximally entangled state. However, not necessarily
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this ordering will be the same for another quantifier. All these questions permeate the research

field not only for the resource theory of entanglement, but of general resource theories [6].

In accordance to what was discussed, there are a couple of properties a good quantifier C

must attend in order to quantify resources:

1. C must be 0 for free states;

2. C must be non-increasing under free operations;

3. C must not increase under mixtures of free states.

In summary, what defines a resource theory are the of set free operations, which are the

allowed maps of the theory, and the free states, which are those containing no resource.

4.2 Resource theory of coherence

A quantum system that fails to be isolated with perfection suffers decoherence. If the only

maps applicable to it are either amplitude dampings or dephasing channels, than coherence in

the energy basis becomes a resource. To set this formally as a resource theory, first the free

operations and free states must be defined. First, fix a d dimensional basis {| j〉}. Then, for this

basis, the set of free states are those of the form

δ =

d∑
j=1

δ j | j〉 〈 j| . (4.2)

The set of all free states is denoted I ⊂ H, where H is the total Hilbert space. Now, the

free operations are those which leave I invariant. When put in the Kraus representation, the free

operations must satisfy

KnδK†n ∈ I, if δ ∈ I (4.3)

for all n. This guarantees that every possible quantum jump will not produce coherence in the

free states. With this in hands, one can deal with two different situations. In the first one,

the outcome of each jump is not read. For the second one, the outcome is read and post-

selection is applied to the state based on the outcome. Although all results derived here apply

to both situations, for convenience just the first case is covered here. The incoherent operation
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described by the action of these Kraus operators on a state ρ will be denoted as

Φ[ρ] B
∑

n

KnρK†n . (4.4)

4.2.1 Maximally coherent state

Here we prove the existence of a state from which one can reach any other state in H only by

means of incoherent operations [52]. Consider the following Kraus operators

Kn =

d∑
i=1

ci |i〉 〈mi+n−1| , (4.5)

where
∑d

i=1 |ci|
2 = 1 and mk = mod(k − 1, d) + 1. For concreteness, if d = 3 and n = 2 we have

K2 =

3∑
i=1

ci |i〉 〈mi+2−1| = c1 |1〉 〈m2| + c2 |2〉 〈m3| + c3 |3〉 〈m4|

= c1 |1〉 〈2| + c2 |2〉 〈3| + c3 |3〉 〈1| .

The set {Kn} composes a quantum channel:

d∑
n=1

K†n Kn =

d∑
i, j,n

c∗jci |mi+n−1〉 〈i| j〉 〈m j+n−1| =

d∑
i

|ci|
2

d∑
n=1

|mi+n−1〉 〈mi+n−1| = 1. (4.6)

Let us now show that this channel is a free operation:

KnδK†n =

d∑
i, j,k=1

cic∗jδk |i〉 〈mi+n−1 |k〉 〈k|m j+n−1〉 〈 j| =
d∑

i=1

|ci|
2δmi+n−1 |i〉 〈i| ∈ I. (4.7)

Notice that the set formed by the Kraus operators (4.5) forms a family of maps parametrized by

the coefficients ci. One can always define a convex mixture of the members these families, for

instance with additional parameters ql, such that one still has an incoherent operation:

K(l)
n =

√
qlKn, (4.8)

K(l)
n ρK(l)†

n = qlKnρK†n , (4.9)∑
l

ql = 1. (4.10)
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With this map at hand, we are now in position to define the maximally coherent state |Ψ〉:

|Ψ〉 =
1
√

d

d∑
j=1

| j〉 . (4.11)

If the map (4.5) is applied to (4.11), one gets

Kn |Ψ〉 =
1
√

d

d∑
j=1

c j

d∑
i=1

| j〉 〈m j+n−1| i〉 =
1
√

d

d∑
j=1

c j | j〉 B
1
√

d
|φ〉 , (4.12)

ρn =
1
pn

Kn |Ψ〉 〈Ψ|K†n = d
1
d
|φ〉 〈φ| = |φ〉 〈φ| . (4.13)

Since the result is the same for every n, then pn = 1/d. The c j are arbitrary up to normalization,

henceforth |φ〉 is a general pure state. By means of definition (4.8), one can write any mixture

of different pure states |φ(l)〉:

K(l)
n |Ψ〉 〈Ψ|K

(l)†
n =

1
d

ql |φ
(l)〉 〈φ(l)| (4.14)

ρ =
∑

l

ql |φ
(l)〉 〈φ(l)| . (4.15)

With this, one can achieve any arbitrary quantum state ρ [38]. This completes the proof, as was

shown that any mixed state can be prepared by means of |Ψ〉 and incoherent operations.

4.2.2 Coherence measures

After the maximally coherent state and the incoherent states are defined, one wonders what are

the states in between. This motivates the definition of coherence measures C that stablish an

ordering of the states. Inspired by the properties a good quantifier should have, we define the

following properties:

(C1) C(ρ) = 0 iff ρ ∈ I,

(C2) C(ρ) ≥ C(Φ[ρ]).

Property C1 ensures that the measure is 0 if only if the the state is incoherent. Some re-

source theories allow for a weaker condition, where the measure is 0 for every free state but the

converse need not be true, such as negativity for entangled states [6]. This is usually done when

a measure that both respect C1 and is efficiently computable is not known. This will not be the

case for coherence.
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Property C2 establishes an ordering of the states in the sense of the given measure. After an

incoherent operation, coherence can only decrease or stay the same. This corroborates with a

notion of a resource: one either consumes it or converts it to an equivalent quantity.

As a stating point to define measures from coherence, one can relate existing metrics to the

task at hand [54, 55]:

CD(ρ) = min
δ ∈ I

D(ρ, δ). (4.16)

The strategy is to use an existing distance D used on quantum states and minimize it with respect

to the incoherent set. Then, one figures what properties D must have in order for C to fulfill

conditions C1 and C2.

For C1 to be fulfilled, the only requirement is that D(ρ, δ) = 0 iff ρ = δ. This is satisfied by

several measures, in particular for the relative entropy (2.7) and all metrics.

If the distance D is contractive under CPTP maps, then C2 is fulfilled:

CD(ρ) = D(ρ, δ∗) ≥ D(Φ[ρ],Φ[δ∗]) ≥ min
δ ∈ I

D(Φ[ρ], δ) = CD(Φ[ρ]), (4.17)

where in the first equality δ∗ is the element of I that minimizes Eq. (4.16), the second equality

defines contractiveness, and the third equality is a second minimization over the space I, which

is possible since Φ[δ∗] ⊂ I by definition.

Eq. (2.7) is contractive under CPTP maps [56], and thus a measure derived from it respects

both C1 and C2. Incidently, the relative entropy provides an analytical structure for Eq. (4.16)

that requires no minimization. First, define the diagonal of a state ρ as ρdiag:

ρ =

d∑
i, j=1

ρi j |i〉 〈 j| , (4.18)

ρdiag =

d∑
i=1

ρii |i〉 〈i| . (4.19)

Then, from the definition of relative entropy and of an incoherent state δ,

S (ρ||δ) = −S (ρ) − tr{ρ log δ} = −S (ρ) −
∑

i

〈i| ρ log δ |i〉 (4.20)

= −S (ρ) −
∑

i

ρii log δi = −S (ρ) − tr{ρdiag log δ} (4.21)

= −S (ρ) + S (ρdiag) + S (ρdiag||δ). (4.22)

30



Now, using the relative entropy as D, and noting that ρdiag ⊂ I:

Crel = min
δ ∈ I

S (ρ||δ) = min
δ ∈ I

(−S (ρ) + S (ρdiag) + S (ρdiag||δ)) = S (ρdiag) − S (ρ), (4.23)

where in the last equality Eq. (2.8) was used. The monotone Crel derived is named entropy of

coherence, and will be used extensively in Chapter 6. Its importance lies mainly on its entropic

nature, which allows for a link between the resource theory of coherence and thermodynamics,

and on its form, which is analytical and easily computable.

As a sidenote, property C2 is cast differently when post-selection is allowed, for the map

(4.4) changes. Proving C2 is harder in this case, as no general result such as the contractiveness

exists. Crel does respect the more restrictive condition [52], but as no post-selection will be used

further on, we have chosen to omit this discussion.
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Chapter 5

Master equation formalism

In Chapter 3 the formalism of quantum operations was developed, where it was shown that the

evolution of a quantum system may be generalized to any CPTP map as long as it is part of a

larger system. Until then, the operator-sum representation had a major focus as its form is quite

simple and easy to manipulate. However, the channel becomes a black box in this representa-

tion, as only its input and output are visible. The Stinespring dilation is a valid alternative to

look at the dynamics, but even mesoscopic environments already render the extension’s Hilbert

space unwieldly large: it grows exponentially with the number of particles.

The focus of this chapter is to develop tools for the treatment of large environments, reser-

voirs such as thermal baths. It is shown that, under certain conditions, the degrees of freedom of

the reservoir are compressed into an additional structure in the reduced von Neumann equation

for the system. This structure is called the master equation, or Gorini-Kossakowski-Sudarshan-

Lindblad equation (GKSL equation), and will be introduced in the first section [56, 57]. Then,

in the next section, we show how to achieve this equation from first principles with a so called

microscopic derivation [46].

32



5.1 Master equations

The master equation is a linear differential equation for a quantum system ρ:

ρ̇ = Lρ B −i[H, ρ] +D[ρ], (5.1)

D[ρ] =
∑

k

γkD[Lk], (5.2)

D[Lk] = LkρL†k −
1
2
{L†k Lk, ρ}. (5.3)

The superoperator L is often called the Liouvillian. Superoperators have the same properties as

operators, but they act on operators instead of states. For that matter, although they have matrix

representation on the vector space formed by operators, in the vector space formed by states

they need matrices acting on both sides of operators to be represented.

Eq. (5.1) is the same as the von Neumann equation, except for the operators (5.3). Their

action on the system induce dissipative dinamics on ρ, and thus are called dissipators. The

operators Lk composing them are called jump operators. The coefficients γk are the damping

rates. The GKSL equation destroys some subspaces of the system’s original Hilbert space, and

its decay rate is associated with a γk, justifying their name [46]. The dissipative termD[ρ] must

be traceless in order for Eq. (5.1) to remain trace preserving. For the individual D[Lk], one can

always find Lk such that they are all traceless [46].

It is important to stress that this kind of evolution is not general. If we have a structured

Hilbert space H =
⊗

nHn, the global evolution is described by a the von Neumann equation.

However, when we treat the local dynamics in a given subspace Hn, their evolution cannot be

necessarily cast as a differential (or master) equation. The most general evolution, as we saw

before, is a quantum channel. The connection between channels and master equations, and

the requirements for such a channel to be cast in a differential representation are throughly

discussed in Ref. [58]. The main requirement is that the channel must be invertible.

As an example of master equation, we write the action of a thermal bath on a qubit, a channel

refered to as amplitude damping:

ρ̇ = −iω[σ†σ, ρ] + γD[σ]. (5.4)

This is an amplitude damping to a thermal bath of temperature 0. We expect the solution

to be unique, a steady state relaxation towards a thermal state of same temperature as the reser-
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voir’s. The damping rate γ gives the timescale for the relaxation to the said steady state. The

uniqueness of solutions is not a general property of all master equations, however is true for the

majority of cases. The existence of more than one steady state is related to strong symmetries

in the Lindbladian [59, 60].

To solve a master equation, the simplest way to proceed is to just write the set of linear

differential equations for the components of the density matrix and solve them, as long as the

dimension is finite. The linear system in Eq. (5.4) case reads

ρ̇11 = −γρ11, (5.5)

ρ̇12 = (−iω − γ/2)ρ12. (5.6)

Here we just need equations for ρ11 and ρ12, for ρ22 = 1 − ρ11 and ρ21 = ρ∗12. The solution for

these equations is

ρ11 = e−γt, (5.7)

ρ12 = e−(iω+γ/2)t. (5.8)

As expected, the population of the excited state decreases exponentially to 0. The coherences

do the same, although oscillating as an effect of the free Hamiltonian. The steady state ρss is

then the ground state.

Not always the system of differential equations is easy to solve. The equations are generally

coupled, and in higher dimensions the dynamics may become impossible to compute efficiently.

In these cases, one can still compute the steady state. Notice that the existence of a staedy

state implies that limt→∞ ρ̇(t) = 0. Then the equations become algebraic and effeciently solved

numerically.

Let us refer back to Eq. (5.4). In it, there is a single dissipator associated with the jump

operator σ. Now consider the case in which D[σ†] is also present. The new equation reads

ρ̇ = −iω[σ†σ, ρ] + γ(1 − f )D[σ] + γ f D[σ†]. (5.9)

The constant f just enables different weights for both dissipators, while still preserving the trace
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of ρ. The differential equations for Eq. (5.9) are

ρ̇11 = −γ(1 − f )ρ11 + γ f (1 − ρ11), (5.10)

ρ̇12 = (−iω − γ/2)ρ12. (5.11)

The equation for coherences is the same, in contrast with the equation for populations. Ignoring

the dynamics, the stady state for ρ11 is now f . It is still thermal, but with nonzero effective

temperature. Eq. (5.9) is the amplitude damping channel for finite temperature. Although this

is trivial in the sense that every diagonal qubit state is a thermal state, it generalizes properly for

higher dimensions.

From these examples one can draw some general conclusions on how the choice of jump

operators affect the dynamics of the system: they represent the transitions induced by the en-

vironment on the system. When the environment induces solely a σ transition, the system

eventually decays to the ground state. However, if the transition σ† is also enabled, the system

will relax to a thermal state produced by the balance between the dissipators, characterized by

f . This assertion will be made more precise in Sec. ??. But, from a qualitative perspective,

the relevant message is that jump operators represent the transitions induced by the bath on the

system. This provides useful guidelines when constructing phenomenological dissipators. For

example, if one would be interested in the dynamics of a harmonic oscillator in contact with a

thermal bath, a first phenomenological approach would be to just write a master equation with

creation and anihillation operators a† and a as the jump operators for the dissipators.

5.2 Microscopic derivation of a master equation

Previously the master equation for an amplitude damping channel on a qubit was shown, but it

was not ellucidated how one would derive it from first principles. The problem to be solved is

the dynamics of a system ρS that lives on a Hilbert space HS , which in turn is part of a much

larger Hilbert space H = HS ⊗ HE, where ρ lives on and evolves unitarily. The state of the

environment ρE is the projection of ρ into HE. Moreover, at t = 0 the system and the reservoir

are uncorrelated, and hence ρ(0) = ρS (0)ρE. The chosen method provides a general procedure

to derive a microscopic master equation for ρS , with clear physical motivation. It is called

Nakajima-Zwanzig method [61, 62], which relies on the definition of the projector P defined
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below:

Pρ(t) = TrE{ρ(t)}ρE(0) = ρS(t) ⊗ ρE(0). (5.12)

The idea is to write the evolution of P, changing the problem of evolving a state to that of

evolving a subspace. It is easily seen that P is indeed a projector, since

P2ρ(t) = P(ρS (t) ⊗ ρE(0)) = ρS (t) ⊗ ρE(0) = Pρ(t) (5.13)

and thus P2 = P.

Before proceeding, some remarks on the evolution of ρ. The total Hamiltonian of the system

is H = HS + HE + V , where HS and HE are the respective free Hamiltonians for the system and

environment, and V is the interaction between them. We work on the interaction picture with

respect to the free Hamiltonians:
d
dt
ρ̃ = −i[Ṽ , ρ̃], (5.14)

where ρ̃(t) = ei(HS +HE)tρ(t)e−i(HS +HE)t and Ṽ(t) = ei(HS +HE)tVe−i(HS +HE)t. The tildes are dropped

in the following calculations to make the equations clearer. In the end, one can go back to the

Schrdinger picture. The interaction here is chosen to satisfy

TrE{VρE} = 0, (5.15)

where this implies that the interaction between system and environment does not retain energy,

and thus changes in energy on the environment are completely transfered to the system. It is not

a limitation of the method, in fact this is chosen so that thermodynamics can be drawn from this

later on. The reason for the necessity of the condition (5.15) to thermodynamics is that energy

retained in the interaction cannot be labelled neither as system energy nor as reservoir energy,

turning it difficult to define work and heat [21].

All the necessary tools are assembled to treat the problem. Consider first the evolution of

the two orthogonal subspaces of H defined by P and Q = 1 − P:

d
dt
Pρ(t) = PVtρ(t), (5.16)

d
dt
Qρ(t) = QVtρ(t), (5.17)

whereVt = −i[V(t), · ] is the superoperator associated with unitary evolution. In order to write
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the evolution of the subspaces as coupled differential equations, a unity 1 = P+Q is put between

Vt and ρ(t):

d
dt
Pρ(t) = PVtPρ(t) + PVtQρ(t), (5.18)

d
dt
Qρ(t) = QVtPρ(t) + QVtQρ(t). (5.19)

These coupled equations can be mapped to

ẋ(t) = A(t)(x(t) + y(t)), (5.20)

ẏ(t) = B(t)(x(t) + y(t)), (5.21)

where A and B are superoperators and x and y are operators. The formal solution to y(t) is

y(t) = G(t, t0)y(0) +

∫ t

0
dt′G(t, t′)B(t′)x(t′), (5.22)

G(t, t0) = T exp
{∫ t

t0
dsB(s)

}
, (5.23)

where G(t, t0) is the Green’s function for Eq. (5.21) and T is the time-ordering operator. Since

y(0) = Qρ(0) and ρ(0) = ρS (0)ρE lives by definition on the projection P, y(0) = 0. Substituting

these in Eq. (5.20),

ẋ(t) = A(t)x(t) +

∫ t

0
dt′A(t)G(t, t′)B(t′)x(t′). (5.24)

The first term can be written as

A(t)x(t) = PVtPρ(t) = PVtρS (t)ρE. (5.25)

ExpandingVt and using the first equality of Eq. (5.12),

PVtρS (t)ρE = −iP[V(t), ρS (t)ρE] = TrE{−i[V(t), ρS(t)ρE]}ρE. (5.26)

Using Eq. (5.15),

TrE{[V(t), ρS(t)ρE]} = TrE{V(t)ρE]}ρS(t) + ρS(t)TrE{V(t)ρE]} = 0. (5.27)
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Thus, A(t)x(t) = PVtP = 0 and Eq. (5.24) reads

ẋ(t) =

∫ t

0
dt′A(t)G(t, t′)B(t′)x(t′) =

∫ t

0
dt′PVtG(t, t′)QVt′Pρ(t′) (5.28)

=

∫ t

0
dt′PVtG(t, t′)(1 − P)Vt′Pρ(t′) =

∫ t

0
dt′PVtG(t, t′)Vt′Pρ(t′). (5.29)

Hence, in the end the time evolution of the P projection of ρ is obtained:

d
dt
Pρ(t) =

∫ t

0
dt′PVtG(t, t′)Vt′Pρ(t′). (5.30)

This is named the Nakajima-Zwanzig equation, and is exact for the local state of the system.

Nevertheless the true final state of the reservoir is not known, for it is contained inside the sub-

space represented by the projector Q that was integrated out in Eq. (5.23). The projector P

outputs a state for the reservoir that is both uncorrelated with the system and unchanged by

the dynamics. This state becomes a good approximation when the reservoir is large enough,

or if the coupling is weak enough [46]. However, even when the assumption of small correl-

ation between system and environment is true, it is still quintessential for the dynamics. The

main reason is that there is a general consensus that a system only thermalizes because of its

correlations with its environment [63]. The most famous type of correlation in this context is en-

tanglement, however there are examples where system relaxation occurs when no entanglement

between S and E is present [64].

Weak coupling has yet another consequence on the Nakajima-Zwanzig equation. Suppose

this assumption is materialized by scaling V , and by consequence Vt, by a infinitesimal factor

ε. Then Eq. (5.30) becomes

d
dt
Pρ(t) = ε2

∫ t

0
dt′PVtG(t, t′)Vt′Pρ(t′). (5.31)

Now, as ε is infinitesimal, we may expand G(t, t′) around ε = 0:

G(t, t0) = T exp
{∫ t

t0
dsB(s)

}
= T exp ε

{∫ t

t0
dsQVs

}
= 1 + O(ε), (5.32)

where O(ε) denotes any terms of order ε. If Eq. (5.31) is to be mainteined of order ε2, then

d
dt
Pρ(t) = ε2

∫ t

0
dt′PVtVt′Pρ(t′). (5.33)
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This is often called the Born approximation, a frequent assumption of the weak coupling limit

[46]. It is very useful, as the Green’s function is model dependent and highly non-trivial to

calculate. To set it as unity pushes the general result further while simplifying it. Eq. (5.33) is

known as the Redfield equation [65].

Although the Redfield equation is indeed simpler than Eq. (5.30), it is still hindering because

of its time non-local structure: the rate of change of Pρ at time t depends on the entire history of

the state’s dynamics, as can be seen from ρ(t′) inside the time integral. This evokes the concept

of memory, i.e. the dynamics rely on the memory the system has about its previous states. Such

dynamics is named non-Markovian, where Markovianity is thus defined as lack of memory. As

a revervoir is supposed to be much larger than the system, one would expect that it should hold

no memory of it. This motivates the Markovian approximation, where Eq. (5.33) is forced to

be local in time by exchanging ρ(t′) by ρ(t):

d
dt
Pρ(t) = ε2

∫ t

0
dt′PVtVt′Pρ(t). (5.34)

This is still time non-local, for the integral still depends on t = 0. To supress this dependance,

first make the transformation of variables t′ = t − s

d
dt
Pρ(t) = ε2

∫ t

0
dsPVtVt−sPρ(t), (5.35)

and then take the limit where the integral goes to infinity:

d
dt
Pρ(t) = ε2

∫ ∞

0
dsPVtVt−sPρ(t). (5.36)

Now, the integral has no dependence on the initial state. The manipulations on the Born-Markov

Nakajima-Zwanzig equation are over, it remains only to incorporate ε back into V(t) and expand

the superoperators in order to turn the equation operational:

d
dt

TrE{ρ(t)}ρE =

∫ ∞

0
ds TrE{(−i)[V(t), (−i)[V(t − s),TrE{ρ(t)}ρE]]}ρE, (5.37)

⇒ ρ̇S (t) = −

∫ ∞

0
ds TrE[V(t), [V(t − s), ρS(t)ρE]]. (5.38)

This is as far as a model independent analysis can reach. To proceed further, one must assume a

form for both V and ρE. As an interesting sidenote, it can be shown that Eqs. (5.33) and (5.34)

39



are the same up to order O(ε2) [46]. Although not exactly the same, both present a deviation of

the same order of magnitude to the exact solution for any given model.

An example in which this formulation proves useful is a qubit trading quanta with a bath of

non-interacting harmonic oscilators:

H = H0 + V, (5.39)

H0 = ωσ†σ +
∑

k

Ωka
†

kak, (5.40)

V =
∑

k

gkσa†k + g∗kσ
†ak, (5.41)

where {ω,Ωk} are the natural frequencies of the qubit and oscilators, {σ, ak} the anihillation

operators of a quanta in the qubit and of a boson in each individual mode, and gk the coupling

between each qubit - oscilator interaction. This is Hamiltonian is used for many quantum optics

and condensed matter settings, such as atom-light interaction [66] and phonons in lattices [67].

When all Ωk = ω, the interaction takes energy from the qubit and retrives the same energy to the

oscilators, and thus it preserves energy. Indeed, using the algebra of bosons and Pauli matrices,

it is straghtforward to show that [H0,V] = 0. Eq. (5.34) to study this model when the initial

state of the bath is thermal. The through calculations are out of the scope of this discussion and

can found in Ref. [46]:

ρ̇S (t) = −i[ω′σ†σ, ρs(t)] +D[ρS ], (5.42)

D[ρS ] = γn̄
[
σ†ρSσ −

1
2
{σσ†, ρ}

]
+ γ(n̄ + 1)

[
σρSσ

† −
1
2
{σ†σ, ρ}

]
, (5.43)

where n̄ is the the thermal occupation number of bosons in the bath and γ is related to the

interaction between the qubit and each mode of the bath. It is of the GKSL form, as expected.
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Chapter 6

Collisional models

In Chapter 5, we have shown that under some approximations one can model a system opened

to a large environment through the GKSL equation. However, two main problems arise: the

approximations are often severe, leading to unphysical situations [68]; the master equation

formalism loses track of the environment degrees of freedom, mining the possibility of us-

ing quantum information methods to understand how information about the system propagates

into the environment. To this end, we develop here the formalism of collisional models, or

repeated interactions [16, 21, 69]. It offers a bottom-top description of an environment, where

one has precise theoretical control of the microscopic aspects that give rise to macroscopic

characteristics of the bath. The first section is devoted to a detailed description of what is a

collisional model. The following section connects the model with master equations, provid-

ing the main ingredients for reservoir engineering in the Markovian regime [21]. Then, in a

later section, thermodynamics is discussed inside the collisional model while making use of

information-theoretic tools developed in Chapter 2 [21]. The chapter closes with the novelty

provided by this dissertation: the role of coherence in these models, along with its connection

to Hamiltonian engineering, thermodynamics, and resource interconversion [32].

6.1 The collisional model

The collisional model can be seen as a quantum algorithm acting on the system of interest ρS .

First, the system couples to an ancilla ρAn . Then, they evolve through a unitary Un for a certain

time τ and decouple. Finally, we dischart the ancilla and repeat the process with ρAn+1 and Un+1.

41



A cartoon of the algorithm is shown in Fig. 6.1. The algorithm is described by the map

Φ = ΛN · · · Λ1, (6.1)

Λn[ρS ] = TrAn{Un(τ)(ρS ⊗ ρAn)U
†
n(τ)}. (6.2)

For simplicity, unless otherwise especified, we use identical ancillae and interactions from

now on:

Φ = ΛN , (6.3)

Λ[ρS ] = TrA{U(τ)(ρS ⊗ ρA)U†(τ)}. (6.4)

However, most of the results derived in the following sections still hold for the general map

Eq. (6.1). As we will frequently make use this equation, we set here ρ′S = Λ[ρS ] to clean up

the notation. From now on, every time a quantity is primed, it will be the one related to the

referenced system after the interaction. Moreover, ∆ denotes the variation from the unprimed

to the primed quantity.

Figure 6.1: A quantum circuit view of the collisional model. After the interaction, the corres-
ponding ancilla is ignored and thus the system is governed by an effective non-unitary map.

The full dynamics is unitary, where the full state is ρ = ρS
⊗N

n=1 ρA. Thus, the collisional

model is a Stinespring dilation process for ρS . Since we admit only two body interactions

(assuming the system and ancillae have no structure), we have several sequential interaction

Hamiltonians V , living in different Hilbert spaces. However, although it is an abuse of notation,

we choose not to address this detail and consider them to be the same, since it will not affect

the results. The same will be done with the label A for the identical ancillae.

The free parameters are the ancillae chosen and the type of interaction the system holds with

them. Notice that Eq. (6.3) is Markovian by construction, given its divisible structure in the

equal maps. It can be generalized to non-Markovian dynamics by making the subsequent maps
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correlated [70], the initial state of the ancillas correlated [71], by utilizing the same ancilla more

than one time [72] and ancilla-ancilla interactions [73]. However, this is out of the scope of this

dissertation.

6.2 Reservoir engineering

Master equations are differential, Eq. (6.3) is in contrast discrete. In order to bridge them, we

perform a series expansion on the map, as we later on intend to take the continuum limit τ→ 0.

The interaction, up to order τ2, reads

U(τ) = exp{−iHτ} = I − iτH −
τ2

2
H2,

where H = H0 + V is the total Hamiltonian and H0 is the free Hamiltonian. We can decompose

H0 further into the free Hamiltonian HS of the system S and HA of the ancillae A. Manipulating

the expansion above, we get

ρ′S = U(τ)ρU†(τ) = ρ − iτ[H, ρ] −
τ2

2
[H, [H, ρ]]. (6.5)

Next we take the partial trace with respect to A. The first term returns ρS by definition. For

the second term,

TrA[H, ρ] = [HS , ρS ]TrAρA + ρSTrA[HA, ρA] + TrA[V, ρS ⊗ ρA]

= [HS , ρS ] + [G, ρS ] = [HS + G, ρS ],

where we used normalization, that the trace of a commutator with the density matrix is always

0, and defined

G B TrA{VρA}. (6.6)

For the last term, we can use the same procedure to show that

TrA[H, [H, ρ]] = [HS , [HS , ρS ]] + [V, [V, ρS ]]

= −2HSρS HS + {H2
S , ρS } − 2VρS V + {V2, ρS }.

= DH[ρS ] +DV[ρS ], (6.7)
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where

DH[ρS ] B −
1
2

TrA[HS, [HS, ρ]], (6.8)

DV[ρS ] B −
1
2

TrA[V, [V, ρ]]. (6.9)

These two terms will be related to dissipators later on. We do antecipate that DH[ρS ] pro-

duces dephasing in the local energy basis of the system and that DV[ρS ] is a dissipator where

the jump operators are related to the interaction V . Eq. (6.5) will thus read

ρ′S = ρS − iτ[HS + G, ρS ] + τ2DH[ρS ] + τ2DV[ρS ]. (6.10)

We traverse to the continuum limit by defining

ρ̇S B lim
τ→0

ρ′S − ρS

τ
. (6.11)

Manipulating Eq. (6.10), we get

ρ′S − ρS

τ
= −i[HS + G, ρS ] + τDH[ρS ] + τDV[ρS ]. (6.12)

If we take the limit τ→ 0, we lose the desired dissipative effect of Eqs. (6.8) and (6.9). We can

solve this problem by inspiring on classical stochastic mechanics, in particular on the Langevin

equation description of Brownian motion [74]:

mẍ = −λẋ + η, (6.13)

where η is a random force done by impinging particles constituting a viscous medium of damp-

ing λ on a body of mass m and and position x. This random force’s distribution is proportional

to a delta function and is responsible for the diffusive effect, which would otherwise be damped

by the media. The ideia is that, in order for kicks of infinitelly small duration to have a finite

effect, they must be equally infinitely strong.

We can use the same idea by rescaling the interaction Hamiltonian as V → V/
√
τ. Other

scalings are either trivial or diverge [18]. This leads to

ρ′S − ρS

τ
= −i[HS +

G
√
τ
, ρS ] + τDH[ρS ] +DV[ρS ], (6.14)
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since G ∝ V and DV[ρS ] ∝ V2. The scaling solves the problem for the dissipative effect, but

opens a divergence in the effective Hamiltonian G. This is the crucial point to develop the main

objective of the whole text, which will be treated in the last section. However, we can still work

around this issue by considering that G = 0, in other words, that the possible diagonal elements

of V were incorporated in H0 and that ρA is diagonal in the energy basis. This can be seen from

Eq. (6.6): the product of a diagonal matrix with hollow matrix1 is a hollow matrix, and thus

the trace is 0. Furthermore, the dephasing effect remains of order τ and will not contribute to

the dynamics in the continuum limit. For that reason, we drop the subscript of the remaining

dissipator to clean up the notation and write

ρ̇S = −i[HS , ρS ] +D[ρS ]. (6.15)

We arrived at a master equation, where the dissipative term has the interaction V and the

diagonal state ρA as a free parameters.

For future reference, we can use the fact the interaction is symmetrical to write the map for

A:

ρ′A = ρA − iτ[HA + GA/
√
τ, ρA] + τDA[ρA], (6.16)

where GA and DA are defined as G and D, but replacing A with S and vice versa. Notice that

since we want our system to be arbitrary, GA is not 0.

6.2.1 Energy preserving interactions and its parametrization

To visualize how one can perform bath engineering, we consider the special case of energy

preserving interactions. This allows us to explicitly parametrize V and thus write the dissipator

in a familiar form. When the interaction is energy preserving, we can always write it as

V =
∑

k

gkLk ⊗ Ak, (6.17)

where Lk and Ak are eigenoperators of the system and ancilla Hamiltonians respectivelly, with

opposite sign Bohr frequency: ωk for Lk and −ωk for Ak. This garantees that each quanta that

leaves/enters the system has the same energy of the one that enters/leaves the ancilla, retaining

1A matrix with no diagonal elements is a hollow matrix
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no energy in the interaction. Let us use this condition on Eq. (6.9), remembering that we have

dropped its subscript:

D[ρS ] = −
1
2

TrA[V, [V, ρ]] =
∑

kj

−
1
2

gkgjTrA[LkAk, [LjAj, ρSρA]]

=
∑

k j

−
1
2

gkg jTr{LkLjρSAkAjρA − LkρSLjAkρAAj

− L jρS LkA jρAAk + ρS L jLkρAA jAk}

=
∑

k j

−
1
2

gkg j{〈AkA j〉LkL jρS − 〈A jAk〉LkρS L j − 〈AkA j〉L jρS Lk + 〈A jAk〉ρS L jLk}, (6.18)

where the averages are taken with respect to ρA. Since we are only using diagonal ancillae, all

averages with respect to AkA j are 0, exept for A†kAk and AkA†k . Thus, rearranging Eq. (6.18), we

finally have the familiar dissipator:

D[ρS ] =
∑

k

γ−k D[Lk] + γ+
k D[L†k]. (6.19)

Here, γ−k = g2
k〈AkA†k〉 and γ+

k = g2
k〈A

†

kAk〉. This result is very powerful. We see that the Lindblad

master equation can be derived from a very simple setup. Notwithstanding, this method allows

us to choose the operators Lk, as long as they are the building blocks of a resonant interaction.

Thus, one can easily write a master equation in the repeated interacions setup by choosing V

and ρA, ignoring midway calculations.

As an example, consider that both the system and all the ancillae are qubits. The interaction

V is a hopping interaction and the ancillae are thermal:

V = g(σ†SσA + σSσ
†

A), (6.20)

ρA =

 f 0

0 1 − f

 (6.21)

Inserting these in Eq. (6.19), the dissipator becomes

D[ρS ] = g2 tr{σ†AσAρA}D[σS ] + g2 tr{σAσ
†

AρA}D[σ†S ] (6.22)

= g2 f D[σS ] + g2(1 − f )D[σ†S ]. (6.23)

This is the amplitude damping channel for finite temperature, and its steady state solution
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is ρss = ρA, as expected. It is thus shown that in the continuum limit the collisional model

thermalizes the system without any need for approximations.

During this work we have generalized the above procedure in the following sense: suppose

that, instead of identical ancillae colliding with the system, identical strings of different ancillae

are doing so. How would the system be affected? The answer is simple, nevertheless very

interesting. As before, we carry on the calculations up to order τ, taking the continuum limit

afterwards. Consider a string of m ancillae ρm, interacting with the system during time τ/m and

V rescaled as m/
√
τ. The the first and second collisions yield, from Eq. (6.15),

ρ′S = ρS − i
τ

m
[HS , ρS ] + τD1[ρS ], (6.24)

ρ′′S = ρ′S − i
τ

m
[HS , ρ

′
S ] + τD2[ρ′S ], (6.25)

whereDm is the dissipator due to ρm. Substituting Eq. (6.24) inside Eq. (6.25),

ρ′′S = ρS − i
τ

m
[HS , ρS ] + τD1[ρS ] − i

τ

m
[HS , ρS ] + τD2[ρS ]

ρ′′S = ρS − i
2τ
m

[HS , ρS ] + τD1[ρS ] + τD2[ρS ]. (6.26)

This pattern continues on for the remaing ancillae. Thus, after the entire string we have

ρ(m)
S = ρS − iτ[HS , ρS ] + τ

m∑
j=1

D j[ρS ], (6.27)

where ρ(m)
S is the state of the system after the entire string had sequentially interacted with it. If

we assume several strings will do the same and take the continuum limit, replacing ρ′ with ρ(m)
S ,

we retrieve

ρ̇S = −i[HS , ρS ] +

m∑
j=1

Dm[ρS ]. (6.28)

Surprisingly, the effect of a string of ancillae is additive in the master equation. Each ancilla

in the string represents a different bath in contact with the system, without interference effects.

With two different thermal ancillae, for example, we could lead the system to a non-equilibrium

steady state [32].
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6.3 Thermodynamics

An important application of collisional models is their ability to give a clean thermodynamic

description of quantum processes [21, 75]. The basic formalism consists of energy preserving

interactions, which where covered in the last section, and ancillae prepared in thermal states:

[H0,V] = 0 (6.29)

ρA = ρth
A . (6.30)

In this setup, one can extract the first and second laws of thermodynamics. As we will see,

although these laws will be only approximate for general maps, they become exact in the con-

tinuum limit. Let us begin with Eq. (6.15) before the continuum limit τ→ 0:

ρ′S = ρS − i[HS , ρS ]τ +D[ρS ]τ. (6.31)

The first law of thermodynamics describes energy conservation and defines what is heat and

what is work. We consider that no work is done, since the global evolution is a time independent

unitary: there is no external energy input or output. Thus, every energy that is transfered must

be in the form of heat.:

∆E = −Q, (6.32)

where E B Tr{HSρS} and Q B Tr{HAρ
th’
A } − Tr{HAρ

th
A}. This is the first law of thermodynamics.

Notice that associating the energy change of the chain of incoming ancillae with heat endorses

our view of the collisional model as a reservoir. Another compelling argument to call it heat is

the nature of the energy balance for the system and ancilla:

∆E = E′ − E = Tr{HSρ
′
S} − Tr{HSρS} = −iτTr{HS[HS, ρS]} + τTr{HSD[ρS]}

= τTr{HSD[ρS]}, (6.33)

Q = Tr{HAρ
th’
A } − Tr{HAρ

th
A}

= −iτTr{HA[HA + GA/
√
τ, ρth

A]} + τTr{HADA[ρth
A]}

= τTr{HADA[ρth
A]}, (6.34)

where we noticed in the last equality that the commutator composed of one diagonal matrix is

always hollow, and thus its product with another diagonal matrix is traceless as we saw before.
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We see here that the energy trade stems from the dissipator alone, as in Chapter 5.

The second law is more intricate. We need first a definition of entropy production that is

compatible with the physiscs of our model. Then, we see whether or not it relates to the standard

notion developed by Clausius. The definition of entropy producion is motivated as a measure of

irreversibility. We have already related irreversibility with information loss. In the collisional

model setup, where ancillae are thrown away after the interaction with the system, we can

spot two mechanisms for information loss. The first one is associated with the correlations

built between the system and the outgoing ancillae, which are not accessible. The information

associated with it can be cast as the variation of mutual information ∆I(S |A) between S and A.

The second one regards the change of the ancillary state, as we cannot access it for the same

reason. This is quantified as the relative entropy S (ρth’
A ||ρ

th
A ). Thus, the entropy production for

each collision is the sum of both contributions [76]:

Σ B ∆I(S |A) + S (ρth’
A ||ρ

th
A ). (6.35)

This form for the entropy production is valid for any collisional model as general as Eq. (6.1).

However it has no operational meaning, for it depends on the state of the bath, which we do not

have access to. It is desirable to cast the entropy production only in terms system quantities.

Although this is not the case for every map [32, 77], it can be done for more restrictive maps.

The thermal map (6.31) is one of those. First, let us calculate the mutual information ∆I(S |A)

using (2.16):

∆I(S |A) = S ′S + S ′A − S ′S A − (S S + S A − S S A) = ∆S S + ∆S A, (6.36)

where S S , S A and S S A are the entropies of the system, ancilla and joint system respectivelly. In

the last equality, we used the fact that the global evolution is unitary and thus conserves entropy.

Inserting this on Eq. (6.35) and using the relative entropy (2.7), we can write

Σ = ∆S S + S ′A − S A + S (ρth’
A ||ρ

th
A )

= ∆S S + −Tr{ρth’
A log ρth’

A } + Tr{ρth
A log ρth

A} − Tr{ρth’
A log

ρth
A

ρth’
A

}

= ∆S S + Tr{(ρth
A − ρ

th’
A ) log ρth

A}. (6.37)
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The first term already relates to the system only. The second one is elusive. Let us open it by

remembering that

ρth
A | j〉 = p j | j〉 , (6.38)

p j = exp{−βE j}/Z, (6.39)

where Z is the partition function and E j are the energy eigenstates of the ancilla Hamiltonian.

Using map (6.16) for a thermal state, we have

Tr{(ρth
A − ρ

th’
A ) log ρth

A} =
∑

j

〈 j| (ρth
A − ρ

th’
A ) log ρth

A | j〉 =
∑

j

p j log p j − log p j 〈 j| ρth’
A | j〉

= −τ
∑

j

log p j(〈 j| − i[HA + GA/
√
τ, ρth

A ] | j〉 + 〈 j| DA[ρth
A ] | j〉)

= βτ
∑

j

(E j + log Z) 〈 j| DA[ρth
A ] | j〉 = βτTr{HADA[ρth

A]}

= βQ = −β∆E.

Summing both terms and defining the free energy as F = E − S/β, the entropy production

reads

Σ = ∆S S + βQ = −β∆FS . (6.40)

This is the second law of thermodynamics, derived for the collisional model. It is only valid

up to order τ. However, in the continuum limit, the rate equation for the second law and the

association of Q with energy leakage rate through the dissipator are both exact:

Q̇ = −Tr{HSD[ρS]}, (6.41)

Π = Ṡ S + βQ̇ = −βḞS , (6.42)

where

Ṡ S B lim
τ→0

∆S S

τ
, (6.43)

Q̇ B lim
τ→0

Q
τ
, (6.44)

Π B lim
τ→0

Σ

τ
. (6.45)
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We have successfully wrote the first and second laws of thermodynamics in terms of the

system information alone in the collisional model. The results match the desired effects for a

system in contact with a thermal reservoir in the weak coupling limit: they are the same not

only from a dynamical standpoint, as shown in the last section, and from a thermodynamical

one as well.

Naturally, this is extends to the multiple bath scenario [32]. The first and second laws

become

Ė = −

m∑
j=1

Q̇m, (6.46)

Π = Ṡ S +

m∑
j=1

βQ̇m, (6.47)

where Q̇m = −TrHSDm[ρS].

6.4 Weakly coherent collisional models

In the previous sections, we had only considered ancillary states that are diagonal in the system

energy basis. In those cases, we could derive a Lindblad master equation where the system

evolves according to its own Hamiltonian and a dissipator related to the interaction with the

sequence of ancillae. However, what would happen if the incoming ancillae had coherence in

the energy basis? To answer this, let us write Eqs. (6.6) and (6.14) again, slightly modified:

ρ′S − ρS

τ
= −i[HS +

G
√
τ
, ρS ] +D[ρS ] + O(τ). (6.48)

G = TrA{VρA} (6.49)

Before, we have noticed that in the limit of τ → 0 the contribution from G explodes and

hence one cannot write the map as a master equation. By imposing a diagonal form for ρA, the

divergence vanishes since that would make G trivially 0. In this section we propose a non-trivial

alternative to the divergence of G.

We begin by defining the weakly coherent states

ρA = ρth
A + λ

√
τχ, (6.50)
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where χ is a hollow operator and λ represents a time scale and ρth
A = exp{−βHA}/ZA is a thermal

state of inverse temperature β and partition function ZA. Regard λ as a necessery quantity to

keep χ in the same units as ρth
A . This is a thermal state with coherences, where all of them

are incorporated inside χ. The diagonal state is considered to be thermal so that we can still

draw a thermodynamical analysis out of it,but aside from this it would be no limitation to let its

diagonal distribution be athermal.

Notice that the coherences in Eq. (6.50) are not arbitrary: they are proportional to the

interaction time. In particular, in the continuum limit they become vanishingly small. Since this

is the limit we are interested in, the name given to this class of states is justified. In general, not

all states of the form (6.50) are positive semidefinite, but as τ→ 0 this is ensured as long as the

thermal state is not pure, i.e. the vacuum state, a condition that will be assumed from here on.

6.4.1 Hamiltonian engineering

Using the definition for G and remembering that TrA{Vρth
A} = 0, we see that ρA rescales G →

λ
√
τG. Hence, the map for S becomes

ρ′S − ρS

τ
= −i[HS + λG, ρS ] +D[ρS ] + O(

√
τ). (6.51)

The leading order becomes
√
τ because of new terms related to −λ

√
τ

2 TrA[V, [V, ρth
A ⊗ χ]] that

appear or the dissipator. In the continuum limit they will decay, thus no change is expected in

the dissipative part of the dynamics. The unitary part, on the other hand, is incremented with a

new term:

ρ̇S = −i[HS + λG, ρS ] +D[ρS ], (6.52)

G = TrA{Vχ}, (6.53)

where G was redefined for simplicity. For concreteness, it is interesting to cast G in terms of

eigenoperators as done with the dissipator in Eq. (6.19):

G = TrA{Vχ} =
∑

i,j

〈i|Aj ⊗ Bj χ |i〉 =
∑

j

Aj

∑
i

〈i|Bj χ |i〉 =
∑

j

〈Bj〉χAj, (6.54)

where 〈B j〉χ = Tr{Bj χ} is the average of the eigenoperators of the ancilla Hamiltonian with

respect to its coherences. Thus, as a consequence of the structure of eigenoperators, we see
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that G is hollow in the system energy basis. The choice for its elements can be made through

the interaction, and their relative intensities can be independently chosen from χ: with weak

coherences, the collisional model can be used to perform Hamiltonian engineering.

For concreteness, consider the same example as in Section 6.2, but now the ancilla has a

non-zero χ:

χ =

0 1

1 0

 . (6.55)

The dissipator is the same, however there will be an additional term G

G = g tr{σ†Aχ}σS + g tr{σAχ}σ
†

S (6.56)

= gσx. (6.57)

The entire master equation will thus read

ρ̇S = −i[HS + gλσx] + g2 f D[σS ] + g2(1 − f )D[σ†S ]. (6.58)

The presence of σx makes the steady state highly non-trivial and always coherent.

The additive property (6.28) shown for a sequence of different ancillae in thermal states is

also valid when they are initialized in weakly coherent states. In the derivation, it was evident

that the additive property stems from the fact that every cross term is of higher order in τ and

thus disapears in the continuum limit. Since the single map structure of Eq. (6.51) is the same

as the structure of Eq. (6.31), then for a string of m ancillas the master equation reads

ρ̇S = −i[HS +

m∑
j=1

λ jG j, ρS ] +

m∑
j=1

D j[ρS ], (6.59)

where the G j are the Hamiltonians produced by each individual ancilla ρ( j)
A .

6.4.2 Thermodynamics

We follow Section 6.3 closely, but always remarking the modifications induced by χ. The first

law (6.32) stabilishes a relation between the energy leaving the system and the energy entering

the bath. As the interaction still preserves energy, this should not change. However, the presence
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of an additional term in the Hamiltonian does play a role:

ĖS = d〈HS 〉/dt = iλ〈[G,HS ]〉 + tr{HSD[ρS ]}. (6.60)

For detailed calculation, refer to Appendix A. The flux of energy entering the system now have

two different contributions: one through a dissipator and another through a Hamiltonian. We

argue here that, since the nature of the first one is dissipative, it is an incoherent source of energy

just as heat. Nevertheless, the nature of the second source is unitarily coherent, just as work.

We are thus inspired to define these rates as incoherent heat rate and coherent work rate:

ẆC B iλ〈[G,HS ]〉, (6.61)

Q̇inc B tr{HSD[ρS ]}, (6.62)

ĖS = ẆC + Q̇inc. (6.63)

Quite surprisingly, we will shortly show that these quantities do behave as work and heat, re-

spectively. If not for the coherences in ρA, all the energy that would be transfered to ρS would be

dissipative. However, by means of G, a transformation process occurs and the bath coherently

injects a fraction of its lost energy in the system. This is the statement of the first law.

For the second law, we must refer back to Eq. (6.35):

Σ = ∆I(S |A) + S (ρ′A||ρA). (6.64)

The detailed calculations are done in Appendix B and C, and the results are exposed bellow:

∆I(S |A) = −β∆F − ∆Crel(ρA), (6.65)

S (ρ′A||ρA) = βWC + ∆Crel(ρA), (6.66)

where F B E − TS (ρS ) is the system free energy, T = β−1 is the temperature andWC ' ẆCτ

is the approximate coherent work done in a single collision. Summing over both contributions

and once again taking the continuum limit τ→ 0, we finnaly write

Π = β(ẆC − Ḟ) = Ṡ S − βQ̇inc ≥ 0. (6.67)

This equation is a direct analog of the usual second law of thermodynamics. One should
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notice here that both incoherent heat and coherent work play the usual roles inside the functional

form of the entropy production. This once again motivates our terminology, where heat is

associated with the Clausius formulation of entropy and work follows the famous inequality

ẆC ≥ Ḟ. (6.68)

Thus, the amount of work done in the system is bounded by the free energy difference experi-

enced by the system.

The structure of Eq. (6.59) signals at a straightforward extention of both the first and second

law to multiple reservoirs. Since the coherent work and incoherent heat depend on the ancillae

because of G and D alone, then the noninterference between G j and D j of each ancilla results

on

ĖS =

m∑
j=1

{
Ẇ

( j)
C + Q̇

( j)
inc

}
(6.69)

Π = Ṡ S −

m∑
j=1

β jQ̇
( j)
inc. (6.70)

6.4.3 Resource interconversion

Before proceeding to the conclusion of this work, we put forth the main finding of this work.

Although Eq. (6.68) provides a bound for work done or received by the system, Eq. (6.66)

and Eq. (6.65) offer a much more interesting one. Directly from Eq. (6.66), we can use the

positivity of the relative entropy shown in Chapter 2 to write

WC ≥ −T∆Crel(ρA). (6.71)

This offers a second bound on work extraction which is tighter than Eq. (6.68), as can be seen

from Eq. (6.65):

− T∆Crel(ρA) = T∆I(S |A) + ∆F ≥ ∆. (6.72)

The last inequality relies on ∆I(S |A) ≥ 0, which is quite intuitive since the amount of correla-

tions before the interaction is 0.

This result stabilishes a bridge between genuinelly quantum resources and a classical re-

source such as work. Here, the variation of coherences in the bath allow for the transformation
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process of the incoherent energy contained inside it into coherent energy injection in the system.

From Eq. (6.61), it is evident that if λ = 0, i.e. there are no coherences in the bath, there is no

work available for the system, corroborating with the view that the coherences not only bound

the work done, but are essencial for its existence.

As a final remark, bound (6.68) is only put in terms of system quantities, while bound (6.71)

makes explicit reference to the bath. This is a signature of the athermality of the bath modeled

by the weakly coherent ancillae, where the tightest bound cannot wriggle out of a refecence

to the bath. This discussion is made on reference [77], where the tighter bound is actually the

same as ours.
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Chapter 7

Conclusions

In this dissertation we have introduce quantum information and open quantum systems tools

to develop the theory of collisional models. We have shown that such setup provides a clean

platform to model and probe a reservoir. Through it, no approximation is needed to achieve the

GKSL equation and its free parameters are all related to quantities that are in principle contro-

lable in the laboratory, such as the state of the ancillae and the interaction they experience with

the system of interest [78, 79]. Furthermore, we have shown that the repetitive use of different

ancillae have an additive effect over the dissipators of the GKSL equation, so that the local

approximation for master equations is exact, in opposition to real environments [80]. With the

aid of information-theoretic tools, we have also explicitly derived thermodynamic relations out

of this model for thermal ancillae, which give rise to the same laws as system weakly coupled

to a thermal bath. As a novelty, we propose a new class of states that hold great proximity to

thermal states, but yielding a small amount of coherences: the weakly coherent states. We show

that not only ancillae initialized in these states also provide a differential equation to the local

evolution of the system, but that this evolution is the same as a weakly coupled thermal bath

alongside unitary driving. This setup is also extendable to a string of different ancillae, with the

same additive property. Surprisingly, despite the modeled environment not being thermal, the

system is still governed by the first and second laws of thermodynamics, equiped with peculiar

modifications. In the first law, a work-like term appears albeit the evolution of the global system

being time independent. In the second law, a tighter version for this work-like quantity extrac-

tion can be related to the change of coherences quantified by the variation of relative entropy of

coherence in the ancillae. This provides a bridge between quantum resources, i.e. coherences,

and a thermal resource such as work. It also shows that the law of thermodynamics are not
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restricted to thermal reservoirs, as was already shown for squeezed states [15].

There are several possible paths for future research. The derivation for the GKSL equation

using the collisional model relied on the fact that the interactions were all in sequence, with the

same interaction time. However, this pressuposes that one has perfect control over the incoming

ancillae, which is not true for a real reservoir. To adress such baths, one can set the arrival

time of the ancillae as a Poisson process [21]. Furthermore, using the multiple bath formalism

developed here, it should be interesting to understand how the weak coherences affect heat

transport between reservoirs [81], and if it is possible to define a coherence current between

them. This should prove useful as a form of coherence transfer from systems that one has good

control over to other that one has not. Finnaly, it should prove interesting to relate our findings

to ergotropy of the initial state of the ancillary systems, as they are initially in an active state

(athermal) and thus can have work extracted from them [82].
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Appendix A

Changes in the ancilla

In this appendix we provide the updated state of the ancillae, after they have interacted with the

system. This can be obtained by taking the partial trace of Eq. (6.5) over S , in a calculation

analogous to the one that led to Eq. (6.10). First, let us rewrite the global map in a useful way:

ρ′S A = ρSρA − iτ[HS A, ρSρA] −
τ2

2
[HS A, [HS A, ρSρA]]. (A.1)

Taking the partial trace with respect to S , we have

ρ′A = ρth
A +
√
τ
(
λχA − i[GA, ρ

th
A ]

)
+ τ

(
− iλ[GA, χA] + DA(ρth

A )
)
. (A.2)

where

GA = trS (VS AρS ), (A.3)

DA(ρth
A ) = −

1
2

trS [VS A, [VS A, ρSρ
th
A ]]. (A.4)

Quite relevant to the discussion below, the term of order
√
τ does not vanish in Eq (A.2), since

there is no restriction to the amount of coherence ρS has.
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A.1 Energy balance

Using the general map (A.1) we can compute the changes in energy of the system and ancilla,

defined as ∆HS = tr
{
HS (ρ′S A − ρSρA)

}
and ∆HA = tr

{
HA(ρ′S A − ρSρA)

}
. One then readily finds

∆HS = i
√
τ〈[VS A,HS ]〉S A +

τ

2
〈[VS A, [VS A,HS ]]〉S A, (A.5)

∆HA = i
√
τ〈[VS A,HA]〉S A +

τ

2
〈[VS A, [VS A,HA]]〉S A. (A.6)

where 〈. . .〉S A means averages over ρSρA. Notice that the structure of these results is entirely

independent on any specific choice for the states of the ancillae. Due to strong energy conser-

vation, [VS A,HS + HA] = 0 it follows that

〈[VS A,HS ]〉S A = −〈[VS A,HA]〉S A, (A.7)

〈[VS A, [VS A,HS ]]〉S A = −〈[VS A, [VS A,HA]]〉S A, (A.8)

and hence

∆HS = −∆HA. (A.9)

Two conclusions may be drawn from this. The first is that, as mentioned in the main text,

the strong energy conservation condition (4) implies that no work is performed; all change in

energy in the system stems from a corresponding change in the ancillae. Second, Eqs. (A.7)

and (A.8) allow us to pinpoint the origin of the coherent workWC and the incoherent heat Qinc

appearing in Eq. (6.63) of the main text.

To accomplish this, we simply need to express global averages over ρSρA in terms of local

averages over either ρS or ρA. For instance, referring to Eq. (A.5), the first term is precisely the

coherent work since

WC = iλτ〈[G,HS ]〉S = i
√
τ〈[VS A,HS ]〉S A.

The identity in Eq. (A.7) therefore implies that this contribution will stems from a corresponding

term on the side of the ancilla of the form 〈[VS A,HA]〉. Whence,

WC = −i
√
τ〈[VS A,HA]〉S A = −i

√
τ〈[GA,HA]〉A, (A.10)

where GA is given in Eq. (A.3). In the last term, the average over ρth
A does not contribute, so we
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finally get

WC = −iλτ〈[GA,HA]〉χA . (A.11)

Similarly, the incoherent heat Qinc is related to the second term in Eq. (A.5):

Qinc = τ tr
{
HS D(ρS )

}
=
τ

2
〈[VS A, [VS A,HS ]]〉 = −

τ

2
〈[VS A, [VS A,HA]]〉 = −τ tr

{
HADA(ρth

A )
}
,

(A.12)

where DA(ρth
A ) = −1

2 trS [VS A, [VS A, ρSρ
th
A ]]. The total change in energy of the system, which is

the heat leaving the ancilla, can then be written solely in terms of ancilla-based quantities:

∆〈HS 〉 := −QA =WC + Qinc = −iλτ〈[GA,HA]〉χA − τ tr
{
HADA(ρth

A )
}
. (A.13)

These results therefore allow us to pinpoint which terms in the heat ∆HA leaving the ancilla are

converted toWC and Qinc.
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Appendix B

Series expansions

The states of system and ancilla, before and after the interactions, will generally depend on τ in

different ways. To compute the entropy production, defined in Eq. (6.35) of the main text, one

must compute several entropic quantities depending on these states. Since we are interested in

the limit τ → 0, these quantities can be computed using perturbation theory, which becomes

exact in the limit τ→ 0. We start by stating some general results on perturbative expansions of

the von Neumann entropy, the relative entropy of coherence and the quantum Kullback-Leibler

divergence (relative entropy).

B.1 Von Neumann entropy

Consider a general density matrix of the form

ρ = ρ0 + εσ, (B.1)

where ε is a small parameter and we assume tr ρ0 = 1 so trσ = 0. Let ρ0 =
∑

i pi|i〉〈i| denote

the eigendecomposition of the unperturbed density matrix ρ0. We now wish to compute the von

Neumann entropy of ρ, which reads

S (ρ) = − tr(ρ log ρ) = −
∑

i

Pi log Pi, (B.2)

where Pi are the eigenvalues of the full density matrix ρ.

Since ρ is a Hermitian operator, standard perturbation theory applies [83]. Assuming that
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the pi are non-degenerate, we may then write, up to order ε2,

Pi = pi + εσii + ε2
∑
j,i

|σi j|
2

pi − p j
. (B.3)

Plugging this in Eq. (B.2), expanding Pi log Pi in ε up to second order and using the fact that

trσ = 0, we find that

S (ρ) = S (ρ0) − ε
∑

i

σii log pi − ε
2
∑

i

{ σ2
ii

2pi
+

∑
j,i

|σi j|
2

pi − p j
log pi

}
. (B.4)

This is the series expansion for S (ρ). The populations σii contribute both with order ε and ε2,

whereas the coherences (off-diagonals) only start to contribute at order ε2.

B.2 Relative entropy of coherence

Due to this separation, the relative entropy of coherence [Eq. (19) of the main text] will be of

order ε2:

C(ρ) = ε2
∑
i, j,i

|σi j|
2

pi − p j
log pi. (B.5)

This expression can also be written more symmetrically, as

C(ρ) =
ε2

2

∑
i, j,i

|σi j|
2

pi − p j
log pi/p j. (B.6)

Thus, we see that the relative entropy of coherence weights each coherence |σi j| by a factor of

the form
log(x/y)

x − y
≥ 1, x, y ∈ [0, 1].

B.3 Quantum relative entropy

Next we consider the relative entropy S (ρ′||ρ) between two density matrices of the form

ρ = ρ0 + εσ, ρ′ = ρ0 + εµ, (B.7)
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where σ and µ are arbitrary, but both depend on ρ0 to order ε0. We have

S (ρ′||ρ) = −S (ρ′) − tr(ρ′ log ρ). (B.8)

The first term was already found in (B.4), with σ replaced by µ:

S (ρ′) = S (ρ0) − ε
∑

i

µii log pi − ε
2
∑

i

{ µ2
ii

2pi
+

∑
j,i

|µi j|
2

pi − p j
log pi

}
. (B.9)

In order to compute the last term we will need not only the perturbation theory for the

eigenvalues of ρ [Eq. (B.3)], but also for its eigenvectors. Defining ρ =
∑
i

Pi|ĩ〉〈ĩ| allows us to

write

tr(ρ′ log ρ) =
∑

i

〈ĩ|ρ′|ĩ〉 log Pi. (B.10)

Thus, in addition to writing log Pi as a power series, we will also have to expand 〈ĩ|ρ′|ĩ〉.

Using standard perturbation theory, the eigenvectors of ρ can be written as

|ĩ〉 = |i〉 + ε |i1〉 + ε2|i2〉, (B.11)

where

|i1〉 =
∑
j,i

| j〉
σi j

pi − p j
, (B.12)

|i2〉 = −
1
2
|i〉

∑
j,i

|σi j|
2

(pi − p j)2 −
∑
j,i

| j〉
σiiσ ji

(pi − p j)2 +
∑

j,i,k,i

|k〉
σk jσ ji

(pi − p j)(pi − pk)
(B.13)

With this we find, after carrying out the computations,

〈ĩ|ρ′|ĩ〉 = pi + εµii + ε2
∑
j,i

µi jσ ji + σi jµ ji − |σi j|
2

pi − p j
. (B.14)

Plugging this result in Eq. (B.10) and expanding all terms in ε then finally leads to

tr(ρ′ log ρ) =
∑

i

{
pi log pi+ε(σii+µii log pi)+ε2

[
µiiσii

pi
−
σ2

ii

2pi
+
∑
j,i

µi jσ ji + σi jµ ji − |σi j|
2

pi − p j
log pi

]}
.

(B.15)
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Finally, combining this with Eq. (B.9) leads to

S (ρ′||ρ) =
ε2

2

∑
i

{
(µii − σii)2

pi
+

∑
j,i

|µi j − σi j|
2

pi − p j
log(pi/p j)

}
. (B.16)

We therefore see that while S (ρ) and S (ρ′) contain contributions of order ε, the first non-zero

contribution to the relative entropy is of order ε2. Moreover, the result depends on both the

populations and the coherences, and both with the same order ε2. This highlights some of the

differences between S (ρ′||ρ) and S (ρ′) − S (ρ).
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Appendix C

Entropy production series expansion

We are now in the position to derive Eqs. (6.65) and (6.66) of the main text. To do so, one must

simply apply the results of Sec. S2 with the appropriate choices of ρ, ρ0, etc. Since system

and environment always start uncorrelated and since the global dynamics is unitary, the mutual

information developed in the map (A.1) can be written as

I(ρ′S A) = S (ρ′S ) + S (ρ′A) − S (ρ′S A) := ∆S S + ∆S A. (C.1)

Our task is to compute ∆S A = S (ρ′A) − S (ρA). In addition, we will also need S (ρ′A||ρA). We

compute each term separately.

C.1 Calculation of S (ρA)

The initial state of the ancilla is given in Eq. (6.50) of the main text, ρA = ρth
A +
√
τλχA, where

χA has no diagonal elements. This falls under the structure of Eq. (B.1), provided we identify

εσ =
√
τλχA.

A direct application of Eq. (B.4) then yields

S (ρA) = S (ρth
A ) − λ2τ

∑
i, j,i

|(χA)i j|
2

pth
i − pth

j

log pth
i , (C.2)

where pth
i are the eigenvalues of ρth

A and the basis |i〉 refers to the energy basis of HA. Since the

perturbed part of ρA has no diagonal elements, the second term in Eq. (C.2) is nothing but the
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relative entropy of coherence of the state ρA,

C(ρA) = λ2τ
∑
i, j,i

|(χA)i j|
2

pth
i − pth

j

log pth
i . (C.3)

Thus, we may simply write

S (ρA) = S (ρth
A ) −C(ρA). (C.4)

C.2 Calculation of S (ρ′A)

The state of the ancilla after the map is given by Eq. (A.2). This once again has the structure

Eq. (B.1), but now one must identify

εσ =
√
τ
{
λχA − i[GA, ρ

th
A ]

}
+ τ

{
− iλ[GA, χA] + DA(ρth

A )
}

The terms proportional to
√
τ now form the off-diagonal part of σ and those proportional to τ

are all diagonal. Applying again Eq. (B.4) yields

S (ρ′A) = S (ρth
A ) − τ

∑
i

(
− iλ[GA, χA] + DA(ρth

A )
)

ii
log pth

i − τ
∑
i, j,i

∣∣∣∣∣(λχA − i[GA, ρ
th
A ]

)
i j

∣∣∣∣∣2
pth

i − pth
j

log pth
i .

Once again, comparing with Eqs. (B.4) and (B.5), the relative entropy of coherence of ρ′A cor-

responds to the last term only,

C(ρ′A) = τ
∑
i, j,i

∣∣∣∣∣(λχA − i[GA, ρ
th
A ]

)
i j

∣∣∣∣∣2
pth

i − pth
j

log pth
i . (C.5)

That is, we may write

S (ρ′A) = S (ρth
A ) − τ

∑
i

(
− iλ[GA, χA] + DA(ρth

A )
)

ii
log pth

i −C(ρ′A).

The term proportional to τ, on the other hand, can be written as

−τ
∑

i

(
− iλ[GA, χA] + DA(ρth

A )
)

ii
log pth

i = βτ trA

{(
− iλ[GA, χA] + DA(ρth

A )
)
HA

}
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where we also use the fact that log ρth
A = −βHA − log ZA [c.f. Eq. (6.50) of the main text].

The term proportional to log ZA vanishes, for it is proportional to tr(ρ′A − ρA), and the second is

therefore nothing but the total change in energy of the ancilla in Eq. (A.13). But this, in turn, is

minus the change in energy in the system. Whence, we conclude that

S (ρ′A) = S (ρth
A ) − β∆〈HS 〉 −C(ρ′A). (C.6)

C.3 Calculation of I(ρ′S A)

Inserting Eqs. (C.4) and (C.6) into Eq. (C.1) leads to

I(ρ′S A) = ∆S S − β∆〈HS 〉 − ∆CA, (C.7)

which is Eq. (6.65) of the main text, provided we recognize ∆S S − β∆〈HS 〉 = −β∆F, as the

change in free energy of the system.

C.4 Calculation of S (ρ′A||ρA)

Finally, we turn to the relative entropy S (ρ′A||ρA), expressed as the series in Eq. (B.16). The

operators µ and σ, defined in Eq. (B.7), should now be recognized with

εσ =
√
τλχA,

εµ =
√
τ
{
λχA − i[GA, ρ

th
A ]

}
+ τ

{
− iλ[GA, χA] + DA(ρth

A )
}
.

The first term in Eq. (B.16) will depend only on the diagonal part of µ (the diagonal part of σ is

zero). But this term is already of order τ, so this will ultimately lead to a contribution of order

τ2.

The only non-negligible term is thus the one related to the coherences. It is convenient to

express |µi j − σi j|
2 as

|µi j − σi j|
2 = |µi j|

2 − |σi j|
2 +

(
2|σi j|

2 − µi jσ ji − σi jµ ji

)
.

The reason why this is useful is because then the first two terms can be recognized as the
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difference between the relative entropies of coherence of ρ′A and ρA respectively [Eqs. (C.5) and

(C.3)]. On the other hand, the remaining term in parendissertation may be written as

2|σi j|
2 − µi jσ ji − σi jµ ji = iλ

[
(χA)i j(GA) ji − (GA)i j(χA) ji

]
(pth

i − pth
j ).

Substituting these results in Eq. (B.16) and expressing the remaining summations in terms of a

trace, then yields

S (ρ′A||ρA) = ∆CA − iλβτ〈[GA,HA]〉χA .

Comparing this with Eq. (A.11), we finally arrive at Eq. (6.66) of the main text; viz.,

S (ρ′A||ρA) = ∆CA + βWC. (C.8)
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[60] Berislav Buča and Tomaž Prosen. A note on symmetry reductions of the Lindblad equa-
tion: Transport in constrained open spin chains. New Journal of Physics, 14:0–13, 2012.

[61] Sadao Nakajima. On Quantum Theory of Transport Phenomena: Steady Diffusion. Pro-
gress of Theoretical Physics, 20(6):948–959, 12 1958.

73



[62] Robert Zwanzig. Ensemble method in the theory of irreversibility. The Journal of Chem-
ical Physics, 33(5):1338–1341, 1960.

[63] Sandu Popescu, Anthony J. Short, and Andreas Winter. Entanglement and the foundations
of statistical mechanics. Nature Physics, 2(11):754–758, oct 2006.

[64] Stefanie Hilt and Eric Lutz. System-bath entanglement in quantum thermodynamics. Phys.
Rev. A, 79:010101, Jan 2009.

[65] A.G. REDFIELD. The theory of relaxation processes* *this work was started while the
author was at harvard university, and was then partially supported by joint services contract
n5ori-76, project order i. 1:1 – 32, 1965.

[66] Marlan O Scully and M Suhail Zubairy. Quantum Optics. Cambridge University Press,
1997.

[67] Ramamurti Shankar. Quantum Field Theory and Condensed Matter: An Introduction.
Cambridge University Press, 2017.

[68] Amikam Levy and Ronnie Kosloff. The local approach to quantum transport may violate
the second law of thermodynamics. EPL (Europhysics Letters), 107(2):20004, jul 2014.

[69] Jayaseetha Rau. Relaxation phenomena in spin and harmonic oscillator systems. Phys.
Rev., 129:1880–1888, Feb 1963.

[70] S J Whalen, A L Grimsmo, and H J Carmichael. Open quantum systems with delayed
coherent feedback. Quantum Science and Technology, 2(4):044008, aug 2017.

[71] N. K. Bernardes, A. R.R. Carvalho, C. H. Monken, and M. F. Santos. Environmental
correlations and Markovian to non-Markovian transitions in collisional models. Physical
Review A - Atomic, Molecular, and Optical Physics, 90(3):032111, 2014.

[72] Dario Cilluffo and Francesco Ciccarello. Quantum non-markovian collision models from
colored-noise baths, 2019.

[73] F. Ciccarello, G. M. Palma, and V. Giovannetti. Collision-model-based approach to non-
Markovian quantum dynamics. Physical Review A - Atomic, Molecular, and Optical Phys-
ics, 87(4):040103, 2013.
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