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Disorder-mediated Kondo effect in graphene
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We study the emergence of strongly correlated states and Kondo physics in disordered graphene. Diluted
short-range disorder gives rise to localized midgap states at the vicinity of the system charge neutrality point.
We show that long-range disorder, ubiquitous in graphene, allows for the coupling of these localized states to
an effective (disorder averaged) metallic band. The system is described by an Anderson-like model. We use the
numerical renormalization group method to study the distributions of Kondo temperatures P (TK ). The results
show that disorder can lead to long logarithmic tails in P (TK ), consistent with a quantum Griffiths phase.
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The investigation of magnetic properties in graphene has
triggered intense research activity [1,2]. The formation of
local magnetic moments has been observed by experiments on
graphene nanoribbon edges [3] and hydrogenated [4] and ir-
radiated [4–6] graphene flakes. Low-temperature experiments
on irradiated samples [4–6] give quite puzzling results. For
low irradiation, Ref. [5] reports fingerprints of the Kondo
effect in the resistivity. The reported Kondo temperature,
obtained from the single-parameter scaling characteristic of
conventional S = 1/2 Kondo systems [7,8], is rather high,
TK ≈ 10 · · · 100 K, with a weak dependence on the gate volt-
age, both for p and n doping. This is at odds with the theoretical
analysis [9] that predicts an exponential dependence of TK

with the chemical potential for n doping and vanishing small
Kondo effect for p doping. Other experiments on irradiated
graphene [4,6] observed a paramagnetic susceptibility consis-
tent with S = 1/2 magnetic local moments, without evidence
of Kondo quenching, even at temperatures as low as 2 K [6].

The Kondo effect in graphene also poses new interesting
theoretical questions [9–13]. The linear energy dependence
of the graphene density of states and the occurrence of
localized states are a physical realization of a pseudogap
Kondo model, which is known to show a rich variety of
quantum critical behavior as a function of the gate-controlled
chemical potential [9,13]. What has been overlooked so far,
is that disorder, ubiquitous in graphene, modifies this picture
dramatically.

In this Rapid Communication, we present a systematic
study of the Kondo effect in disordered graphene using the
numerical renormalization group (NRG) method. Disorder
provides a simple coupling mechanism leading to low-
temperature Kondo screening. We find that the resulting
distribution of Kondo temperatures P (TK ) depends on the
disorder strength and, in a more subtle manner, on the chemical
potential. Interestingly, we show that, as the system enters the
Kondo regime, long-range disorder can lead to logarithmic
tails in P (TK ), which are characteristic of a quantum Griffiths
phase [14–16]. This scenario is much richer than the stan-
dard one in dirty metals, where the disorder is responsible
mainly for a local modification of the band-impurity coupling
constant [17–19]. Finally, we argue that the interplay of long-
range disorder with localized (magnetic) states in graphene
offers a scenario that conciliates the experimental findings of
Refs. [4–6] regarding the Kondo effect.

Model Hamiltonian. At low concentrations, vacancies give
rise to quasilocalized midgap states [20,21]. Since the latter
are orthogonal to the conduction band π -like states, there is no
hybridization and, hence, no mechanism allowing for Kondo
physics. Recently, vacancy reconstructions with Jahn-Teller
out-of-plane lattice distortions have been put forward as a
coupling mechanism between localized and conduction band
states [22–24]. The resulting effective model involves the
coupling of the localized level with a π -character conduction
band with a log-divergent hybridization function [22], whose
rich phase diagram has been studied with NRG [24]. However,
the special lattice reconstruction around the vacancy on which
the model relies is not supported by most ab initio calcula-
tions [25–27]. Also, this model predicts a large suppression of
TK at small doping [22] that is at odds with the experiment [5].

We follow an alternative route and investigate the effects
of disorder, other than vacancies, ubiquitous in graphene
samples [28]. For simplicity, we consider only long-range
disorder due, for instance, to charge puddles or to charges
trapped at the substrate. In this way, we avoid mechanisms
that can give rise to additional localized states, potentially
obscuring our analysis.

The nearest-neighbor tight-binding Hamiltonian for a
monolayer graphene sheet with a single vacancy reads

Hv = −t
∑
〈i,j〉

|i〉〈j | + t
∑
〈v,i〉

|v〉〈i| + H.c., (1)

where 〈· · · 〉 indicates a sum over nearest-neighbor atomic sites
and t is the hopping term. The second term at the right-hand
side of Eq. (1) decouples the site v from the honeycomb lattice.
We remove the latter state from the Hilbert space, mimicking
a vacancy.

The solution of Hv|φ〉 = εφ|φ〉 gives extended states with
nonzero energy {|ν〉} and a single zero-energy quasilocalized
state |0〉 [21]. The wave function 〈r|0〉 oscillates on the scale
of the lattice parameter a and decays with the inverse distance
to the vacancy [20,26].

We introduce disorder by adding Udis = ∑
i �=v |i〉Ui〈i|

to our model Hamiltonian. Ui = Udis(r i) is the local po-
tential at the ith site for a given disorder realization.
For simplicity, we consider Udis to be a Gaussian cor-
related random local potential, namely, 〈Udis(r)Udis(r ′)〉 =
πξ 2(δW )2(Nimp/A) exp(−|r − r ′|2/4ξ 2), characterized by
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Nimp/A, δW , and ξ , the density of scattering centers per unit
area, disorder potential strength, and range, respectively. We
take ξ larger than the lattice parameter to ensure long-range
disorder.

To single out the |0〉 state and to explicitly describe its
coupling to the extended states that form the conduction
band, we introduce the projection operators P = ∑

ν |ν〉〈ν|
and Q= |0〉〈0|, with P + Q = 1.

The single-particle model Hamiltonian H = Hv + Udis is
written as H = HPP + HPQ + HQP + HQQ. The projection
into the localized state reads

HQQ = |0〉〈0|(Hv + Udis)|0〉〈0| = |0〉εdis
0 〈0|, (2)

where εdis
0 = 〈0|Udis|0〉. The energy shift of the localized state,

εdis
0 , scales with δW and can be either positive or negative,

depending on the disorder realization potential. The coupling
term is written as HPQ = ∑

ν |ν〉〈ν|Udis|0〉〈0|, since Hv|0〉 =
0. The projection into extended states reads

HPP =
∑

ν

|ν〉εν〈ν| +
∑
ν,ν ′

|ν〉〈ν|Udis|ν ′〉〈ν ′|. (3)

In general 〈ν|Udis|ν ′〉 �= 0. Hence, it is convenient to diago-
nalize HPP as HPP |β〉 = εβ |β〉 and write the Hamiltonian H

in the {|β〉} basis. For that purpose we introduce the projection
operator P ′ = ∑

β |β〉〈β| and write the single-particle model
Hamiltonian as

H = HP ′P ′ + HP ′Q + HQP ′ + HQQ. (4)

While HQQ remains unchanged, the projection of H into the
extended states is now diagonal by construction. The modified
coupling term reads

HP ′Q =
∑

β

|β〉〈β|Udis|0〉〈0| ≡
∑

β

|β〉tβ0〈0|, (5)

showing that long-range disorder provides a natural coupling
mechanism between extended and localized states.

We use the tight-binding orbitals and site amplitudes 〈i|0〉
to calculate the Coulomb energy U for double occupation
of the midgap state. We find that U scales with system size
as (log L)−2, in agreement with scaling arguments using an
envelope function approximation for 〈i|0〉 [22]. The stan-
dard literature values Ulocal/t ∼ 3.5 for the graphene on-site
Coulomb interaction [29] lead to a U of the order of eV for a
graphene sheet of L ∼ 1 μm on SiO2, an estimate significantly
larger than that of Ref. [22]. We stress that our model considers
a single vacancy. For a realistic case of diluted vacancies, the
midgap states become more localized and U increases.

In summary, our model consists of a disordered Hamil-
tonian, Hv + Udis, plus an interaction term to account for
a double occupancy of the vacancy-generated states. The
resulting Hamiltonian can be mapped into an Anderson-like
model of a localized state coupled to a continuous band
with an energy-dependent density of states ρdis(ω). We define
ω = ε − μ(Vg), the energy relative to the Fermi level. The
energy ω varies within the range −D − �μ � ω � D − �μ,
where D is the half-bandwidth and �μ = μ(Vg) − μ(0) is
the Fermi energy relative to its value at the charge neutrality
point μ(0).

In second quantization, the model Hamiltonian HA is cast
as HA = Hstate + Hband + Hs−b, namely,

Hstate = δε n0σ + Un0↑n0↓,

Hband =
∫ D−�μ

−D−�μ

dω ωc†ωσ cωσ , (6)

Hs−b =
∫ D−�μ

−D−�μ

dω

√
�dis(ω)

π
(c†0σ cωσ + H.c.),

where δε = εdis
0 − μ(Vg) is the midgap state energy relative to

the Fermi level. The remaining notation is standard: c
†
0σ (c0σ )

creates (annihilates) an electron with spin σ at the localized
state and n0σ = c

†
0σ c0σ is the number operator. The electron

band states β are treated in the energy representation. Accord-
ingly, c†ωσ (cωσ ) creates (annihilates) an electron with spin σ

and energy ω in the (disordered) graphene band. The coupling
between the band and the localized state is written in terms
of the hybridization function �dis(ω) = π

∑
β |tβ0|2δ(ω − εβ).

The latter is a key element in NRG logarithmic discretization
of the conduction band [30].

Results. We study the model given by Eq. (6) using
Wilson’s NRG method [31,32]. We calculate quantities that
characterize the different phases of the system, such as the oc-
cupation 〈n0〉(T ) and the impurity magnetic moment m2(T ) ≡
T χimp(T )/(gμB)2, where χimp is the “impurity” (localized
state) contribution to the magnetic susceptibility [31,32].

Before addressing disorder effects, it is instructive to dis-
cuss a simpler case. Let us consider ρ(ω) = ρ0|ω − �μ|/D,
the density of states of pristine graphene, and �dis(ω) =
�0|ω − �μ|/D, where �0 is chosen as the hybridization en-
ergy scale at the band edge [30]. This toy-model parametriza-
tion of �dis(ω) is rather naive, but serves the purpose of guiding
the discussion. We improve it below, when we address a
realistic disorder model. Here, disorder manifests itself mainly
by shifting εdis

0 .
For �μ = 0, corresponding to the charge neutrality point,

the density of states vanishes as a power law ρ(ω) ∼ |ω|r .
Quantum impurity models that display such feature are gener-
ically referred to as “pseudogapped models” [9,30,33–35]
and present interesting properties such as a quantum phase
transition (QPT) for a critical set of model parameters. For
the pseudogap Anderson model with r =1, the QPT occurs
for particle-hole asymmetric situations and is characterized by
a (unstable) fixed point with “valence fluctuation” properties:
m2(T →0)=1/6 and 〈n0〉(T →0)=2/3 [31,34]. A quantum
phase transition occurs at δε = δεc, separating “empty-orbital”
[〈n0〉(T → 0) ∼ 0 and m2(T → 0) ∼ 0 for δε > δεc] and local-
moment [〈n0〉(T →0) ∼ 1 and m2(T →0) ∼ 1/4 for δε < δεc]
phases [36].

This behavior is markedly different from that described by
the usual (r =0) Anderson impurity model. In the latter, the
band is metallic, leading to Kondo screening of the impurity
magnetic moment for δε in the range −U < δε < 0. For
−U < δε � 0, the crossover to the Kondo regime is character-
ized by 〈n0〉(T →0) ∼ 1 and m2(T →0) → 0. The crossover
energy scale is the Kondo temperature TK . For δε > 0
and 〈n0〉(T →0)∼0, the system enters a different regime,
characterized by an “empty-level” or “frozen-impurity” fixed
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point [31] without Kondo screening, although m2(T ) → 0
for T → 0. The transition to the empty-level fixed point is
associated with a crossover scale T ∗ �TK of the order of
�0 [31].

Long-range disorder changes this picture dramatically. Our
microscopic disorder model gives rise to realization-dependent
fluctuations in εdis

0 and �dis(ω). It describes the low-energy
physics of the system in terms of a disordered effective Ander-
son model [15,16,19,37]. For any given disorder realization,
the NRG analysis of HA, Eq. (6) requires εdis

0 and �dis(ω) as
an input. To this end, we proceed as follows.

We obtain the density of states by an exact diagonal-
ization of the single-particle Hamiltonian H in a periodic
honeycomb lattice of Ns sites, with a vacancy site at its
center. We take Ns � 1 and approximate the continuum by
the spectrum calculated at the superlattice � point (k = 0).
We smoothen ρdis(ω) = ∑

β δ(ω − εβ) by making ρdis(ω) ≈
N (ω)/�E, where N (ω) is the number of band states in
the energy window ω − �E/2 and ω + �E/2. Since Ns is
finite, the spectrum of εβ has a small gap at low energies.
Therefore, the choice of �E is a compromise between the
enhancement of the fluctuations due to disorder and the
smearing of the finite-size gap. The same procedure is used
to compute the effective energy-dependent coupling |t(ω)|2.
We define |t(ω)|2 as the average of |tβ0|2 in the window
ω − �E/2 � εβ � ω + �E/2. The hybridization function is
approximated as �dis(ω) ≈ π |t(ω)|2ρdis(ω).

In Fig. 1 we show |tβ0|2 for two disorder realizations
for a disorder strength δW = 0.316t , range ξ = 3a, system
size Ns = 40 × 40 and Nimp = Ns/10. The results show that
|t(ω)|2 [Figs. 1(a) and 1(b)] is essentially independent of
energy for large |ω|. Furthermore, we note that |t(ω)|2 becomes
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FIG. 1. (Color online) Examples of disorder realizations leading
to “pseudogap” (left panels) and “metallic” (right panels) behavior.
Raw data for |tβ0|2 and the corresponding energy-averaged function
|t(ω)|2 (a–b). Panels (c–d) show the density of states ρdis(ω), which
is linear for |ω|/D � 1 in both cases. The hybridization function
�dis(ω) is also linear in the pseudogap case (e) in contrast with the
“metallic” case (f). The latter behavior stems from strong fluctuations
in the coupling between the localized state |0〉 and states |β〉 with
energies |εβ | close to the Fermi energy, shown in (b).

increasingly sensitive to fluctuations as |ω| becomes smaller
(the region with interest to Kondo physics), since the number
of states in this energy range is relatively small. This can lead
to rather strong fluctuations in |t(ω ∼ 0)|2. Thus, although
the density of states retain, in general, the characteristic linear
behavior near the charge neutrality point [Figs. 1(c) and 1(d)],
fluctuations in |t(ω ∼ 0)|2 lead to a “metallic” character (in
the NRG sense) near the Fermi energy in �dis(ω), as shown
in Fig. 1(f).

For every disorder realization we use the procedure de-
scribed above to compute �dis(ω) [Figs. 1(e) and 1(f)]. The
latter and εdis

0 are used as inputs to the NRG calculations. We
note that different choices of �E do not appreciably alter
the low-energy part of �dis(ω) as long as �E is of the order of
the finite-size-induced gap. The Kondo temperature TK and T ∗
are obtained from the analysis of the behavior of the magnetic
moment m2(T ) and the occupation 〈n0〉(T ) versus T [36].

Figure 2 shows the NRG results for TK (or T ∗) and 〈n0〉
for 103 disorder realizations. The single-particle parameters
are the same as in Fig. 1, U = 0.5D, and the system is at the
charge neutrality point, �μ = 0. We have stopped the NRG
calculations at scales of the order 10−20D so this scale (dashed
line) defines the “zero temperature.”

To contrast with Kondo pseudogap physics, Fig. 2 also
shows results for the pseudogap toy model �(ω) = �0|ω|, for
different values of �0. In this case (open symbols), both T ∗
and 〈n0〉 versus the disorder-dependent εdis

0 show “jumps,”
marking the well-known quantum phase transitions [30] of the
linear pseudogap Anderson model: For a fixed U , they occur
at critical values of the impurity level energy εdis

0 = ε∗
0(�0)

separating empty-orbital (εdis
0 > ε∗

0) and local-moment (εdis
0 <

ε∗
0) phases. The latter is characterized by vanishing T ∗ and

〈n0〉 → 1, while the former has nonzero T ∗ and 〈n0〉 → 0 [36].
The long-range disordered model (diamonds) shows impor-

tant differences: Fluctuations in the disorder potential lead to
Kondo ground states, characterized by 〈n0〉 → 0.8 − 1.0 with
a nonvanishing TK . A striking consequence is that the sharp
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FIG. 2. (Color online) Crossover (T ∗) and Kondo (TK ) temper-
atures (a) and occupation 〈n0〉 (b) versus εdis

0 obtained for different
disorder realizations (diamonds) and for the pseudogap toy model,
�(ω) = �0|ω| (open symbols and solid lines).
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FIG. 3. (Color online) Normalized distributions of the crossover/
Kondo temperatures (a) and occupations (b) for different values of
the chemical potential �μ. Inset: Power-law fitting of the low-TK

tails of the distributions for �μ � 0.

features of pseudogap-related quantum phase transitions at
�μ = 0 are no longer evident. Instead, the disorder-induced
filling of the pseudogap leads to the formation of Kondo
singlets, which dominate the low-temperature properties.

The picture that emerges is that the vacancy-induced state
behaves as an Anderson impurity embedded in a “disordered
metal” [15–19,37], with realization-dependent model param-
eters. The disorder fluctuations give rise to a distribution
of Kondo temperatures. Figure 3 shows the distributions
P [log(T ∗)] (or P [log(TK )] in the Kondo regime) and P (〈n0〉)
for ∼103 disorder realizations and different values of �μ.

For large �μ < 0, there is a predominance of positive val-
ues of δε = εdis

0 − �μ, favoring small occupations [Fig. 3(b)]
and relatively large crossover temperatures T ∗ [Fig. 3(a)].
This behavior is very clear for �μ = −0.05D, but changes
qualitatively as �μ increases. Already at �μ = −0.02D,
distinct “tails” in the distributions of 〈n0〉 and log(T ∗) can
be seen.

At �μ = 0, the distributions reflect the trends shown in
Fig. 2, with P [log(T ∗)] displaying two clear features: a sharp
peak at larger values of T ∗ and a long log-distributed tail.
The realizations contributing to the peak in P [log(T ∗)] lead to
small values of 〈n0〉, which correspond to the “tail” in P(〈n0〉)
shown in Fig. 3(b).

For �μ > 0, the disordered Kondo phase clearly domi-
nates, characterized by P [log(TK )] with long logarithmic tails
along with a sharp peak in P (〈n0〉) around 〈n0〉 ∼ 1. A more
careful analysis (inset in Fig. 3) shows that, for small TK , the
Kondo temperature distributions follow a power-law behavior

P (TK ) ∝ T
(α−1)
K with α ∼ 0.2–0.5, depending weakly on

�μ. Such behavior has been previously found in disordered
Anderson systems [15,16], where the interpretation for the
divergent behavior of P (TK ) for small TK with nonuniversal
exponents was given in terms of a quantum Griffiths phase and
disorder-induced non-Fermi-liquid behavior [14,16].

The exponent α is known to depend on the disorder strength
and one expects α<1 and divergent behavior in P (TK )
only for strong disorder [15,16]. Interestingly, in Fig. 3, the
disorder strength was kept fixed giving α ∼ 0.2–0.5, with a
weak dependency with �μ. This feature is a consequence
of the increased broadening of the Kondo temperature distri-
butions, shown in Fig. 3(a). As the system enters deeper in
the Kondo regime (increasing �μ), small fluctuations in
the single-particle parameters produces large fluctuations
in the Kondo scale [16]. This leads to longer and flatter
logarithmic tails, with smaller values of α.

Conclusions. The effect of disorder in our system is twofold.
First, it provides a simple mechanism, so far overlooked, to
couple the localized state with the graphene band. Secondly,
disorder fluctuations lead to a distribution of Kondo tempera-
tures P (TK ) with a power-law divergence at low TK . This is
consistent with the presence of a Griffiths phase and allows
for the interesting possibility of detecting disorder-induced
non-Fermi-liquid behavior [14] in transport experiments in
graphene.

Assuming a very dilute vacancy concentration and that
the resistivity is dominated by the localized states with the
largest TK , our simulations are consistent with experimentally
measured TK of the order of a few Kelvin [5] with a
weak dependence on |μ| as long as it stays close to the
charge neutrality point. We find that the mean TK depends
strongly on the disorder strength. For less disordered samples
where, for instance, charge puddle fluctuations are smaller,
TK would be dramatically suppressed and one expects to
observe only local magnetic moments [36]. This picture
offers a unified scenario to interpret the puzzle posed by
experiments [4–6].

Note added. Recently we became aware of new STM
measurements of Kondo-like resonances in Co adatoms on
graphene deposited on a Ru(0001) substrate [38]. The Kondo
effect is attributed in this case to an increase of rippling in
the graphene sheet. These results are consistent with the main
argument we make in this Rapid Communication: that long-
range disorder can play an important role for the observation
of the Kondo effect in graphene.
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(2012).
[26] B. R. K. Nanda, M. Sherafati, Z. S. Popović, and S. Satpathy,
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