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We study the linear conductance through a double-quantum-dot system consisting of an interacting dot in its
Kondo regime and an effectively noninteracting dot connected in parallel to metallic leads. Signatures in the
zero-bias conductance at temperatures T�0 mark a pair of quantum �T=0� phase transitions between a
Kondo-screened many-body ground state and non-Kondo ground states. Notably, the conductance features
become more prominent with increasing T, which enhances the experimental prospects for accessing the
quantum-critical region through tuning of gate voltages in a single device.
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I. INTRODUCTION

Quantum phase transitions �QPTs� occur in the zero-
temperature �T=0� phase diagram of a system at points of
nonanalyticity of the ground-state energy.1,2 QPTs underlie
many fascinating phenomena in strongly interacting con-
densed matter including the metal-insulator transition in dis-
ordered systems,3 the destruction of antiferromagnetism with
doping in high-temperature superconductor parent
compounds,4 the magnetic-field-driven superconducting-
insulator transition in disordered superconductors,5 and
quantum Hall plateau transitions.6 Study of most of these
QPTs is hindered by the need to fabricate controlled series of
samples at different stoichiometries and/or disorder levels.

By contrast, it is increasingly apparent that systems of
quantum dots offer possibilities for exploring QPTs �strictly,
boundary QPTs involving only a subset of the system de-
grees of freedom� within a single sample. Advances in sys-
tem fabrication, precise characterization, and the near sup-
pression of dissipative and incoherent environments7 have
enabled beautiful experiments on multidot devices.8 This
leap forward in experimental capability has also spurred
much theoretical activity including several predictions of
QPTs in quantum dots in the Kondo regime.9 The feasibility
of realizing nontrivial many-body states has been confirmed
by the recent experimental demonstrations of a two-channel
Kondo regime10 and of a singlet-triplet QPT.11

This Brief Report predicts robust signatures of QPTs in
the finite-temperature conductance through a double-
quantum-dot �DQD� system. A smaller dot �“dot 1”� exhibits
Kondo physics, while a larger dot �“dot 2”� is effectively
noninteracting and lies near a transmission resonance. When
the dots are connected in parallel to external leads, and the
system is fine tuned via applied voltages that determine tun-
neling barriers and the energies of individual dot orbitals, a
pseudogap in the low-energy effective hybridization between
dot 1 and the leads gives rise to a pair of continuous QPTs
between Kondo-screened and non-Kondo ground states.12

We describe how the system can be steered into the vicinity
of a QPT by monitoring the linear conductance while chang-
ing just two gate voltages.

Experimental detection of QPTs necessarily relies on
finite-temperature manifestations of the underlying T=0
transition. We show that the signatures of quantum criticality
in the present DQD system become more pronounced as the
temperature is increased from absolute zero—a trend that
contrasts with the typical behavior near an impurity QPT.2

Their temperature dependence also allows these signatures to
be distinguished from other conductance features in the same
system.

II. MODEL AND CONDUCTANCE CALCULATION

Consider a DQD device in which dot 1 is in an odd-
electron-number Coulomb blockade valley and dot 2 has a
single level near the Fermi level and is effectively
noninteracting.13 The dots are coupled to left �L� and right
�R� metallic leads and to each other via tunneling barriers.
This device is described by a two-impurity Anderson Hamil-
tonian,

H = �
i,�

�ini� + U1n1↑n1↓ + �
�

��a1�
† a2� + H.c.�

+ �
�,k,�

��kc�k�
† c�k� + �

i,�,k,�
�Vi�ai�

† c�k� + H.c.� , �1�

where ai�
† creates a spin-� electron in dot i �i=1,2�, ni�

=ai�
† ai�, and c�k�

† creates a spin-� electron of wave vector k
and energy ��k in lead � ��=L ,R�. We assume for simplicity
that each lead has a density of states, ����=�0��D− ����,
symmetric about the Fermi energy ��=0� and that dot-lead
couplings are local. We further assume that all couplings are
real and the device is tuned to left-right symmetry so that we
can write Vi�=Vi /�2.

The linear conductance at temperature T for this DQD
setup can be obtained from the Landauer formula as

g�T� = g0�
−�

�

d��− � f/����− Im T���� , �2�
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T��� = 2	�0�
i,j

ViL
� Gij���VjR, �3�

where g0=2e2 /h, f�� /T�= �exp�� /T�+1�−1 is the Fermi-
Dirac function, and all Gij��� in Eq. �3� are dressed Green’s
functions, fully taking into account the electron-electron in-
teractions on dot 1.

The standard equations of motion �		A ;B

�− 	�A ,B�

= 		�A ,H� ;B

�=−		A ; �B ,H�

� for the retarded Green’s
function 		A ;B

�=−i0

�dtei�t	�A�t� ,B�0��
 allow one to re-
express Gij���= 		ai� ;aj�

† 

� in terms of G11 and the bare
Green’s function G22

�0�, which describes the noninteracting dot
2 in the absence of dot 1. In the wide-band limit ���
D,13

Eq. �3� becomes

T��� = �1G11��� + 2�12�G22
�0������ − i�12�G11����

+ �2�1 + G22
�0������ − i�12�2G11����G22

�0���� , �4�

where �i=	�0Vi
2, �12=	�0V1V2, and G22

�0����= ��−�2
+ i�2�−1.

The dot-1 local Green’s function G11��� entering Eq. �4�
can be obtained12 by mapping the Hamiltonian �1� to an ef-
fective model of a single dot connected to the leads via a
nonconstant hybridization function,

���� = 	�2����� + �� − �2���1/�2�2, �5�

with �2���=�2 / �	���−�2�2+�2
2��. We solve this effective

model using the numerical renormalization group.14 At
T�0, we compute the spectral function A11���
=−	−1 Im G11���, and hence, we obtain G11� ���
=Re G11��� via a Kramers-Kronig transformation. At T=0,
where Eq. �2� involves only G11�0�, it is possible to calculate
G11� �0� directly. All results shown are for U1=0.5D and �2
=0.02D with temperatures in units of TK0=7.0�10−4D �the
Kondo temperature in the reference case where dot 2 is de-
coupled ��=�2=0� and U1=−2�1=0.5D and �1=0.05D�.

To facilitate interpretation of the results, we note that
−Im T��� entering Eq. �2� can be expressed as

− Im T��� = �1 − 2	�2�2����	����A11��� + 	�2�2���

+ 2	�� − �2������2���G11� ��� . �6�

The term 	�2�2��� represents bare transmission through dot
2 in the absence of dot 1, and for T
�2 it yields a conduc-
tance contribution g2�g0�2

2 / ��2
2+�2

2�. In most cases of in-
terest, the term involving G11� turns out to be negligible. If, as
we assume, the dot-1 level is off resonance �i.e., ��1�T,
�1�, then dot 1 appreciably influences g only in the Kondo
regime T�TK where A11��� exhibits a many-body resonance
at the Fermi level; the sign of the resulting conductance term
g1 depends on that of 1−2	�2�2��� in the range ���
�O�T� that determines g�T�. For ��2��2 ���2�
�2�, g1 is
positive �negative� at low temperatures, leading to construc-
tive �destructive� interference with g2.

III. TUNING TO THE PSEUDOGAP REGIME

When the level energy in dot 2 is set to �2=���2 /�1, the
dot-1 effective hybridization �Eq. �5�� vanishes at the Fermi

level as ������2. The pseudogap Anderson impurity
model, in which ����� ���r for ���→0, exhibits Kondo and
non-Kondo ground states separated by QPTs. Whereas pre-
vious theoretical work15 has focused on exponents 0�r�1,
the proposed DQD setup offers a controlled realization of the
case r=2, which features a pair of QPTs. For simplicity, we
focus in the remainder of this Brief Report on configurations
in which the dots are connected to the leads purely in paral-
lel, i.e., �=0 �see inset of Fig. 1�b��. Then Eq. �5� reduces to
����=�1��−�2�2 / ���−�2�2+�2

2�.
In order to probe the QPTs, the pseudogap in ���� must

be centered on the Fermi energy. Operationally, this can be
accomplished by tuning �2 �via a plunger gate voltage on dot
2� to reach a maximum of g. Figure 1�a� illustrates g vs �2 at
six temperatures for fixed �1=−U1 /2 and �1=0.05D. For �
=0, ��0�=0 when dot 2 is exactly in resonance with the
leads: �2=0. The choice of �1=−U1 /2 makes �2=0 a point
of particle-hole �p-h� symmetry and ensures that for ��2�

�2 and T
TK, 	��0�A11�0��1;16 then, since 	�2�2�0�
�1, g1 almost completely cancels g2. Figure 1�b� shows that
the temperature range 0�T�TK��2� of the low-conductance
regime shrinks rapidly as �2→0. For the special case �2=0,
the pseudogap in ���� prevents the formation of a Kondo
state �effectively, TK=0�, and transport takes place solely
through dot 2. At T=0, the resulting conductance exhibits a
discrete jump from g=0 for ��2�→0 to g=g0 for �2=0
�dashed line in Fig. 1�a��. However, this spike broadens at
T�0 into a smooth peak rising to g��2=0��g0.

For a general �1�−U1 /2, transmission through dot 1 is
still blocked when ��0�=0. This leads to an asymmetric
peak in g��2� at g�0��g0—a feature that again broadens
with increasing T,17 offering a practical method for tuning
the pseudogap to the Fermi level.

IV. TUNING TO A QPT

With �2 held at zero, the level energy �1 can be varied via
a plunger gate voltage on dot 1. A pair of QPTs, related by

FIG. 1. �Color online� �a� Conductance g vs �2 at six tempera-
tures for a parallel DQD device �inset of �b�� with �1=−U1 /2 and
�1=0.05D. �b� Transmission through dot 1 sets in below the Kondo
temperature TK �defined as in Ref. 12�, which vanishes as �2→0.
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p-h duality and located at �1=�1c
� =−U1 /2� ���1c�, bound a

local-moment �LM� regime �1c
− ��1��1c

+ in which the net
spin on dot 1 is unscreened at T=0. Close to either QPT,
A11��� contains a quasiparticle peak centered at �=��,
where ����1−�1c

� �Fig. 2�a��. The peak sets in below a
crossover temperature �����, which on the Kondo side is
proportional to TK. This feature in A11��� leads, via Eqs. �2�
and �6�, to a conductance contribution g1�0 that is greatest
in magnitude when �����4T. Since the dot-2 contribution
g2�g0 is independent of �1, g vs �1 isotherms �e.g., see Fig.
2�b�� show a dip at ��1−�1c

� ��T on either side of a maximum
at �1=�1c

� .
It is striking that at T=0, the conductance shows no fea-

ture as dot 1 passes through a QPT. At finite temperatures, by
contrast, the DQD device can be tuned to the transition by
seeking a local maximum in g vs �1. This maximum has the
identifying characteristics �Fig. 2�b�� that the minima on ei-
ther side are equidistant in �1 from �1c

� , but the dip in g is
roughly twice as deep on the Kondo side, reflecting the
greater weight of the quasiparticle peak in that regime. For
the parameters shown in Fig. 2�b�, the conductance peak be-
comes more prominent with increasing temperature up to T
�3TK0, and a peak in g remains discernible up to the rela-
tively high scale T�6TK0.

The form of g vs T at fixed �1 is more complicated since
g1 and g2 can have temperature variations of comparable
magnitude. Figure 2�c� shows that in the Kondo regime, the
peak in �g1�T�� contributes a shoulder around T= ���� to the
overall downward trend dictated by g2�T�. Similar behavior
holds in the LM regime �not shown�.

V. UNIQUENESS OF QPT SIGNATURES

Conductance peaks similar to those shown in Fig. 2�b�
can also arise not from proximity to a QPT but rather from

interference between a conventional �metallic or r=0� many-
body Kondo resonance on dot 1 and a noninteracting reso-
nance on dot 2. In experiments, the mapping between the
gate voltages in a real device and parameters of the effective
Anderson model will not be known a priori. It is therefore
important to be able to identify unique signatures of a QPT
in this system. We show below that the temperature depen-
dence of the conductance peaks serves this purpose.

For simplicity, we consider the “side-dot” regime18 �1
=0 in which dot 1 is connected to the leads only via the
noninteracting dot 2. In this geometry �inset of Fig. 3�a��, the
effective dot-1 hybridization function ����=	�2�2��� �from
Eq. �5�� is a Lorentzian of width �2 centered at �=�2. Since
���� has no pseudogap, there is no QPT.

Figure 3 plots the variation of the conductance with the
position �1 of the energy level in the side dot 1 while dot 2 is
held in resonance, i.e., �2=0. At T=0, and for all values of
the dot-dot coupling �, the conductance drops to zero as �1
approaches the p-h-symmetric point �1=−U /2. This can be
understood by noting that for �1=0 and T=0, Eqs. �2� and
�3� reduce to

g�T = 0� = − g0�2�G22�0��sin �22, �7�

where �ii=arg Gii�0� is the Fermi-energy phase shift of elec-
trons scattering from dot i. Figure 3�b� shows that in a win-
dow about the p-h-symmetric point, the dot-1 phase shift
exhibits a plateau �11�−	 /2 characteristic of the Kondo
state.19 This additional phase shift of electrons that scatter
from the side dot on their path between the two leads renor-
malizes the bare dot-2 phase shift �22

�0�=−	 /2 to produce an
�22 that jumps from −	 to 0 at the p-h point. On moving
away from �1=−U1 /2, dot 1 gradually enters its mixed-
valence regime, where there is no Kondo resonance and the
T=0 conductance rises toward its unitary limit g=g0. With
increasing �, the Kondo state in dot 1 becomes more robust
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FIG. 2. �Color online� Behavior near the �1c
+ transition in a par-

allel DQD device with �1=0.05D and �2=0. �a� Curves 1–6 show
the dot-1 spectral function A11��� for the values of ��1=�1−�1c

+

indicated by the corresponding arrows in �b�. The frequency �� of
the quasiparticle peak in A11��� is proportional to ��1. �b� Conduc-
tance g vs ��1 at six temperatures. �c� g vs T /�� at three values of
��1 on the Kondo side of the transition.

FIG. 3. �Color online� �a� Conductance g vs �1 for a side-dot
device �inset� with �2=0 both for T=0 at various � values and for
�=0.03D at the labeled temperatures. �b� Phase shifts �11 �filled
circles� and �22 �open circles� for �=0.03D and T=0; g vanishes
when sin �22=0 �Eq. �7��.
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�as evidenced12 by its larger TK�, pushing this upturn in g to
larger values of ��1+U1 /2�.

Raising the temperature progressively destroys the Kondo
resonance and thereby increases the conductance. For fixed
T�0, g vs �1 reaches a peak at �1=−U1 /2, where TK is
smallest and Kondo scattering is weakest. Figure 3�a� illus-
trates this behavior at three temperatures for �2=0 and �
=0.03D. The double-dip structure surrounding the peak in g
vs �1 is qualitatively similar to the QPT feature in Fig. 2�b�.
However, the temperature variation is very different in the
two cases. In Fig. 2�b�, the decrease with increasing T of the
conductance both at the peak and at the minima on either
side is a characteristic of the QPT. By contrast, conductance
peaks arising for ��0��0 exhibit an increase with T of the
extremal g values as seen in Fig. 3�a�.

VI. CONCLUSION

To conclude, we have studied the linear conductance
through a class of quantum-dot devices that can be described

by a single Anderson impurity coupled to a conduction band
via a nonconstant hybridization function. Such devices can
be tuned to a quantum phase transition marked by a near-
unitary peak in the linear conductance that becomes more
pronounced with increasing temperatures. The details of its
evolution with temperature differentiate this conductance
signature from similar features arising from interference ef-
fects unrelated to quantum criticality. Our results demon-
strate that these quantum-dot devices offer many advantages
for the controlled experimental investigation of a rich array
of many-body physics.
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