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Coulomb charging energy of vacancy-induced states in graphene
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Vacancies in graphene have been proposed to give rise to π -like magnetism in carbon materials, a conjecture
which has been supported by recent experimental evidence. A key element in this “vacancy magnetism” is the
formation of magnetic moments in vacancy-induced electronic states. In this work we compute the charging
energy U of a single-vacancy-generated localized state for bulk graphene and graphene ribbons. We use a
tight-binding model to calculate the dependency of the charging energy U on the amplitudes of the localized
wave function on the graphene lattice sites. We show that for bulk graphene U scales with the system size L

as (ln L)−2, confirming the predictions in the literature, based on heuristic arguments. In contrast, we find that
for realistic system sizes U is of the order of eV, a value that is orders of magnitude higher than the previously
reported estimates. Finally, when edges are considered, we show that U is very sensitive to the vacancy position
with respect to the graphene flake boundaries. In the case of armchair nanoribbons, we find a strong enhancement
of U in certain vacancy positions as compared to the value for vacancies in bulk graphene.
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I. INTRODUCTION

Lattice defects have long been considered as an undesired
presence in micro- and nanostructured devices. In many cases,
they were deliberately avoided in the manufacturing processes
since they modify the electronic and structural properties and
are detrimental to electronic transport. More recently, this
scenario has been changing as it has been shown that defects
themselves can give rise to interesting physical phenomena in
many condensed matter systems.

Graphene is one of the main platforms that is contributing
to the growing interest in defective nanostructures. In addition
to the remarkable and already thoroughly explored properties
of clean graphene flakes [1–3], experiments in graphene
with vacancies reveal a new route to extend the plethora
of fascinating aspects of this material [4–14]. Some of the
important discoveries pointed out by experiments in graphene
with vacancies include the onset of magnetic behavior in a
p-block system [6–8,14,15], signatures of the Kondo effect
in the transport properties [5,16,17], and the recently reported
atomic charge collapse [12].

Theory predicts that a vacancy originates a midgap state
pinned at E = 0 and localized around the “vacancy site.”
[18–20]. This result is not exclusive to graphene and gen-
eralizes to all classes of systems that can be represented by a
bipartite-like Hamiltonian with nearest-neighbor interactions
only [21–23]. For such systems, a counting rule states that
whenever an imbalance NI = |NA − NB | �= 0 between the
number of constituents of the sublattices A and B exists, at
least NI states pinned at zero energy rise [19,21,24].

The picture described above relies on a simple model for
the vacancy considering graphene π -band electrons only. This
“π -like” magnetism in graphene with vacancies has been
reported experimentally recently [7,14], although its relevance
for the vacancy-induced magnetism is a matter of a long
debate in the DFT community [25–30]. As we show next,
our results reinforce the arguments in favor of the relevance of
π -like magnetism in graphene with vacancies. Moreover, our
arguments should be also valid for H adatoms, which can be
described by an on-site scalar potential model [15,31].

A crucial aspect of the vacancy state and that is key for the
understanding of the onset of magnetism, Kondo effect, and
atomic collapse within this model is the charging energy of
the vacancy state U . This parameter, also referred to as the
“Hubbard U,” encodes the local electron-electron Coulomb
interaction of the vacancy state. As such, it leads to the
spin splitting of the vacancy midgap state which is essential
for the onset of magnetic behavior [32]. In addition, the
interplay between U and the hopping between the midgap
state into the band states sets the condition for the onset of the
Kondo effect [16,17,33]. Moreover, it has been argued that the
strength of U controls the vacancy charge and thus the critical
coupling that determines the appearance of the atomic collapse
[12,34].

The central focus of this work is the determination of the
charging energy U of vacancies in graphene. We address this
issue for bulk graphene as well as for graphene with edges.
Previous analytical results on the wave function of a vacancy
in bulk graphene [18,19,27] and graphene with edges [35,36]
are extremely relevant for the results we present.

We recall that, for a single vacancy in bulk graphene,
the vacancy wave function decays as ∼1/R with R being
the distance from the vacancy site [18,19,27]. This unusual
behavior produces a non-normalizable wave function and
hence the state is said to be quasilocalized with the degree
of localization of the system decaying as the system enlarges.
This feature has led some authors to claim this would make U

negligible for real samples [25,37].
It is well known that the presence of edges strongly modifies

the electronic properties of graphene [38–44]. When edges
are introduced, important changes occur also on the vacancy
state [35–37,45–48]. Analytical accounts on the influence of
edges in the vacancy-generated state in graphene have been
recently put forward in Refs. [35,36]. In these works, Deng and
Wakabayashi studied the influence of edges on the vacancy
localized state of a semi-infinite sheet [35] and graphene
nanoribbons [36]. Interestingly, for the semi-infinite systems
in the presence of an armchair edge, the vacancy state decays
as 1/R2 and is thus normalizable [35].
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When a zigzag edge is considered, the influence on the
vacancy state depends on which sublattice the vacancy is
created. Deng and Wakabayashi [35] find that if the vacancy
and the edge sites belong to different sublattices, the vacancy
causes no effect on the system zero-energy states. In contrast,
when both edge and vacancy belong to the same sublattice,
the vacancy yields a strongly distorted, non-normalizable
zero-mode wave function around the vacancy site [35]. The
case of vacancies in graphene nanoribbons was studied by the
same authors in Ref. [36]. They claim that a single vacancy
has no effect on the zero-energy states of zigzag-terminated
edge ribbons, quantum dots, and armchair-terminated metallic
ribbons. However, for armchair-terminated semiconductor
ribbons, the vacancy generates a square-normalizable wave
function pinned at E = 0.

Although the main focus of the present paper is the analysis
of the charging energy of the vacancy-generated state in
bulk graphene and graphene with edges, we also perform a
systematic study of the vacancy-generated wave functions for
graphene with edges. We combine analytical and numerical
techniques to study how the properties of the vacancy state and
its respective U is altered for different system sizes, edges, and
vacancy-edge-site distances.

One of the most important results of this work is the
derivation of an analytical expression for the computation of U .
This result reveals that in addition to the intersite contribution
to the Coulomb charging at the vacancy, there is also a sizable
intrasite contribution which has been so far overlooked. We
note that, for bulk graphene, Ref. [33] finds that the 1/R decay
of the midgap state leads to U ∼ (2π ln L)−2, with L being
the linear system size. Based on this scaling behavior, the
authors estimate U ∼ 1 meV for typical micron flake sizes.
Here we confirm the U scaling predicted in Ref. [33]; however
our U estimates are orders of magnitude larger than their
predictions and in line with RPA/Hubbard model calculations
[37,49].

Very recently, scanning tunneling spectroscopy (STS)
experiments [14] in graphene deposited on a Rh foil report
the appearance of spin-split states near vacancy sites, which
is consistent with the presence of strong on-site interactions.
The STS data show splittings of about 20–60 meV, which can,
in principle, be directly compared to the effective U in their
system (which depends on the effective dielectric constant at
the vacancy site).

For graphene ribbons, U calculations have been performed
for the case of armchair ribbons in Ref. [37]. The authors
find that U is related to the inverse participation ratio (IPR)
of the vacancy state, in agreement with the results we present
below. However, their prediction that U vanishes for increasing
ribbon widths [37] is not supported by our study. In this paper,
we also perform a systematic study of the IPR and U of the
vacancy states for different ribbon widths and edge-vacancy-
site distances, a study lacking in the literature to the best of
our knowledge. Our results point out that for some vacancy-
edge-site distances, U decreases with increasing ribbon widths
and approaches the bulk estimates, however remaining close
to ∼1 eV even for real sample sizes, contrary to the vanishing
U predicted elsewhere [25,33]. We also find that there are
some vacancy-edge-site distance configurations for which a
directionality effect of the vacancy wave function makes the

IPR and U system-size independent, being a truly localized
state. This is the second main contribution of our work.

The paper is structured as follows. In Sec. II, we present
the tight-binding formalism used to obtain the vacancy wave
functions and to derive the analytical expression of U . In
Sec. III, we use the results of the previous section to obtain U

estimates in bulk graphene for varying system sizes. In Sec. IV,
we make a thorough study of the vacancy state in graphene
armchair ribbons for different configurations. We calculate the
IPR of the midgap states to quantitatively evaluate the degree
of localization of such states. We finish the section addressing
the issue of vacancies in the presence of zigzag and quantum
dots with both zigzag and armchair edges and show that our
main findings for the armchair edges seems to remain robust to
the additional presence of zigzag edges. In Sec. V we evaluate
U for armchair ribbons and show that U mimics the IPR
behavior. Also, we show that our results hold irrespective of
whether the ribbons are semiconducting or metallic. Finally,
we present our concluding remarks in Sec. VI.

II. VACANCY-INDUCED MIDGAP STATES: WAVE
FUNCTION AND CHARGING ENERGY

In this section, we present a single-orbital tight-binding
model description of the midgap states due to a single
vacancy in graphene monolayer systems. We then derive
analytical expressions for the Coulomb charging energy for
these localized states. For notation compactness, we consider
the charging energy U in vacuum. If the graphene layer is
in contact with another medium, the calculated U should be
divided by the corresponding dielectric constant ε.

We describe the single-particle spectrum and the wave
functions using the model Hamiltonian given by

H = H0 + V, (1)

where V accounts for a single monovacancy and H0 is the
pristine graphene tight-binding Hamiltonian [1], namely

H0 = −t
∑
〈i,j〉

(|i〉〈j | + H.c.), (2)

where t ≈ 2.8 eV is the nearest-neighbor hopping integral, |i〉
corresponds to a pz orbital placed at the ith site of the graphene
honeycomb lattice with interatomic separation a = 1.41 Å,
and 〈· · · 〉 restricts the sums to nearest-neighbor sites.

There are several equivalent ways to account for the vacancy
[16,35]. For analytical calculations it is convenient to model a
monovacancy placed at the site v by an on-site potential term,
namely,

V = V0|v〉〈v|, (3)

and take the limit |V0/t | � 1. Alternatively, one can also use

V ′ = t
∑
〈v,j〉

(|v〉〈j | + H.c.), (4)

which corresponds to turning off the hopping terms that
connect the vacancy site v to its nearest neighbors. From the
numerical point of view both models, V and V ′, give the
same results for the low-energy single-particle properties of
the system [19]. (This statement is also corroborated by the
good agreement between our results and those of Ref. [36].)

075114-2



COULOMB CHARGING ENERGY OF VACANCY-INDUCED . . . PHYSICAL REVIEW B 94, 075114 (2016)

The single-particle electronic properties of a system with an
impurity can be analytically obtained from a T -matrix analysis
[50–52]. The T matrix for a Hamiltonian of the form H =
H0 + V reads T = V (1 − V G0)−1, where G0 = (E + iη −
H0)−1 is the Green’s function of the pristine graphene system.
For |V0/t | � 1, the T matrix reduces to [50]

T (E) = − |v〉〈v|
〈v|G0(E)|v〉 . (5)

In general, the system wave functions are obtained from
the Lippmann-Schwinger equation, |ψ〉 = (1 + G0T )|ψ (0)〉,
namely

ψE(i) = ψ
(0)
E (i) − 〈i|G0(E)|v〉

〈v|G0(E)|v〉 ψ
(0)
E (v), (6)

where ψ
(0)
E (i) = 〈i|ψ (0)

E 〉 is the unperturbed wave function
amplitude at the site i, solution of H0|ψ (0)

E 〉 = E|ψ (0)
E 〉. The

knowledge of 〈i|G0(E)|j 〉 allows one to analytically calculate
ψE(i).

Of particular interest is the vacancy-induced midgap state
|ψ0〉 at E = 0. However, for these states, a careful study of
the T (E → 0) behavior should be taken into account since,
depending on the particular geometry under interest, T (E →
0) diverges and the strategy outlined above to obtain the wave
functions is not always straightforward [35,36]. In addition,
it has been found that if the system has a finite gap, as in a
armchair semiconducting ribbon, the vacancy-induced midgap
state becomes a truly bound state and the wave function is
no longer given by the expression above (see, for instance,
Refs. [35,36] for a thorough discussion of this case).

We also analyze the midgap state problem numerically. The
vacancy breaks down the lattice translational invariance. For
bulk systems, we find it convenient to introduce a supercell
of dimension Ntot = N × M sites with periodic boundary
conditions at its edges (the description of the unit cell for
graphene nanoribbons is presented in Sec. IV). Figure 1 shows
the superlattice geometry: the atomic lattice sites i are denoted
by the labels (m,n,S) [35,36], where n identifies the zigzag
chain (with respect to the vacancy site) to which the site i

belongs and m is the position of the ith site within the chain,
while S = A or B is the sublattice index.

The single-orbital graphene tight-binding Bloch basis is
given by [53]

χkj (r) = 1√
Nsc

∑
R′

eik·R′
φ(r − tj − R′), (7)

where the sum runs over all Nsc supercells centered at R′, tj

gives the position of the j th carbon atom in the supercell, and
φ(r) is the pz orbital atomic wave function.

We take the limit of Ntot = N × M � 1. Due to band
folding, the � point gives a good representation of the first
Brillouin zone of the supercell [54,55]. For this reason, we
restrict our calculation to k = 0 and drop the k label from now
on. The crystal electronic single-particle eigenstates are the
solutions of H	ν(r) = Eν	ν(r) and read

	ν(r) =
∑

i

ψν(i) χi(r), (8)
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FIG. 1. Schematics of the supercell used in this work. The
supercell is defined by M/2 “vertical” armchair chains and N

“horizontal” zigzag ones. m is the discrete horizontal position with
respect to the edge and n labels the horizontal zigzag chains starting
from the one containing the vacancy, indicated by the cross.

where ψν(i) is the νth tight-binding wave function amplitude
at the ith site and χi ≡ χk=0,i . The midgap vacancy-induced
state corresponds to ν = 0. For later convenience, we introduce
the envelope wave functions

ψν(r i) ≡ 1√
A

ψν(i), (9)

where A is the supercell area. This approach allows us to
calculate ψ0(r i) by direct diagonalization.

Let us now analyze the charging energy U corresponding
to the Coulomb energy associated with a double occupation of
the midgap state |ψ0〉. It is rather tempting to use the envelope
wave function ψ0(r) to evaluate U , namely [33]

U = e2
∫

d2r

∫
d2r ′ |ψ0(r)|2|ψ0(r ′)|2

|r − r ′| . (10)

As shown below, this is the main contribution to the charging
energy U due to the π orbitals. However we find another
important contribution, which has been neglected so far.

The Coulomb energy associated with the double occupation
of the vacancy-induced midgap state reads

U = e2
∫

d3r

∫
d3r ′ |	0(r)|2|	0(r ′)|2

|r − r ′| , (11)

where 	0(r) is the three-dimensional wave function of the
midgap state given by Eq. (8). U can then be expressed in
terms of the tight-binding amplitudes as

U =
∑

i,j,i ′,j ′
ψ∗

0 (i)ψ0(j )ψ∗
0 (i ′)ψ0(j ′) Wij,i ′j ′ , (12)
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where the sums run over all Ntot atomic sites of the supercell
and

Wij,i ′j ′ = e2
∫

d3r

∫
d3r ′ φ∗(r − t i)φ(r − tj )

× 1

|r − r ′|φ
∗(r ′ − t i ′)φ(r ′ − tj ′ ). (13)

Equation (12) does not include contributions from atomic
orbitals located at different supercells, namely, R �= R′. Since
the Coulomb integral decreases rapidly as the orbital centers
are separated, one only expects significant inter-supercell
contributions from orbitals located at the edges of neighboring
supercells. Those correspond roughly to a fraction 1/

√
Ntot of

the supercell sites and can be safely ignored in the limit of
Ntot � 1.

There is an extensive literature on the Coulomb integral
Wij,i ′j ′ in the context of generalizing the tight-binding ideas
to obtain an atomistic total-energy method (see, for instance,
Refs. [56–59] and references therein). The leading matrix
elements [60] Wij,i ′j ′ correspond to an intra-atomic (on-site)
Coulomb repulsion matrix elements, where all orbitals belong
to the same atom, and to inter-atomic (nonlocal) terms, where
i = j is in one atom and i ′ = j ′ on another.

Accordingly, we decompose U as

U = U1 + U2, (14)

where U1 consists of intra-atomic Coulomb repulsion terms,
while U2 contains the inter-atomic ones.

Let us first consider U1, namely

U1 = e2
∫

d3r

∫
d3r ′ |φ(r)|2|φ(r ′)|2

|r − r ′|
∑

i

|ψ0(i)|4, (15)

where the Coulomb integral

Uorbital = e2
∫

d3r

∫
d3r ′ |φ(r)|2|φ(r ′)|2

|r − r ′| (16)

can be evaluated, for instance, by an expansion of |r − r ′|−1

in spherical harmonics. Equation (16) represents the Hartree
contribution to U . In the literature Uorbital was estimated to be
∼17 eV for freestanding graphene [60,61] and, if screening
effects from electrons of bands other than the π are taken into
account, Uorbital reduces to ∼8.5 eV [61]. Hence

U1 = Uorbital

∑
i

|ψ0(i)|4. (17)

Let us now address U2, which is more conveniently expressed
by changing the integration variables as r → r − t i and r ′ →
r ′ − tj , namely

U2 = e2
∑
i �=j

|ψ0(i)ψ0(j )|2
∫

d3r

∫
d3r ′ |φ(r)|2|φ(r ′)|2

|r − r ′ + t i − tj | .

(18)

We write

U2 = e2
∑
i �=j

|ψ0(i)ψ0(j )|2
|t i − tj |

×
∫

d3r

∫
d3r ′ |φ(r)|2|φ(r ′)|2√

1 + |δr|2
|t i−tj |2 + 2δr·(t i−tj )

|t i−tj |2
, (19)

where δr = r − r ′. The orbital wave function amplitudes
φ(r) decay quickly for r/a � 1 and more so the overlaps
of the wave functions evaluated at distances |r − r ′|/a � 1.
These observations suggest that U2 can be approximated by
the lowest order Taylor expansion in powers of |δr|/|δ t| of
the square root at the right-hand side of Eq. (19). This can be
checked quantitatively by comparing with the exact values of
the integral in Eq. (18) [60]. We find that our approximation
overestimates U2 by about ≈10%, giving us confidence in the
procedure [62]. Hence,

U2 ≈ e2
∑
i �=j

|ψ0(i)|2|ψ0(j )|2
|t i − tj |

∫
d3r

∫
d3r ′ |φ(r)|2|φ(r ′)|2

≈ e2
∑
i �=j

|ψ0(i)|2|ψ0(j )|2
|t i − tj | , (20)

since the orbitals are normalized. In the continuum limit, the
sums in Eq. (20) can be changed to integrals and the site
amplitudes can be replaced by an envelope wave function
ψ0(r), leading to

U2 ≈ e2
∫

d2r

∫
d2r ′ |ψ0(r)|2|ψ0(r ′)|2

|r − r ′| . (21)

Many-body corrections to intra- and inter-atomic Coulomb
repulsion terms of Eq. (13) have been calculated in Ref. [61].
The latter uses Wannier-like orbitals projected in the pz bands.
This offers the advantage of separating the pz contribution
to the charge screening thereby accounting for the effective
partial two-dimensional screening expected for the electrons
in graphene.

In summary, the general expression for the Coulomb
repulsion term U is given in terms of a three-dimensional
integral given by Eq. (11). We show how the latter can be cast
into a two-dimensional form proposed in the literature [33].
We also find an additional significant contribution to U that is
proportional to Uorbital, given by Eq. (17).

III. U OF VACANCY-INDUCED LOCALIZED STATES IN
BULK GRAPHENE

In this section, we study the dependence of U with the
system size. In order to reach our goal, we recall that the wave
function ψ0(r) of a localized state due to a single vacancy in a
clean bulk graphene monolayer reads [27]

ψ0(r) = N
r

sin
[
(K − K ′) · r

2
− θr

]
× cos

[
(K + K ′) · r

2
− π

3

]
, (22)
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where r = (x,y) is a coordinate vector with origin at
the vacancy site, N is the normalization constant, K =
2π/(3

√
3a)(−1,

√
3) and K ′ = 2π/(3

√
3a)(1,

√
3) denote the

two inequivalent Dirac points in the first Brillouin zone,
and θr = arctan(x/y). Here, we consider finite systems with
Ntot = L × L sites. Having an analytical expression for ψ0(r)
is key for the study of systems with L � 102 (or larger than
104 sites), since the computation time for exact diagonalization
scales with L6.

Pereira and collaborators [19] showed that for bulk
graphene

∑
i

|ψ0(i)|4 ∝ 1

(ln L)2
, (23)

and thus

U1 ∝ Uorbital

(ln L)2
. (24)

Similarly, a rough estimate of U2 can be obtained [33] by
using the approximation ψ0(r) ≈ N /r . By normalizing the
envelope wave function, the charging energy given by Eq. (21)
reads U2 ∝ e2/ε(ln L)−2.

We use ψ0(r) given by Eq. (22) to estimate the charging
energy U of the vacancy-induced state as a function of L. We
insert the lattice wave function amplitudes ψ0(i) = √

Aψ0(ri)
in Eqs. (17) and (20) to numerically obtain U1 and U2,
respectively. To account for the effect of the substrate, we
use ε = 4, which is consistent with the value measured for
graphene deposited on SiO2 [63].

Figure 2 gives U1,U2, and Uapprox = U1 + U2 as a function
of L. We find that the dependence of the charging energy
(in eV) with system size is accurately fitted by Uapprox =
0.32 + 82(ln L)−2. Figure 2 shows that the U2 estimates are
almost an order of magnitude larger than those of U1.

The extrapolation of our results to graphene sheets with
areas of about 1 μm2 (corresponding to L ≈ 107 or 1014 sites)
gives U ≈ 0.64 eV. This value is two orders of magnitude
larger than the value predicted in Ref. [33], but consistent with
the impurity splitting predicted for an impurity state due to
a vacancy derived from the mean-field Hubbard model [37]
as well as from DFT calculations for small lattice sizes [64].
Therefore, our results show that the π -like magnetism is not

U
 (e

V
)

U1 + U2  

U2

U1

0.02 0.025 0.03 0.035 0.04 0.0450.020 0.025 0.030 0.035 0.040 0.045

Uoff + Ud

Uoff
Udiag

U1 +U2 
U2
U1

(lnL)−2

1.0

0.0

4.0

3.0

2.0

5.0

FIG. 2. Scaling of the diagonal and off-diagonal charging terms
U1 and U2 as a function of system size. Values are in eV.

negligible in model systems with realistic sample sizes, in line
with experimental evidence [7,14].

IV. GRAPHENE WITH EDGES

In this section we study the influence of the edges on
the vacancy-induced states. More specifically, we present
a systematic study of the degree of localization and the
charging energy U of the vacancy-induced states in armchair
nanoribbons. We also provide a comparative analysis with
the cases of vacancies in zigzag nanoribbons and quantum
dots. The main observation is that both localization and U are
strongly dependent on the vacancy-edge distance.

A. Midgap state wave function in the presence of armchair
edges

We follow two alternative approaches to study the char-
acteristics of the vacancy-induced state: one that considers
the analytical expression for the vacancy state derived in
Ref. [36] and a numerical one which is based on the numerical
diagonalization of the tight-binding Hamiltonian described in
Sec. II with armchair boundary conditions.

Let us consider, without loss of generality, a vacancy created
at sublattice A. The wave function of |ψ0〉 resides solely on
sublattice B. In the notation presented in Sec. II, the expression
for ψ0(m,n,S) presented in Ref. [36] is written as

ψ0(m,n,S) = −
∑

r

Ir (n)

[
cos

(
2πr[xB(m,n) − x0(m0,0)]

M + 1

)

− cos

(
2πr[xB(m,n) + x0(m0,0)]

M + 1

)]
δS,B

M + 1
.

(25)

We recall that m and n label a given site i and the subindex
0 stands for the vacancy site (see Fig. 1). Here, armchair
edges correspond to sites with m = 1,2 and m = M − 1,M

in Fig. 1. Following Ref. [36], n = 0 stands for the zigzag
row where the vacancy is positioned and the index increases
(decreases) as one moves to rows on top (bottom); see left axis
of Fig. 1. Finally, xB(m,n) = m/2 (top axis of Fig. 1) indicates
the transversal position on the B lattice site labeled by (m,n).

The function Ir (n) is given by [36]

Ir (n) = 2(−1)n
{


(

2π
3 − kr

)[
2 cos

(
kr

2

)]−(n+1)
, n � 0,


(
kr − 2π

3

)[
2 cos

(
kr

2

)](1−n)
, n < 0,

(26)

where the “wave number” kr obeys the quantization rule
dictated by M , the finite number of sites along the transversal
direction [36,38,39] (see lower panel in Fig. 1):

kr = 2π

M + 1
r, r = 1,2, . . . ,M/2, (27)

where r is the band index. For the case where mod(M + 1,3) �=
0 [36,38,39], the nanoribbon is semiconducting; otherwise
the system is metallic. In Sec. V, we use these analytical
expressions for the computation of the charging energy.

We also analyze the effects of vacancies in armchair
graphene nanoribbons by numerical diagonalization of the
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IPR 0.121

P0 = 0.121

(a)

(b)

P0 = 0.0149

FIG. 3. Wave function amplitudes for a vacancy at two different
sites (black dots) in a armchair ribbon: (a) vacancy two sites away
from the edge and (b) vacancy three sites away from the edge. Note
that the degree of localization drops by an order of magnitude by
displacing the vacancy by a single site.

tight-binding Hamiltonian H = H0 + V ′; see Eqs. (2) and
(4). As before, due to the lack of translational symmetry, we
consider supercell with a Ntot = M × N sites. We use periodic
boundary conditions at the zigzag chains characterized at
n = N/2 and n = −N/2 + 1 (see Fig. 1).

In Fig. 3 we show the vacancy-generated state obtained
from numerical diagonalization for two different vacancy-edge
distances. As in the bulk, the vacancy state is pinned at
zero energy [18,19,27] and is located solely in the sublattice
opposite to that of the vacancy. In Fig. 3, the black dot indicates
the vacancy site. The radii of the bubbles are proportional to

the amplitude of the wave functions and the blue (red) color
stands for positive (negative) sign of the wave function. Note
that the sites that carry the larger weights are those closer to
the vacancy site.

As expected, the vacancy originates a midgap bound state
pinned at zero energy [18,19,27]. We show in the next section
that this numerical approach provides results which are in very
good agreement with the analytical treatment discussed above.

B. Midgap state degree of localization versus vacancy-edge
distance

Although Ref. [37] presents an extensive study of the
behavior of vacancies created in semiconducting armchair
ribbons, one important aspect that has not been properly
explored so far is the dependency of the degree of localization
of the vacancy state when the position of vacancy site is
changed. Before addressing the calculation of the Coulomb
charging energy for the vacancy-localized state, we discuss
the nature of the localized wave functions as a function of the
vacancy-edge distance D.

We characterize the degree of localization of the wave
functions by the inverse participation ratio (IPR) which, for
a given state of energy Eν , reads

Pν =
∑

i

|ψν(i)|4. (28)

The IPR is contained in the interval (0,1] and the closer to
the upper (lower) limit, the higher (lower) is the degree of
localization of the wave function. Note that, for the vacancy
state, the P0 = U1/Uorbital. Hence the behavior of P0 mimics
the one followed by U1.

We find that the vacancy state is extremely sensitive to the
vacancy-edge distance as shown in Fig. 3 [65]. Figure 3(a)
shows the midgap state for a vacancy placed two sites away
from the edge (D = 2, in units of a

√
3/2). As the vacancy is

moved one site towards the ribbon center [D = 3, as shown
in Fig. 3(b)], the vacancy state changes dramatically, and
the wave function extends much more than in the previous
configuration. This behavior is qualitatively seen in Fig. 3
and quantified by the IPR. Notice that the IPRs of the two
configurations differ by an order of magnitude.

Our numerical calculations show a nonmonotonic decrease
of the P0 as a function of the vacancy-edge distance. For very
narrow ribbons, this effect is very subtle (see, for instance,
the behavior of the IPR for the ribbon with width M = 6 in
Fig. 4). For small M , the confinement due to a finite width
competes with the localization due to the vacancy. Figure 4
indicates that the IPR does not depend on M for some specific
sites, while for other sites the IPR decreases with increasing M .
The size-independent IPRs correspond to truly localized states
due to the vacancy, while the others behave as quasilocalized
states as those due to vacancies in bulk graphene [19,27]. This
interpretation plays a key role in our analysis and, to the best
of our knowledge, has been unnoticed so far [66].

The results of Fig. 3 are obtained from numerical diago-
nalization with M = N = 40 (largest size in Fig. 4), and are
consistent with the analytical approach. Figure 4 shows that
P0 becomes increasingly independent of system size as the
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D

FIG. 4. Midgap state P0 as a function of D, the distance of the
vacancy to its closest nanoribbon edge (in units of a

√
3/2).

ribbon width is increased. This behavior is further confirmed
by the analysis of U1 presented in Fig. 8.

All these results are obtained for semiconducting armchair
graphene nanoribbons. For metallic armchair ribbons we also
find vacancy-induced states which also present the behavior
observed in Figs. 3 and 4. This finding is at odds with the
analysis of Ref. [36]. We will return to this discussion on Sec. V
where we study the behavior of U in armchair nanoribbons.

For semiconducting graphene nanoribbons, our findings
for P0 can be qualitatively understood as follows. The
combination of the bipartite nature of the honeycomb lattice
and the presence of edges gives origin to a peculiar modulation
of the degree of localization as a function of vacancy-edge
distance. Some insight is provided from recent studies of the
Kitaev model in the gapped phase, where it has been shown
that a vacancy induces a zero mode state with a specific direc-
tionality such that the wave function of this state is nonzero
only in a wedge emanating from the vacancy position and
zero elsewhere [22,23]. This directionality is only sublattice
dependent, but independent from the site chosen within the
same sublattice. We recall here that semiconducting armchair
ribbons constitute a realization of a gapped honeycomb model
[38]. Hence, we also observe a directionality pattern in the
vacancy zero mode states in these ribbons. We note that in
distinction to the Kitaev model, the systems we study have
edges that strongly influence the behavior of the midgap states,
particularly, their directionality and degree of localization as a
function of the vacancy site position.

Further insight is obtained by inspecting the wave function
with energy closest to zero of a clean armchair ribbon,
illustrated in Fig. 5. By looking at the probability of finding
the states at the sites along any of the “horizontal” zigzag
chains starting from the armchair edge, see Fig. 5, one clearly
observes a pattern of two maxima followed by a minimum. We
note that this pattern is complementary to the one we obtain
for P0 as we move the vacancy across a zigzag chain. Hence, if
a vacancy is placed at a site where the state closest to the zero
mode of the clean ribbon has a maximum, the vacancy state
suffers a larger repulsion and has to extend more; the opposite
occurs when the vacancy is placed at sites with vanishing
weights in the clean system.

This view is confirmed by the study of midgap states due
to hydrogen adatoms (not shown here) instead of vacancies.
Interestingly, the manner in which the vacancy zero mode is
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FIG. 5. Site dependency of the amplitudes of the state with energy
closest to zero energy of a pristine armchair ribbon [38]. The circles’
radii are proportional to the wave function amplitude; red and blue
correspond the negative and positive amplitudes, respectively.

more localized/extended is a consequence of the directionality
of the midgap state. In the sites where P0 has a maximum, the
vacancy state is directed towards the closest edge becoming
more concentrated. In the cases where a minimum in the IPR
occurs, the vacancy state is directed to the farther edges or to
the ribbon’s longitudinal direction and hence becomes more
extended.

This is an interesting property which could allow the
tunability of a site-site entanglement [22] of this system and
also tune the transport properties of a specific edge due to
interactions with the vacancy state. The transport along a
chosen edge could be blocked or reduced just by selecting
the vacancy/adatom position respective the chosen edge. As
we show in Sec. V, all these findings have a strong impact on
the charging energy U .

C. Vacancies with other kinds of edges: Zigzag and quantum
dots

For other kinds of edges, namely zigzag, chiral, and those
found in quantum dots, we also observe vacancy-induced states
|ψ0〉. For zigzag ribbons, Ref. [36] predicts that a vacancy
does not affect the zero-energy states of the system. Our study
agrees with this result. However, we find that the vacancy gives
rise to pairs of electron-hole states with same absolute energy
and amplitude (but opposite phases), as expected from chiral
symmetry preservation. In addition, |ψ0〉 clearly hybridizes
with the edge-localized states of the edge with sites belonging
to the opposite sublattice of the vacancy site [see Fig. 6(a)].
These observations are in agreement with transport simulations
for this kind of system [45,46].

The situation becomes more complicated in the case of
graphene quantum dots, whose edges are (in general) a
combination of zigzag and armchair chains. We find that
the midgap states hybridize with the states localized at
the system edges. In addition, we observe an energy shift
of the vacancy state, similarly to the case of zigzag ribbons.
Here the presence of the armchair-like edges also plays a role:
We find a modulated behavior of the IPR of the vacancy state
as the distance of the vacancy site from the armchair edge is
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(b) P0 = 0.0093(a)

(a)

P0 = 0.030

(b)

FIG. 6. Wave function amplitudes for the vacancy state in a zigzag
nanoribbon (a) and for a quantum dot (b).

varied. As in the case of armchair ribbons, we also observe
increasing degree of localization of the vacancy state as the
distance from the armchair edge is decreased. The IPR has its
maximum for D = 2 as for armchair ribbons; see Fig. 6(b).

Although we did not make an extensive numerical analysis
of vacancies in zigzag ribbons or graphene quantum dots, the
discussion above is useful to emphasize that the main results
of our paper for the armchair ribbons should remain valid for
realistic samples in which other kinds of edges and/or disorder
appear.

V. CHARGING ENERGY ESTIMATES FOR ARMCHAIR
RIBBONS

We focus our attention on the analysis of vacancy-induced
states in armchair graphene nanoribbons since in this case
the degree of localization of the |ψ0〉 states is much more
pronounced, as discussed in the previous sections. More
specifically, we calculate the charging energy U1 and U2,
given respectively by Eqs. (17) and (20), as a function of
the vacancy-edge distance D and the nanoribbon width.

Both the analytical and the tight-binding approaches give
the envelope wave functions ψ0(i) which allows one to
numerically evaluate U1 and U2. We compare the results and
find good qualitative agreement, as shown in Fig. 7. For the
cases we considered (with M = 220), the tight-binding values
for U1 are about 30% smaller (for the sites with the larger
U1) than those obtained using the analytical wave functions.
For U2, which is one order of magnitude larger than U1, both
approaches agree within 5%. In the Appendix, we provide
evidence that the discrepancy is not related to the size of the
supercell. We speculate that the larger discrepancy in the case
of U1 arises from the fact that it scales with the numerically
obtained amplitudes as |ψ0(i)|4 [see, e.g., Eq. (17)] while
U2 scales roughly as |ψ0(i)ψ0(j )|2 with i �= j [Eq. (20)].
Thus, the numerical values of U1 tend to be more sensitive
to small numerical errors in the calculation of the envelope
wave functions ψ0(i) than those obtained for U2.

The calculation of U using the analytical expression for the
ψ0(i) is significantly faster and demands much less memory

FIG. 7. Charging energy U as a function of the vacancy-edge
distance D for an armchair nanoribbon of width M = 220. U = U1 +
U2 is calculated by using numerical and analytical wave functions.
Panel (a) corresponds to the intra-atomic U1 contribution, while (b)
to the inter-atomic Coulomb term U2. The insets show maxima of U1

and U2 versus D in a log-log scale.
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FIG. 8. Charging energy U as a function of the vacancy-edge
distance D for armchair nanoribbons of different widths, namely,
M = 40,220, and 1000. The charging energy is split in an intra-
atomic U1 (a) and an inter-atomic Coulomb term U2 (b). The insets
show the tight-binding result for a metallic ribbon with M = 44.

than the tight-binding diagonalization approach, which re-
quires storage of the Hamiltonian matrix elements. This allows
us to address ribbons with micron-size widths. The results
presented next are obtained using analytical wave functions.

Figure 8 shows U1 and U2 as a function of the vacancy-
edge distance D. The results clearly indicate that U is almost
independent of the ribbon width M for very large systems.
Moreover, for the sites for which U1 (U2) has a minimum, the
computed charging energies approach the bulk values obtained
in Fig. 2. The dependence of U2 with D follows the same
pattern as the IPR (for U1 this is expected, since the latter
is proportional to P0), namely, an oscillatory behavior as the
vacancy is moved away from the edge with a fast decay in
the modulation (see insets of Fig. 7). When the vacancy is
far from the ribbon edges, U is suppressed with respect to
its largest value by an order of magnitude and approaches the
bulk estimate.

We note that the ribbon with M = 44 is metallic. In this
case, the analytical treatment of Ref. [36] predicts that the
vacancy does not produce a localized state pinned at zero
energy. Following the notation introduced in Ref. [36], we
find that, when the vacancy is placed at the so-called nodal
line (sites where the wave function of the lowest energy state
of the clean system vanishes, which correspond to the sites
with the smallest probabilities in Fig. 5), a localized state
pinned at zero energy arises, originating the maxima in the
charging energy seen in the inset of Fig. 8 for the width M =
44. Interestingly, if the vacancy is placed at a site off the nodal
line, we do not observe a localized state pinned at zero energy,

as predicted in Ref. [36]. Instead, we find that the vacancy
originates an electron-hole pair of states close to zero energy
with a localized character. The charging energy for these states
corresponds to the “minima” in the modulated pattern shown in
the insets of Fig. 8. We note that these estimates are in excellent
agreement with the behavior found for the semiconducting
ribbons, indicating that the values for U are robust irrespective
of the metallic or semiconducting character of the ribbons.

The appearance of localized states in metallic ribbons is
important for the discussion of the observation of bound states
immersed in the continuum (BICs) in graphene [67,68] as the
localized states here occur within a region of finite density of
states.

VI. CONCLUSIONS AND OUTLOOK

In this paper we study the charging energy U , a key element
to understand the magnetic properties of the system of a
localized state due to a single-vacancy in monolayer graphene
bulk and in graphene nanoribbons.

We find that U can be expressed in terms of two main contri-
butions, U1 and U2, corresponding respectively to intrasite and
intersite electron-electron interactions. We show that U2 can
be identified with the effective low energy expression for the
Coulomb energy associated with two-dimensional electronic
wave functions. Although U2 is the dominating term, there are
several scenarios where the U1 contribution to the charging
energy can become important. For instance, a recent study [34]
suggests the use of impurities to design a lattice structure that
can give rise to a graphene-based spin-liquid system. There it is
argued that the onset of the spin-liquid regime depends on the
ratio between the charging energy of the impurity bound state
and the hopping between these impurity states [34], which
makes the precise assessment of U very critical to infer the
system behavior.

Our systematic study of the charging energy confirms the
heuristic prediction that U scales with the sample length
L as (ln L)−2. Our estimates for U support the picture of
π magnetism in realistic sample sizes, contrary to previous
results [25,37].

The presence of edges change significantly this simple bulk
scaling. In this paper, we perform a systematic investigation
of the midgap states in armchair ribbons. We establish the
dependence of U and the IPR with the vacancy-edge distance
and discuss how this is related to the directionality of the wave
functions. Some midgap states are truly localized (unnoticed
so far) with IPR and U an order of magnitude larger than
the bulk value. Similar behavior is also found for metallic
armchair ribbons, which could be a manifestation of bound
states immersed in the continuum (BICss). This particular
case is at odds with the wave function analysis presented
in Ref. [36]. For the remaining cases, however, the overall
agreement is very good.

Moreover, we show that other kinds of edges also affect
the vacancy-induced state. In particular, for zigzag edges and
quantum dots, the vacancy-induced states have energies shifted
from the Dirac point due to a strong hybridization with edge-
induced localized states. This observation can be an indication
that our results for armchair edges can be robust in samples
with edges other than zigzag and armchair.
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Using the tight-binding model, we have checked that a
hydrogen adatom gives rise to localized states that share some
of the features of those caused by a vacancy. Their IPR, for
instance, displays the same oscillatory behavior we find for the
armchair ribbons with vacancies. This opens the possibility of
having a controlled way to verify our results by the precise
manipulation of H adatoms using a STM tip and to observe
the generated states pattern by a STS measurement near the
adatom, as recently shown in Ref. [31]. We should point out
that our results are generically valid for systems with bipartite
lattices. Thus, they can also be checked experimentally in other
platforms such as artificial graphene.

We stress that a correct assessment of the substrate dielectric
constant ε is key for a quantitative comparison of our U

estimates with the experimental values. We recall that the
estimates we present here were obtained considering ε = 4
which is characteristic of graphene on top of SiO2 [63].
Depending on the dielectric environment to which graphene is
exposed ε can vary by two orders of magnitude [69]. Hence, the
dielectric media to which graphene is submitted in the recent
experiments of Refs. [14,31], which use graphene on top of
SiC and Rh substrates, respectively, can have an important
influence on the discrepancies between our estimates and the
observed U . A systematic experimental study of the role of the
substrate and proper characterization of the dielectric constant
that should be used in the U estimates is necessary to clarify
this issue.

Our U estimates can be directly compared to that of
Ref. [33], which also estimates U for graphene on SiO2 sub-
strates. We recall that our results are 2–3 orders of magnitude
larger than the values predicted in that paper. We note that our
estimates are based on a rigorous derivation of an expression
for U , whose value is computed using the (numerically precise)
vacancy-state wave function amplitudes. By contrast, the
values reported in Ref. [33] are based on scaling arguments
for the vacancy-induced wave function, which do not take
properly into account the behavior of the vacancy wave
function amplitudes along the sites of the system.

The current experimental techniques available to create
vacancies in graphene, such as ion irradiation [4–7,10–12]
or vacancies generated in the growing process of graphene on
top of Rh [14], are poor on precision and control, as compared
with adatom impurity engineering [31]. As a consequence,
typical samples are characterized by multiple vacancies and
voids that can interact among themselves in addition to other
sources of disorder such as ripples, charge puddles, etc. Let
us qualitatively address the extension/validity of our findings
under these more intricate conditions.

Some DFT studies [26,27,70] indicate that the dangling
bonds left by the removal of the carbon atom reconstruct
leading to local lattice deformation around the vacancies
[26,27,70]. This suggests that the vacancy structure is more
complex than the one described by our model. To qualitatively
address this issue, we have performed numerical simulations
(not shown here) where we introduced a hopping term t ′ be-
tween pairs of “orphan” carbon atoms, at the nearest-neighbor
sites of the single vacancy. The precise value of t ′ relies on the
modified bond length and demands ab initio calculations to be
determined. We varied t ′ to qualitatively understand its effect

on the vacancy-induced state |ψ0〉. Obviously, particle-hole
symmetry is broken for any t ′ �= 0. We observe a small shift
in the energy of |ψ0〉 to negative values and a reduction of
the IPR of the corresponding wave function as compared to
the value without the distortion. However, even for severe
reconstructions, where we take t ′ ∼ 1 eV, we observe that the
general pattern of the wave functions is preserved and the
IPR drops to only about half of the value obtained for the
undistorted system. Since we have established that U and the
IPR are closely connected, lattice distortions will certainly
modify the estimated U , but will hardly lead to an order
of magnitude effect. We note that even with this reduction,
our U estimates are very significative and compatible with
the experimental findings [14]. Support to π -like magnetism
for reconstructed vacancies (especially when electron-electron
interactions are considered) has also been given by a very
recent DFT calculation [70] and reinforces our confidence that
our results remain valid for more realistic treatments of local
lattice distortions.

The subject of vacancy-induced magnetism in a system
with multiple vacancies and voids was extensively studied
[37,71,72]. The conclusion is that, as long as the defects are
diluted, namely the vacancies are a few nanometers apart,
they act as isolated entities. In the high-density limit, the
effects are richer and one needs to consider whether there
exists a sublattice imbalance or not. For the unbalanced case,
which is the realistic experimental scenario, two vacancies
on the same sublattice near each other produce a state with
enhanced localization [37], hence with an increased U . For the
balanced scenario [37] there is a critical density above which
the magnetism vanishes. This critical density depends on the
Hubbard on-site Uorbital energy and on the IPR of the vacancy
states: The higher the Uorbital and the IPR, the higher the critical
density required to quench the magnetism [37]. These authors
find that for Uorbital = 4 eV and a vacancy with IPR = 0.02
(a value close to the IPR we find for vacancies in the bulk)
the critical distance between vacancies to kill magnetism is
a few nanometers. Above this threshold the vacancies act as
individual sources, the regime where our results are applicable.
It should be noted that the degree of damage in experiments is
limited since highly irradiated samples disintegrate [6].

The main effect of long-range disorder in the vacancy states
is to promote a small shift in their energy, as we have discussed
previously [16]. We claim that the main results presented here
remain valid in this situation also.

Finally, we note that although the results presented for U

are for single vacancies, the expression we derive is also valid
for the multivacancy case. Although an analytical expression
for the multivacancy wave function case is not available in
the literature, those can be obtained numerically and used to
obtain U in a fashion similar to the one we use here for the
single vacancy.

In summary, we present a full derivation of U for vacancy-
induced localized states in graphene systems. Our results
help the understanding of defect-induced carbon magnetism,
allowing contact with the typical experiments that use samples
with billions of atoms, where edges, multivacancies, and other
kinds of disorder are present, which are beyond the reach of
other methods, such as DFT.
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FIG. 9. Charging energy as a function of distance for armchair
ribbons with length M = 40 and with varying “infinite length” N . (a)
Results obtained from the analytical expression of the vacancy wave
function. (b) Results from the tight-binding model.
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APPENDIX: CONVERGENCE ANALYSIS

The tight-binding model calculations are implemented
using a supercell of size M × N . In the case of graphene
nanoribbons, M is determined by the ribbon width, while
the longitudinal length N has to be conveniently chosen
to minimize supercell periodicity effects. We optimize our
calculations by choosing the smallest value of N for which U

becomes independent (within less than 1%) of N .
In Fig. 9 we display the behavior of the U1 as a function

of edge distance D for M = 40 and varying N . The results
are obtained by using the analytical wave function [Fig. 9(a)]
and the numerical diagonalization of the tight binding model
[Fig. 9(b)]. For M = 40 we perform tight-binding simulations
for 10 � N � 120. For larger system sizes this method
becomes computationally intensive and it is advantageous to
use analytical wave functions. The calculations reveal that our
estimates are almost independent of N and show that the results
already converge for modest values of N . These calculations
also indicate that the discrepancies observed in the estimates
of U1 obtained from the two approaches are not an artifact of
the supercell sizes we use.
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