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Electric field induced edge-state oscillations in InAs/GaSb quantum wells
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Inverted-gap InAs/GaSb quantum wells have long been predicted to show quantum spin Hall insulator
(QSHI) behavior. The experimental characterization of the QSHI phase in these systems has relied on the
presence of quantized edge transport near charge neutrality. However, experimental data showing the presence of
edge conductance in the trivial regime suggest that additional experimental signatures are needed to characterize
the QSHI phase. Here we show that electric field-induced gap oscillations can be used as an indicator of the
presence of helical edge states in the system. By studying a realistic low-energy model InAs/GaSb quantum
wells derived from k · p band theory, we show that such oscillations are bound to appear in narrow samples as
the system is driven to the topological phase by the electric field. Our results can serve as a guide for the search
of additional experimental signatures of the presence of topologically protected helical edge states in InAs/GaSb
systems.
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I. INTRODUCTION

Quantum spin Hall insulators (QSHIs) [1,2] are sys-
tems with a bulk band gap and gapless helical edge states,
topologically protected from backscattering by the time-
reversal symmetry [3]. In this sense, QSHI can be thought
as two-dimensional (2D) versions of three-dimensional (3D)
topological insulators [4,5]. The promises of applications in
spintronics and quantum computing have leveraged the re-
search towards the understanding and the synthesis of such
systems.

The main platform for the studies of QSHI behavior are
semiconductor heterostructures forming quantum wells of
“inverted-band” materials, such as HgTe or GaSb. In fact,
QSHI behavior was first predicted to occur in HgTe/CdTe
quantum wells [6] with experimental results consistent with
the presence of helical edge states in this system appearing
shortly thereafter [7]. Nevertheless, the fabrication process
of HgTe/CdTe quantum wells presents subtleties making
the molecular beam epitaxy growth not broadly accessible.
Moreover, mercury compounds are highly toxic and must be
handled with extra precautions [8], adding a degree of risk to
those involved in the synthesis process.

Later, it was predicted that broken-gap InAs/GaSb asym-
metric quantum wells also behave as QSHI [9]. More
importantly, eight-band k · p calculations have suggested that
the topological transition (i.e., gap inversion) can be con-
trolled by applying an external electric field (eF) along the
growth direction [10] applied through a potential difference
between front and back gates.

These theoretical predictions were then tested in a va-
riety of experiments on InAs/GaSb quantum-well samples.
Evidence for a gap at charge neutrality [11] and quantized
conductance [12,13] were reported in small samples (with
length L � 2 μm). More recently, such electric field-driven

topological phase transitions were characterized in InAs/GaSb
quantum wells [14–17] and thin films of 3D topological insu-
lators [18,19].

Despite these experimental developments, finding quan-
tized conductance plateaus in these systems is a challenging
task as the actual conductance values can be sensitive to dis-
order effects [20] and, thus, vary from sample to sample and
in different experimental setups. For instance, the presence of
helical sates at zero field in p-n junctions at zero magnetic
field is inconclusive [21,22]. More importantly, edge-state
transport has been detected in the trivial phase of InAs/GaSb
quantum wells [23,24]. Indeed, such states are seen in several
samples and might be contributing to the conductance in the
topological phase as well.

This telling example shows that it is not trivial to dis-
tinguish nontopological and topologically protected helical
states from transport data alone. As such, it is desirable to
have additional signatures of the presence of topologically
protected helical edge states in InAs/GaSb samples.

In this paper, we address this question by studying a re-
alistic model for InAs/GaSb quantum wells in the presence
of an applied electric field and showing that the interedge
coupling of edge states in narrow samples can lead to os-
cillations as a function of the field. Such oscillations occur
only in the topological phase and can be directly linked to the
presence of helical edge states and thereby signal the onset
of QSHI behavior. As such, the oscillations in the edge states
can serve as a confirmation for the presence of topologically
protected helical edge modes in InAs/GaSb quantum-well
systems.

Moreover, we show that the electric field controls not only
the topological transition, but also increases the exponential
localization of the edge states, similar to the role played by
the magnetic field in regular quantum Hall edge states. In
this sense, the situation is analogous to the energy oscillations
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FIG. 1. Schematic of the asymmetric InAs/GaSb quantum well.
(a) Representation of the inverted regime with the holelike state in the
GaSb quantum well (width d2) at a higher energy than the electron-
like state at the InAs quantum well (width d1). (b) Representation of
the Stark shift eF referred to, henceforth, simply as the electric field.
The inverted regime can be obtained also by varying eF.

seen in other contexts, such as Majorana systems [25,26] and
zeroth Landau level oscillations in nodal semimetals [27].

This paper is organized as follows: in Sec. II we present
k · p calculations for InAs/GaSb asymmetric quantum wells
and then derive a low-energy Bernevig, Hughes, and Zhang
(BHZ)-like model with realistic parameters. The resulting
band structure, the topological phase transition, and the result-
ing appearance of exponentially localized edge states in the
system are presented in Sec. III. More importantly, we show
that the edge states’ energies and localization length oscillate
as function of the applied electric field. Finally, we present our
concluding remarks in Sec. IV.

II. MODEL

We consider the asymmetric InAs/GaSb system depicted
in Fig. 1. In this geometry, the system is composed by a
single InAs quantum well in the conduction band (CB) (for
electronlike states) next to a GaSb valence-band (VB) quan-
tum well (for holelike states) leading to a band inversion at
the InAs/GaSb interface. Similar to the cases of HgTe/CdTe
[6] and InAs/GaSb single quantum wells [9,10], a topological
phase transition between a trivial insulator and quantum spin
Hall phases can be controlled by varying the width d1 of the
InAs quantum well [28]. Throughout the paper, we consider
fixed widths d1 and d2 corresponding to the quantum spin
Hall phase, namely, d1 = 91 Å (or 15 monolayers of InAs)
and d2 = 48.8 Å (eight monolayers of GaSb). As an addi-
tional consistency check, the calculations were performed for
d1 = 97 Å (16 monolayers of InAs), yielding similar results
(see Table I).

TABLE I. BHZ Hamiltonian parameters extracted from the fit-
tings of Figs. 4 and 5. Energies are expressed in eV, lengths in
angstroms, and electric fields in volts.

d1 = 91 Å d1 = 97 Å

Ac 1.613×10−6 9.000×10−5

Av 3.729×10−5 3.644×10−5

Bc 3.177×10−2 3.109×10−2

Bv 3.140×10−2 3.136×10−2

Cc −5.007×10−2 −5.379×10−2

Cv 3.480×10−2 5.680×10−2

Dc 4.691×101 4.625×101

Dv −2.105×101 −1.778×101

Fc 1.952×10−1 1.318×10−1

Fv 3.068×10−1 4.260×10−1

Gc −5.545×10−4 −5.419×10−4

Gv 9.703×10−4 8.421×10−4

p0 8.436×10−2 7.429×10−2

p1 −3.727×10−4 −3.863×10−4

The low-energy BHZ Hamiltonian used in this paper was
obtained following a four-step process, which we now sum-
marize. First, the GaSb/InAs/AlSb system is modeled with
an eight-band Kane Hamiltonian properly parametrized. Next,
a low-energy effective Hamiltonian is determined with a
“folding-down” procedure and, from both the low-energy and
the original eight-band Hamiltonians, the effect of the applied
electric field in the system is introduced. Finally, the low-
energy Hamiltonian is reviewed and parametrized in order to
account the effects of the applied electric field. We discuss
these steps in detail in the following sections.

A. k · p Hamiltonian

We start from a well-known eight-band Kane Hamiltonian
[29], parametrized for the InAs, GaSb, and AlSb bulk alloys.
For the modeling of the heterostructure, the confinement of
the quantum well in the growth (z) direction is included by
considering the envelope function approximation where the
Kane model parameters are taken as z dependent, and the
substitution kz → −i∂z is performed. We used a reciprocal
space approach where the envelope function is solved by
expanding the growth direction into the Fourier coefficients of
the potential and z-dependent parameters [30,31]. To describe
each layer, we used realistic Kane model parameters depicted
in Ref. [32].

Due to the confinement in the z direction, one can assume
that the band structure along that direction is flat and that the
eigenfunction of the states at � are a good description of all
the functions along the �-Z direction.

Figure 2 presents the system band profiles, wave functions,
and band structures. Panel (a) shows the band profiles for con-
duction and valence bands. The box indicates the energy range
around Fermi level inspected in this analysis. Panels (b)–(d)
present the density probabilities of the first conduction band,
heavy, and light hole states, respectively. The band structure
associated with these lowest states in the [100] direction is de-
picted in panel (e), and panel (f) details the four states that may
be inverted under the application of the electric field along the
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FIG. 2. Results from the k · p calculations. In (a) we show the
schematic of the layered system used in the 8×8 k · p calculation.
The dashed box in panel (a) shows the energy range of the states
around the Fermi energy that is used in panels (b)–(d) that show
the less energetic conduction band, heavy hole (HH) and light hole
(LH) states, respectively. Panel (e) presents in the same energy range
the full 8×8 calculation along the parallel direction. The box in this
panel presents the target band structure used to obtain the four-band
effective model, shown in (f). Heavy hole, light hole, and electron
states are represented in green, yellow, and blue, respectively.

growth direction in the region defined by the box in panel (e).
The goal of our modeling is to define a realistic simplified
Hamiltonian that reproduces the band structure presented in
the last panel.

B. Projected perturbation method

After solving for the eigenenergies at the � point in mo-
mentum space (kx = ky = 0),

H0|ϕn〉 = En|ϕn〉, (1)

we have selected the eigenstates |ϕ〉 most affected by the
inversion of bands, i.e., where the mixing of conduction bands
and valence bands would be more important. The influence of
the states that does not belong to this set can be shown to be
small in first order by the Löwdin [33] perturbation theory.

Therefore, the full analytical 8×8 Kane Hamiltonian ex-
panded into plane waves in the z direction is projected over
those selected states at the � point, resulting in an effective
2D Hamiltonian,

H = (〈ϕ1|, . . . , 〈ϕ16|)H(k)

⎛
⎝ |ϕ1〉

...

|ϕ16〉

⎞
⎠, (2)

where we have taken eight doubly degenerate bands due to
spin degeneracy presented in Figs. 2(b)–2(d).

The chosen 16 states are the ones most affected by the band
inversion where the mixing of the CB and VB is important.
Using the Löwdin perturbation scheme [33] to validate this

set, we chose the set of states mostly affected by the inversion
as our unperturbed set in which the first-order corrections are
small. Finally, the band structure of the 16-state Hamiltonian
seemingly compares to the one found with the much more
expensive envelope function 8 NPW×8 NPW Kane Hamil-
tonian where NPW is the number of plane waves of the
expansion.

C. Effective low-energy Hamiltonian

Coming back to the Löwdin perturbation scheme since we
have a Hamiltonian that fully describes our problem, we can
still reduce it by defining a new set of unperturbed functions.
We chose them as the functions in the small box in Fig. 2(e)
and apply the first-order correction using the other 12 states in
a numeric folding down procedure by using Schur’s comple-
ment [34]. The final result is a 4×4 Hamiltonian matrix with
the format,

H =
[

H+(k) H±(k)
H∓(k) H−(k)

]
, (3)

where matrix H+ is defined as

H+(k) =
[

εc(k) iPk+
−iPk− εv (k)

]
, (4)

with

εc(k) = Ec + αck + γck2, (5)

εv (k) = Ev + αvk + γvk2, (6)

and the time-reversal symmetry guaranteeing that H−(k) =
H∗

+(−k). The coupling matrices H±(k) and H∓(k) are given
by

H±(k) =
[

0 N−(k)
N∗

+(k) 0

]
, (7)

noting that H∓ = (H±)† due to the unitarity. The nonzero
elements of coupling matrices are given by

N±(k) = −(
k2

x − k2
y

)
η2 ± kxkyη3. (8)

A closer inspection of the η2 and η3 values shows that
the folded down off-diagonal terms in the N± blocks are
responsible for corrections on the order of 0.01 meV in the
region of the fitting (|kx| < 0.15 nm−1), having little or no
impact at the band structures when compared to the case
where we consider the bottom of the conduction- and top of
the valence-band states in the full Kane calculation. As such,
the diagonal approximation (η2 =η3 =0) turns out to give an
excellent description of the low-energy physics around the �

point.

D. Four-band BHZ model

Following these results, we opted for using a BHZ-like
Hamiltonian [6] given by

HBHZ =
[

Ĥ2×2(k) 0
0 Ĥ∗

2×2(−k)

]
, (9)
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FIG. 3. Panels (a)–(d) show the schematics of the confinement
profiles including the heterostructure profile and the applied electric
field creating a Stark shift between the interfaces with the AlSb layers
on both sides of −30, 0, 10, and 30 meV, respectively. The bottom
of the conduction band (blue, on the left) and the top of the valence
band (orange, on the right) as well as the highest valence-band and
lowest conduction-band states are shown. (e)–(h) panels show the
band structures with the different applied fields.

with

Ĥ2×2(k) =
[

εc(k) iPk+
−iPk− εvk

]
, (10)

with εc(k) and εv (k) defined in Eqs. (5) and (6). The basis set
is defined in the usual order [6] as

|E ,+〉 , |H,+〉 , |E ,−〉 , |H,−〉 (11)

defined by the character of the states of the Kane model
at �-point heavy holes for |H,±〉 and a composition of
conduction-band electrons (mostly), light (smaller), and split-
off holes (negligible) for |E ,±〉.

E. Applied electric field

The effect of applied electric field’s potential drop across
the z directions is shown in Fig. 3 both in the potential profile
and in the Kane model band structures. A positive drop causes
the inversion of conduction and heavy hole bands, and a
negative one increases the gap.

Figures 3(a)–3(d) show the potential profiles together with
the �-point energies, across the topological phase transition.
As the energy difference between HH and EL states becomes
smaller [Figs. 3(a) and 3(b)], the gap closes [Fig. 3(c)] and
reopens [Fig. 3(d)] with an inverted gap. The respective band
structures show usual semiconductor behavior [Figs. 3(e) and
3(f)], a gap closure [Fig. 3(g)], and a “gapped semimetal”
[Fig. 3(h)].

In the next step we proceeded to the fitting of the BHZ
model with different electric field profiles in the range from
−30 and 70 meV. The fittings of selected systems are pre-
sented in Fig. 4. From the fittings, one may conclude that the
BHZ Hamiltonian provides all the features necessary to the

FIG. 4. Band structures of the BHZ (dotted lines) and 8×8 k · p
(solid lines) models under the influence of eF. From (a) to (f),
eF = −20, −10, 0, 10, 20, and 30 meV, respectively. Yellow (blue)
bands have holelike (electronlike) character at the � point.

analysis of these four states under the application of an electric
field.

As a final step to parametrize our system, we proceed to
the fitting of the curves of the relevant parameters under the
influence of the applied electric field. The dependence of the
parameters in Eq. (9) on the eF is given by the following
expressions:

E(c,v)(eF) = A(c,v)eF + B(c,v),

γ(c,v)(eF) = C(c,v)eF + D(c,v),

α(c,v)(eF) = F(c,v)eF + G(c,v),

P(eF) = p0 + p1eF, (12)

with the fittings are presented in Fig. 5. Each of these pa-
rameters depend on the quantum-well thickness as shown in
Table I. Note that the linear coefficients αc,v are essentially
two orders of magnitude smaller than the other relevant terms
in the range of 0 � eF � 60 meV. As such, the linear terms

FIG. 5. Fitting of the variation of BHZ relevant parameters under
the influence of eF. In solid lines the fitted curves and in dots, the
original 8×8 Hamiltonian fitted values. (a) Valence-band maximum
(orange), conduction-band minimum (blue), and Fermi level (green);
(b) effective mass parameter for valence (orange) and conduction
(blue) bands; (c) α parameter for valence (orange) and conduction
(blue) bands; and (d) interband interaction parameter P.
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FIG. 6. Electric field-driven topological phase transition for the
InAs/GaSb double quantum well with d1 = 91 and d2 = 48.8 Å.
BHZ energy spectra for eF = (a) 10 meV, (b) 20 meV, and
(c) 40 meV. The color bar corresponds to the pseudospin projection.
Band inversion and topologically protected edge states are shown in
panels (b) and (c).

of type αc,vk can be safely neglected near the � point for all
field values considered.

III. TOPOLOGICAL EDGE STATES

Once the parametrization of the low-energy BHZ Hamilto-
nian has been established, we turn to the topological transition
and the edge states. To this end, we work with real-space
discretization of the Ĥ2×2 block written as

Ĥ ′
2×2 =

[
ε′

c(k) iPk+
−iPk− ε′

vk

]
, (13)

where the primed diagonal elements are given in terms of the
parametric functions defined in Eq. (13) (and αc =αv =0 as
previously justified) by

ε′
(c,v)(k) = E(c,v) + γ(c,v)k2, (14)

with the parameters set for the case of d1 = 91 Å (InAs
quantum-well width) shown in Table I.

In the following, we consider infinite strips with transla-
tional symmetry in the x direction and hard-wall boundary
conditions in the y direction with width Ly. For concreteness,
we focus on narrow (Ly = 100-nm) and wide (Ly = 200-nm)
systems The calculations are performed with the KWANT pack-
age [35].

A. Electric field-driven topological transition

We begin by characterizing the topological phase transition
as a function of the Stark shift energy eF [10]. Figure 6 shows
the results for the spectrum of the discretized Hamiltonian for
different values of eF for wide strips (Ly = 200 nm).

The topological transition at eF ≈ 12 meV is marked by
the closing of the gap and subsequent band inversion, along
with the appearance of edge states with linear dispersion [seen
in Figs. 6(b) and 6(c)]. The band inversion can be quantified
by the z component of the pseudospin, defined by 〈Sz〉 =∫

(|ψe|2 − |ψh|2). As such, the color of each state indicates
its composition of the states in terms of |E ,+〉 and |H,+〉
components.

FIG. 7. Energy spectra for at kx = 0 versus the electric field for
quantum-well widths of Ly = (a) 100 nm and (b) 200 nm. Lines in
blue and orange represent the low-lying states, which become the
edge states after the transition. Note the oscillations arising from
interedge coupling for narrow quantum wells.

B. Edge-state energy oscillations

Next, we turn to the behavior of the edge states in the topo-
logical phase as the Stark shift is increased. Figure 7 shows
the spectrum at kx =0 as a function of eF for two different
values of Ly: (a) 100-nm (narrow strip) and (b) 200-nm (wide
strip).

The electric field-induced topological phase transition is
clearly seen in both cases, marked by a crossing of the states
at the top of the conduction band and at the top of the valence
band. These low-lying energy states become the subgap edge
states in the topological phase.

More importantly, Fig. 7 shows a clear oscillatory pattern
in the energy of the edge states as a function of eF. These
oscillations are more pronounced in the case of narrow strips
[Fig. 7(a)].

The origin of such electric field-driven oscillations as it
will become clear later is the interedge coupling of the edge
states localized at opposite edges. As such, these low-lying
oscillations occur only in the topological phase and can be
regarded as true signatures of the presence of topological edge
modes.

C. Edge-state localization

In order to better understand how the coupling between
edge states gives rise to oscillations as a function of the elec-
tric field, we consider the following ansatz for the kx =0 edge
state wave functions as a function of the vertical coordinate y
[25]:

|ψb(t )(y)|2 ∝ e−(2ỹb(t ) )/ξ sin2[k f ỹb(t )] , (15)

which corresponds to an oscillatory function with an expo-
nential decay where both the localization length ξ and the
wave-number k f both depend on the electric field (see full
expressions in the Appendix).

Figure 8 shows the evolution of |ψ (y)|2 as a function of
the eF for Ly = 100 nm [Fig. 8(a)] and 200 nm [Fig. 8(b)].
In both cases, it becomes clear that the low-lying states tend
to localize at the edges. In the narrow strip [Fig. 8(a)], the
overlap between states at different edges leads to a stronger
modulation as a function of the electric field.
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FIG. 8. Electrical enhancement of the edge state localization for
(a) Ly = 100 nm and (b) Ly = 200 nm. The color map indicates the
transverse profile of the absolute squared value of the wave functions.
In both panels, the wave functions adopted are those associated with
the states represented by the blue line in Fig. 6.

The localization length ξ (eF) can be extracted by fitting
an exponential through the first two local maxima of |ψ (y)|2
(a linear fit in a semilogarithmic plot). Similarly, the wave-
number k f (eF) can be extracted by by averaging the distances
between subsequent minima of |ψ (y)|2.

In both cases, we can compare these fittings with analytical
results [Eqs. (A5) and (A4) in the Appendix) obtained using
the ansatz of Eq. (15). The results shown in Fig. 9 show an
excellent agreement, further corroborating the choice of the
ansatz. We note that as shown in the Appendix, the exponen-
tially localized form of Eq. (15) is derived for topologically
protected states with energies at the center of the gap (“zero
modes”). As such, nontopological states with a finite energy
will not, in general, display these same features.

IV. CONCLUDING REMARKS

To summarize, we studied the behavior of topological edge
states in an realistic effective electronic model for InAs/GaSb
quantum wells in the presence of an applied electric field.
Using a k · p approach, were able to derive a realistic low-
energy BHZ-like model for the system and probe the electric
field-driven topological transition of the quantum spin Hall
phase of InAs/GaSb quantum-well systems.

FIG. 9. Evolution of the localization length ξ (a) and the wave-
number k f (b) for the low-lying energy states for a system with Ly =
200 nm. In dashed lines we have the values obtained from numerical
fitting over the wave functions, whereas the dotted values are the
average of the results for both states, and the continuum line is the
analytical result.

One of our main results is establishing that the electric
field-driven energy oscillations in the edge states in narrow
systems are a clear signature of the onset of the topological
phase. Such oscillations are related to intraedge coupling be-
tween the states localized on opposite edges.

More interestingly, we are able to provide an ansatz for the
edge states as a function of the electric field with the same
formal structure of those found in other topological systems
with exponentially localized edge modes. With this, we were
able to find analytical expressions for the localization length
and wave vector as a function of the electric field, which
nicely match our numerical results.

We are confident our results can motivate an experimental
search to investigate such oscillations in edge-state conduc-
tance experiments, which could be an additional element in
confirming for the presence of topologically protected helical
edge modes in InAs/GaSb quantum-well devices. Although a
full transport calculation is beyond the scope of the present
paper, we believe that conductance maps from a four-probe
setup with front and back gates can show the oscillatory pat-
tern consistent with our results.

The key ingredient in such experiments would be the en-
hancement of the coupling between edge states. We believe
this could be achieved by adding a submicron lateral constric-
tion (similar to that of a quantum point contact) in the device’s
Hall bar. The oscillations would appear in four-terminal ex-
periments where both the density and the electric field can
be tuned, a procedure similar to that of Ref. [16]. As such, a
conductance map as a function of both front and back gates
should show oscillations in the topological region near charge
neutrality.
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APPENDIX: ANALYTICAL SOLUTIONS

In this Appendix, we derive the analytical expressions for
the edge-state wave-function ψ (y) and energy as well as the
localization length ξ (eF) and the wave-number k f (eF) (which
are functions of the Stark shift eF) appearing in Sec. III C.
We note that a similar derivation for ψ (y) can be found in
Ref. [36].

First in order to derive an analytic expression for the
wave function and energy, we first define the energy of the
kx =0 edge states for a infinitely wide strip, i.e., E∞(eF) =
limLy→∞ Eedge(kx =0). This can be obtained as an order-three
polynomial approximation from numerical calculations. For
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a wide strip, the edge-state wave-function ψ (y) will obey
H2×2ψ (y) = E∞(eF)ψ (y), which can be written as[

Ec − γc∂
2
y − E∞ iP∂y

iP∂y Ev − γv∂
2
y − E∞

]
ψ (y) = 0 . (A1)

Since these states are exponentially localized at the edges,
we can expand the edge mode in the form ψ (y) ∼ e±zy with
z = ik f − 1/ξ with ξ being the localization length. The solu-
tion of z must satisfy the quartic equation,

det

[
Ec − γcz2 − E∞ iPz

iPz Ev − γvz2 − E∞

]
= 0 . (A2)

For ξ > 0, there are only two solutions for z,

z± = −
√

� ± √
� − �2

2γcγv

, (A3)

where � = −P2 + (Ec − E∞)γv + (Ev − E∞)γc and � =
4γcγv (Ec − E∞)(Ev − E∞). Both k f = Im[z] and 1/ξ =
Re[z] can be rewritten in terms of � and �,

k f = 1

2

√√
� + �

γcγv

, (A4)

ξ = − 4γcγvk f√
� − �2

. (A5)

We can classify the two solutions as wave-functions ψt

and ψb localized at the top (y=Ly) and bottom (y=0) edges,
respectively. We can write, say, ψb(y) as

ψb(y) = uezy

[
A0

B0

]
+ vez∗y

[
A1

B1

]
. (A6)

By imposing time-reversal symmetry and the bound-
ary condition ψb(y = 0) = 0, it is clear that u = −v = i
and A(B)0 = A(B)1. Thus, a solution of Eq. (A1) assuming
Eq. (A2) is given by

A0(1) = (Ev − z2γv − E∞)

Pz
, B0(1) = I. (A7)

Taking all of this into account, ψb(y) is given by

ψb(y) ∝ e−y/ξ sin(k f y), (A8)

and ψt (y) (localized at the top edge) will be given by

ψt (y) ∝ e−(Ly−y)/ξ sin[k f (Ly − y)]. (A9)

Finally, the energy difference associated with interedge
coupling of the modes can be calculated by taking

E = 〈ψt |H |ψb〉
〈ψedge|ψedge〉 , (A10)

where |ψedge〉 = a0 |ψt 〉 + a1 |ψb〉 with the constant |a0|2 +
|a1|2 = 1 and 〈ψedge|ψedge〉 = κ is the normalization factor.
In the limit of large system Ly  ξ the normalization can be
approximated as

κ ≈ k3
f ξ

3

4
(
k f + k3

f ξ
2
) , (A11)

and the energy becomes

E ≈ k f L

2ξκ
e−L/ξ

( |A0|2
|A0|2 + 1

γc + γv

)
sin(k f L). (A12)

For the parameters of Table I, this means that E oscillates
with the electric field as

E ≈ 2k f L

ξ 2
e−L/ξ (γc + γv ) sin(k f L), (A13)

with k f given by Eq. (A4).
We note that this derivation is analogous to that of Ref. [25]

for Majorana bound states in topological nanowires. This un-
derscores the fact that there is a formal connection between
the electric field-driven edge-state oscillations discussed in
the main text and those appearing in Majorana systems as
a function of the magnetic field. In fact, this analogy can
be, in principle, applied to other topological systems [27] in
order to get a better understanding the oscillatory behavior of
edge-state energies as a function of external parameters.
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