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Signatures of quantum phase transitions in parallel quantum dots: Crossover from local moment
to underscreened spin-1 Kondo physics
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We study a strongly interacting “quantum dot 1” and a weakly interacting “dot 2” connected in parallel to
metallic leads. Gate voltages can drive the system between Kondo-quenched and non-Kondo free-moment phases
separated by Kosterlitz-Thouless quantum phase transitions. Away from the immediate vicinity of the quantum
phase transitions, the physical properties retain signatures of first-order transitions found previously to arise when
dot 2 is strictly noninteracting. As interactions in dot 2 become stronger relative to the dot-lead coupling, the
free moment in the non-Kondo phase evolves smoothly from an isolated spin-one-half in dot 1 to a many-body
doublet arising from the incomplete Kondo compensation by the leads of a combined dot spin-one. These limits,
which feature very different spin correlations between dot and lead electrons, can be distinguished by weak-bias
conductance measurements performed at finite temperatures.
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I. INTRODUCTION

Semiconductor quantum dots afford a level of experimental
control that has made them the premier setting1 in which to
investigate the Kondo effect, i.e., the many-body screening
of a local moment by delocalized electrons. In recent years,
interest has turned from Kondo physics in single dots to similar
phenomena in more complex structures such as double-dot
devices,2,3 where quantum phase transitions (QPTs) have been
predicted4–10 and possibly observed.3

Kondo physics in two spin-degenerate quantum dots (or two
levels within a single dot) connected in parallel to the same
single-channel leads has been investigated from a number
of perspectives. The combined spin of the two localized
levels can be tuned between singlet and triplet configurations
by adjusting a magnetic field11 or gate voltages.12 When
coupled to leads, such setups exhibit enhanced conductance
near the singlet-triplet level crossing,12–14 with QPTs of the
Kosterlitz-Thouless type.4,15 Another theme that has received
considerable attention is the role of interference between
different current paths in modulating the conductance through
parallel quantum-dot setups7,8,16 or pairs of dots embedded in
the arms of an Aharanov-Bohm ring.9,17

Theoretical studies of parallel double quantum dots have
overwhelmingly focused on the limit in which each dot has
strong Coulomb interactions and can acquire a magnetic
moment. Such systems exhibit two phases:6,10 a Fermi-liquid
phase with a singlet ground state, and a “singular Fermi liquid”
phase having a residual spin- 1

2 arising from an underscreened
spin-1 Kondo effect.18 These phases are separated by lines of
Kosterlitz-Thouless QPTs broken by first-order QPTs at points
of exact equivalence between the dots.10

Parallel doublet dots in a very different limit, where “dot 1”
has strong interactions but “dot 2” is strictly noninteracting
(and hence nonmagnetic), have been shown7 to realize the
pseudogap Kondo effect,19,20 in which a magnetic impurity
couples to a conduction band having a density of states that
vanishes in power-law fashion at the Fermi energy. This

reduction of the low-energy density of states inhibits the
Kondo effect unless the effective impurity-band exchange
coupling exceeds a critical value. The Kondo-screened phase
is separated from a non-Kondo local-moment phase by first-
order QPTs that exhibit clear signatures in finite-temperature
transport.8

In this work we explore the connection between limits
described in the previous two paragraphs by considering
the effect of increasing the dot-2 Coulomb interaction U2

from zero. A free-moment phase with an unquenched spin- 1
2

occupies a region of parameter space that grows with U2 and
is separated from a surrounding strong-coupling phase by
Kosterlitz-Thouless QPTs. For U2 � �2—the level width of
dot 2 due to its coupling to the leads—the properties retain
signatures of the U2 = 0 pseudogap Kondo physics, while for
U2 � �2 there is a smooth crossover to the heavily studied
limit of two strongly interacting dots. These two regimes, both
exhibiting singular Fermi liquid behavior with very different
dot-lead entanglements, can be distinguished through weak-
bias conductance measurements at experimentally accessible
temperatures. In experiments, it is impractical to adjust U2

by orders of magnitude, but the crossover from U2 � �2 to
U2 � �2 can be accessed by tuning �2 via gate voltages. The
setup therefore has great potential for investigation of QPTs
and of entanglement in singular Fermi liquids, which lie on
the borderline between regular Fermi liquids and non-Fermi
liquids.21

The double-quantum-dot setup and its phase diagram are
described in Sec. II. Section III compares the cases U2 = 0
and U2 = �2, the latter typifying the behavior for a weakly
correlated dot 2, while Sec. IV addresses the crossover from
weak to strong dot-2 interactions. The results are summarized
in Sec. V.

II. MODEL AND PHASE DIAGRAMS

We consider an equilibrium system represented schemat-
ically in Fig. 1 and modeled by a generalized Anderson
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FIG. 1. (Color online) Schematic of the parallel double-quantum-
dot setup considered in this work.

Hamiltonian

H = Hleads + Hdots + Hmix. (1)

Here,

Hleads =
∑
j,k,σ

εjkc
†
jkσ cjkσ (2)

represents the left (L) and right (R) leads, with cjkσ annihilat-
ing an electron in lead j of wave vector k, spin z component
σ , and energy εk;

Hdots =
2∑

i=1

(εini + Uini↑ni↓) (3)

describes the energetics of the dots in terms of their occupan-
cies niσ = d

†
iσ diσ and ni = ni↑ + ni↓, where diσ annihilates

an electron of spin z component σ in the level of dot i that lies
closest to the common Fermi energy of the two leads (taken to
be εF = 0); and

Hmix =
∑

i,j,k,σ

Vij (d†
iσ cjkσ + H.c.) (4)

accounts for electron tunneling between dots and leads.
For simplicity, we take real dot-lead couplings ViL = ViR ≡
Vi/

√
2, for which case the dots interact only with one effective

band formed by an even-parity combination of L and R states.
We assume a constant density of states ρ = 1/(2D) with half
bandwidth D, so that the dot-lead tunneling is measured via
the hybridization widths �i = πρV 2

i . At low bias, electron
transmission described by a Landauer-like formula22 gives a
linear conductance

g(T ) = 2e2

h

∫
dω

(−∂f

∂ω

)
π

∑
i,j

√
�i�j Aij (ω,T ), (5)

where f (ω,T ) = [exp(ω/T ) + 1]−1 is the Fermi-Dirac func-
tion and Aij (ω,T ) = −π−1 Im Gij (ω,T ) is the spectral
density corresponding to the retarded Green’s function
Gij (ω,T ) = −i

∫ ∞
0 dt eiωt 〈{di,σ (t), d†

j,σ (0)}〉.
We have studied this model using the numerical renor-

malization group23 with discretization parameter 
 = 2.5,
retaining at least 1000 states after each iteration.24 This paper
focuses on the representative case of a strongly interacting
dot 1 described by U1 = 10�1 = 0.5D and a dot-2 hybridiza-
tion width �2 = 0.02D. We show the variation of physical
properties with temperature T and the dot energies εi (which

FIG. 2. (Color online) Ground states of the isolated quantum dots
[dashed lines and dot occupancies (〈n1〉,〈n2〉)] and phases of the full
system for �1 = 0.05D, �2 = 0.02D (solid lines) vs level energies
δi = εi + 1

2 Ui measured from particle-hole symmetry for (a) U2 = 0,
(b) U2 = 0.02D � U1 and (c) U2 = U1. (d) Phase diagram of the full
system on the δ1-U2 plane at δ2 = 0, showing local-moment (LM) and
underscreened spin-1 Kondo (USC) regimes within the free-moment
phase. Filled circles in (a) and (d) indicate first-order QPTs occurring
only for U2 = 0, while all other points along the phase boundaries
correspond to QPTs of the Kosterlitz-Thouless type. Arrows represent
paths along which data are plotted in Figs. 3, 4, and 7.

should be experimentally tunable via plunger gate voltages)
for different values of U2. We reiterate that in real devices, U2

will likely be fixed and �2 instead will be varied by raising or
lowering tunnel barriers.

It is instructive first to consider the dots isolated from the
leads, i.e., the limit �1 = �2 = 0. Figures 2(a)–2(c) show T =
0 occupancies (〈n1〉,〈n2〉) vs the level energies δi = εi + 1

2Ui

measured from particle-hole symmetry for three values of
the dot-2 Coulomb interaction strength: U2 = 0, U2 = 0.02D

(�U1), and U2 = 0.5D (=U1). The value of 〈ni〉 jumps on
crossing a dashed line representing δi = ± 1

2Ui . For U2 = 0
[Fig. 2(a)], 〈n2〉 = 1 only when the dot-2 level lies precisely
at the chemical potential (along the line δ2 = 0) and the δ1-δ2

plane divides into six two-dimensional regions. For U2 > 0
[Figs. 2(b) and 2(c)], there are instead nine regions, including
three in which dot 2 is singly occupied and hence carries a
magnetic moment.

When both dots are connected to the metallic leads
(�1,�2 �= 0), the numerical renormalization-group solution
reveals that most of the δ1-δ2 plane is occupied by a strong-
coupling phase in which all dot degrees of freedom are
quenched at T = 0. Within this phase, the first-order QPTs
present for isolated dots (dashed lines in Fig. 2) are replaced
by smooth crossovers between single-particle scattering of
lead electrons (wherever each dot is either empty or full,
i.e., |δi | − 1

2Ui � �i for i = 1 and 2) and many-body Kondo
physics (wherever one of the dots is singly occupied, i.e.,
|δi | − 1

2Ui � −�i for i = 1 or 2). However, the region around
the particle-hole-symmetric point δ1 = δ2 = 0 forms a distinct
free-moment phase in which a spin- 1

2 degree of freedom
survives down to T = 0. With increasing U2, this free-moment
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phase grows—primarily along the δ2 axis—as illustrated by the
solid lines in Fig. 2.

The next two sections present physical properties along
paths in parameter space that are represented schematically
by arrows in Fig. 2. Each path crosses the phase boundary
at a location that can be parametrized as ε1 = ε±

1 (U2,ε2).
(This notation suppresses additional dependences of the phase
boundaries on U1 and on the level widths �1 and �2, three
quantities that are held constant for all the results presented
in this paper.) The Hamiltonian (1) is invariant (up to a
constant) under the particle-hole transformation cjkσ → c

†
jkσ ,

diσ → −d
†
iσ , εjk → −εjk, and δi → −δi . This symmetry

implies that the phase boundaries in Fig. 2 are invariant under
a simultaneous change in the sign of δ1 and δ2, or equivalently
that ε−

1 (U2,ε2) = −U1 − ε+
1 (U2,−U2 − ε2).

III. ZERO VERSUS WEAK DOT-2 INTERACTIONS

We begin by presenting the properties of the double-
quantum-dot system when Coulomb interactions in dot 2 are
much weaker than in dot 1. We will focus on two specific cases,
namely, U2 = 0 and U2 = �2. An understanding of these cases
will allow us to establish a connection with the large-U2 regime
in Sec. IV.

A. Noninteracting dot 2

In the special case U2 = 0, it is possible to integrate out
the dot-2 degrees of freedom, thereby mapping the double-
dot setup to an effective one-impurity Anderson model7 in
which the interacting dot 1 hybridizes with a conduction band
described by a density of states

ρeff(ε) 
 1

2D

(ε − ε2)2

(ε − ε2)2 + �2
2

(6)

for |ε| � D. For ε2 �= 0, ρeff(0) is nonzero and the dot-1 degree
of freedom is completely quenched at sufficiently low temper-
atures. For ε2 = 0, however, ρeff(ε) vanishes quadratically at
ε = 0, leading to a realization of the pseudogap Anderson
model.7,8 In the mapped problem, the free-moment phase can
be interpreted as a region of parameter space in which the loss
of band states near the Fermi energy prevents Kondo screening
of the dot-1 spin.

This subsection reports results of calculations performed
directly on the double-dot model [Eq. (1)] with U2 = 0.
As found previously in studies of the mapped problem,7,8

the free-moment phase is restricted to ε2 = 0, ε−
1 < ε1 <

ε+
1 [ε±

1 (0,0) being denoted by filled circles in Figs. 2(a)
and 2(d)]. Figure 3(a) shows the temperature variation of
χimp, the contribution of the two dots (“impurities”) to the
magnetic susceptibility (defined and calculated in the usual
way25), for several values of ε1 along path OA in Figs. 2(a)
and 2(d). In the free-moment phase (e.g., ε1 = − 1

2U1), a
doublet ground state survives down to T = 0 with T χimp = 1

4 ,
characteristic of a free spin- 1

2 . In the strong-coupling phase
(e.g., ε1 = −U1/125), the system instead has a singlet ground
state and χimp (not just T χimp) vanishes as T → 0. For ε1 close
to ε+

1 , singlet and doublet ground states are quasidegenerate
and T χimp ≈ 1

6 within a window of temperatures above some

FIG. 3. (Color online) Noninteracting dot 2, U2 = ε2 = 0.
(a) T χimp vs T for various values of ε1 spanning the QPT at ε+

1 .
(b) T = 0 dot occupancies relative to half filling vs ε1, with a vertical
dashed line at ε1 = ε+

1 . Inset: Evolution of the Kondo scale TK

showing a linear dependence on 
ε1 = ε1 − ε+
1 .

T ∗; for T � T ∗, there is a crossover to the low-temperature
behavior of one or other phase. The crossover scale T ∗ vanishes
continuously on approach to the phase boundary from either
side, and at ε1 = ε+

1 , T χimp = 1
6 down to T = 0. The inset to

Fig. 3(b) shows that the Kondo temperature TK—proportional
to the crossover scale T ∗ in the strong-coupling phase and
defined via the standard condition25 TKχimp(TK ) = 0.0701—
vanishes linearly with 
ε1 = ε1 − ε+

1 , as expected at a first-
order level-crossing QPT.

Further insight into the QPTs at ε1 = ε±
1 (0,0) can be gained

by examining the dot occupancies 〈ni〉 at zero temperature.
On approach to the QPT from either phase, the occupancies
[Fig. 3(b)] increasingly deviate from the values for isolated
dots. Both occupancies undergo a jump at ε1 = ε+

1 . The
magnitude of the jump in 〈n1〉 can be identified with the weight
under a delta-function peak in the dot-1 spectral density that
passes through the Fermi energy at the QPT.8 The limiting
values of 〈n1〉 and 〈n2〉 on either side of the phase boundary,
as well as the magnitudes of the jumps at the QPT, are found
to change significantly with U1, �1, and �2. However, the
combined occupancy 〈n1 + n2〉 for ε2 = 0 in all cases remains
very close to 2 throughout the free-moment phase, to 1 for all
ε1 > ε+

1 , and to 3 for all ε1 < ε−
1 .

In order to understand this striking behavior of 〈n1 + n2〉,
it is useful to consider the wide-band limit in which D greatly
exceeds all other energy scales. Here, 〈n1 + n2〉 becomes
identical to nimp ≡ 〈N〉 − 〈N〉0, where 〈N〉 (〈N〉0) is the total
number of electrons with (without) the dots.10 One can find
nimp using the aforementioned mapping to a one-impurity
pseudogap Anderson model, valid for U2 = ε2 = 0. In the
free-moment phase of the pseudogap model, particle-hole
asymmetry is irrelevant20 so nimp(T = 0) = 2; by contrast,
particle-hole asymmetry is relevant in the strong-coupling
phase,20 forcing nimp(T = 0) = 1 or 3 depending on the
sign of δ1 ≡ ε1 + 1

2U1. These observations explain the near-
pinning of 〈n1 + n2〉 away from the wide-band limit, where
〈n1 + n2〉 only approximately equals nimp. They also identify
the differing response to particle-hole asymmetry in the two
phases as the underlying reason for the first-order nature of the
U2 = 0 QPTs.
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FIG. 4. (Color online) Weakly interacting dot 2, U2 = −2ε2 =
�2. (a) T χimp vs T for various values of ε1 spanning the QPT at
ε+

1 . (b) T = 0 dot occupancies relative to half filling vs ε1 with a
vertical dashed line at ε1 = ε+

1 . Inset: Evolution of the Kondo scale
TK , showing ln TK ∝ 1/
ε1 where 
ε1 = ε1 − ε+

1 .

B. Weakly interacting dot 2

Now we turn to the case U2 = �2 representative of the
crossover from a resonant dot 2 to an interacting one. The
mapping to an effective one-impurity model breaks down for
U2 �= 0, so the full double-dot model must be solved directly.

Figure 4(a) plots T χimp vs T at different points along
path O′A′ in Fig. 2(b). Deep in the strong-coupling phase
(e.g., ε1 = −U1/125) the system passes with decreasing
temperature directly from a local-moment regime (T χimp = 1

4 )
to the strong-coupling limit (Tχimp = 0); just as for U2 = 0,
χimp(T = 0) = 0. For ε1 just above ε+

1 [e.g., uppermost dashed
line in Fig. 4(a)], T χimp instead evolves with decreasing T from
near 1

4 toward the value 1
6 characterizing the U2 = 0 QPT (a

tendency seen more clearly24 for 0 < U2 � �2), then rises
and reaches a plateau near 1

4 before finally decreasing to zero.
The manner in which T χimp → 0 as T → 0 is identical to that
in the Kondo regime of the conventional Anderson model,25

with χimp(T = 0) 
 0.1/TK and TK varying exponentially
with 1/(ε1 − ε+

1 ) [inset to Fig. 4(b)]. For ε1 < ε+
1 , T χimp

approaches the free-moment value 1
4 from above, but there

is no temperature scale that vanishes on approach to the phase
boundary. These behaviors are all indicative of the Kosterlitz-
Thouless nature of the QPT, which holds for any U2 > 0
(with the sole exception of the first-order QPTs that arise from
parity conservation in the special case of two identical Kondo-
regime dots10). Like the ferromagnetic Kondo model, whose
properties it closely parallels, the small-U2 free-moment phase
exhibits singular Fermi liquid behavior with a quasiparticle
density of states that diverges at the Fermi energy.21,26

The dot occupancies for U2 = �2 [Fig. 4(b)] show generally
the same trends vs ε1 as found for U2 = 0 [Fig. 3(b)], with the
significant difference that there are no jumps. Since particle-
hole asymmetry is a marginal perturbation in the conventional
Anderson model,25 nimp(T = 0) varies continuously with ε1,
and there is no pinning of 〈n1 + n2〉 in either phase.

Comparison between Figs. 3 and 4 shows that for U2 �
�2, the properties retain their U2 = 0 pseudogap character
provided that the system is sufficiently far from the location
T = 0, ε1 = ε±

1 of the QPT. With decreasing U2 (not shown),
the pseudogap behavior progressively extends to lower tem-
peratures and/or smaller |ε1 − ε±

1 |.

FIG. 5. (Color online) Linear conductance g vs ε1 for U2 = �2.
Left: Temperature T = 0 and scaled dot-2 level energies ε2/U2 =
−0.5 (�), 0 (•), 0.075 (�), and 0.11 (�). Right: ε2 = 0.075U2 and
scaled temperatures T/TK0 = 0 (�), 0.0057 (•), and 0.228 (�).

The physical property most likely to be accessible in
experiments is the electrical conductance between the left
and right leads. Figure 5(a) shows the linear conductance
g [Eq. (5)] as a function of ε1 for U2 = �2, T = 0, and
four values of ε2. Deep in the free-moment phase (around
εi = − 1

2Ui), dot 1 is in Coulomb blockade and since there is
no Kondo effect and hence no Kondo resonance, transport takes
place solely through dot 2. For fixed ε1 near − 1

2U1 = −0.25D,
the zero-temperature conductance decreases from its unitary
limit g = 2e2/h as ε2 is varied from − 1

2U2 (squares) to
higher (circles and diamonds) or lower values, while for
fixed ε2 near − 1

2U2, the system passes through a QPT at
ε1 = ε±

1 , where g undergoes a jump. For ε1 right above ε+
1

or right below ε−
1 , there is a Kondo effect centered primarily

on dot 1, and interference between transport through the
two dots causes g to decrease abruptly. On moving deeper
into the strong-coupling phase, the dot-1 occupancy moves
farther from unity, interference from transport through dot 1 is
reduced, and g rises again. The preceding picture holds until
dot 2 becomes sufficiently particle-hole asymmetric that the
strong-coupling phase spans all values of ε1, and g vs ε1 shows
no sign of any QPT [triangles in Fig. 5(a)].

The conductance signatures of the QPT persist to T > 0, as
illustrated in Fig. 5(b), which plots g vs ε1 for U2 = �2, ε2 =
0.075U2, and three temperatures specified in the caption as
multiples of TK0 = 7 × 10−4D: the Kondo scale when dot 2 is
isolated (�2 = 0) and dot 1 is at particle-hole symmetry (ε1 =
− 1

2U1). The foremost effect of increasing T is a progressive
suppression of the Kondo effect, leading to a smoothing and
weakening of the conductance dips in the vicinity of the QPTs,
as well as shifts in positions of the local minima in g to larger
values of |ε1 + 1

2U1|.

IV. WEAK VERSUS STRONG DOT-2 INTERACTIONS

In this section, we compare the regime U2 � �2 described
above with the one U2 � �2 studied in most previous work on
Kondo physics in parallel double quantum dots. We show that
these regimes have very different spin correlations between
the different components of the double-quantum-dot device.
Furthermore, the regimes can be distinguished experimentally
through linear conductance measurements.
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FIG. 6. (Color online) Dot-lead and dot-dot spin correlations vs
scaled interaction strength U2/�2, determined at zero temperature
for level energies εi = − 1

2 Ui , i.e., at the center of the free-moment
phase. Increasing U2 from zero enhances the entanglement between
dot 1 and the other parts of the system as the residual spin- 1

2 degree of
freedom evolves from being localized on dot 1 (for U2 = 0) to being
distributed throughout the system (for U2 � �2).

A. Spin correlations

Insight into the connection between the regimes of small
and large U2/�2 can be gained from the static spin-spin
correlation 〈Si · Sleads〉 between dot i and the leads, as
well as from the interdot correlation 〈S1 · S2〉. Here, Si =
1
2

∑
σ,σ ′ d

†
iσσ σ,σ ′diσ ′ and Sleads = 1

2

∑
j,k,k′,σ,σ ′ c

†
jkσσ σ,σ ′cjk′σ ′ ,

where σ is a vector of Pauli matrices.
Figure 6 shows the T = 0 spin-spin correlations vs U2/�2

for fixed �2 = 0.02D with both dots at particle-hole symmetry,
i.e., at the center of the free-moment phase.27 For U2 = ε2 = 0,
spin-0 and spin- 1

2 configurations of dot 2 should be equally
probable, whereas dot 1 is expected to have a well-defined
spin- 1

2 at low temperatures. The facts that 〈S1 · Sleads〉 is much
smaller in magnitude than 〈S2 · Sleads〉 and that the latter
quantity is close to the value 1

2 × (− 3
4 ) = − 3

8 it would take
if dot 1 were absent from the system indicate that for U2 = 0
the residual spin- 1

2 degree of freedom is located primarily
on dot 1, which is almost decoupled from other parts of the
system.

Increasing U2 enhances the magnetic character of dot 2
and so strengthens both the dot’s antiferromagnetic correlation
with the leads and (via an effective RKKY interaction6,10)
its ferromagnetic correlation with dot 1. There is an even
more pronounced growth in the antiferromagnetic correlation
between dot 1 and the leads. These trends continue until
U2/�2 becomes of order 5, by which point each dot carries
a well-defined spin- 1

2 . To good approximation, these spins
combine to form a triplet that is partially Kondo-screened by
the leads, to yield a strongly entangled spin- 1

2 ground state.10,18

Since the effective exchange interaction between dot 2 and
the leads is proportional6 to 1/U2, further increase of U2/�2

beyond about 5 results in a gradual reduction in the magnitudes
of both 〈S1 · Sleads〉 and 〈S1 · S2〉.

B. Transport properties

Although the regimes U2 � �2 and U2 � �2 feature very
different spin correlations, they belong to the same phase

FIG. 7. (Color online) Conductance g plotted (a) vs T at particle-
hole symmetry (εi = − 1

2 Ui) and (b) vs ε1 for ε2 = − 1
2 U2, comparing

the local-moment and underscreened spin-1 Kondo regimes of
the free-moment phase, represented by U2 = �2 and U2 = U1,
respectively.

and therefore have qualitatively the same asymptotic low-
temperature properties.26 The question remains whether the
two regimes may be distinguished through their behavior at
higher T .

Figure 7(a) shows g vs T at the particle-hole-symmetric
point εi = − 1

2Ui for six values of U2. For U2 � �2, the
conductance drops significantly below its unitary limit once
the temperature rises above the characteristic scale T S=1

K of
the spin-1 Kondo effect, which is10 of order TK0. For U2 � �2,
there is no Kondo physics in the free-moment phase and g

remains close to 2e2/h up to much higher temperatures of
order �2.

Figure 7(b) plots g vs ε1 at different temperatures for
U2 = −2ε2 = �2 (path O′A′ in Fig. 2) and for U2 = −2ε2 =
U1 (path O′′A′′). Just as in Fig. 7(a), the T dependence of
the conductance in the free-moment phase is much weaker
for U2 � �2 than for U2 � �2. Near particle-hole symmetry
(ε1 = −0.25D), the latter regime has d2g/dε2

1 > 0 at all but
the very lowest temperatures, reflecting the ε1 dependence10

of T S=1
K , whereas d2g/dε2

1 � 0 in the local-moment case.
Similar trends to those shown in Fig. 7 are found for

other choices of ε1 and ε2 that place the system in the
free-moment phase. We conclude that the local-moment
and underscreened spin-1 Kondo regimes can be clearly
differentiated via their conductance at temperatures (of order
the typical Kondo scale TK0) that should be readily attainable in
experiments.

V. SUMMARY

We have studied two quantum dots coupled in parallel
to metallic leads, focusing on situations where “dot 2” has
a weaker on-site Coulomb interaction than “dot 1”: U2 <

U1. For U2 � �2, the tunneling width of the dot-2 level,
the properties still reflect the pseudogap Kondo physics
found previously for U2 = 0. For all U2 > 0, Kondo-screened
and free-moment phases are separated by quantum phase
transitions of the Kosterlitz-Thouless type that have signatures
in the electrical conductance up to experimentally accessible
temperatures.
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In the free-moment phase, conductance measurements can
also distinguish the small-U2 regime, in which dot 1 carries
a spin- 1

2 and is essentially disconnected from the rest of
the system, from the regime U2 � �2 in which both dots
contain strong electron correlations and their combined spin is
partially screened by the leads. Given the feasibility of tuning
between these two cases—and of crossing into the Kondo
phase (above an underlying zero-temperature transition)—by
adjusting just one gate voltage on each dot, this system offers
fascinating possibilities for controlled experimental study of

quantum phase transitions and of variations in the strength
and spatial distribution of entanglement in singular Fermi
liquids.
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