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The transport properties of nanostructured systems are deeply affected by the geometry of the effective
connections to metallic leads. In this work we derive a conductance expression for a class of interacting
systems whose connectivity geometries do not meet the Meir-Wingreen proportional coupling condition.
As an interesting application, we consider a quantum dot connected coherently to tunable electronic cavity
modes. The structure is shown to exhibit a well-defined Kondo effect over a wide range of coupling
strengths between the two subsystems. In agreement with recent experimental results, the calculated
conductance curves exhibit strong modulations and asymmetric behavior as different cavity modes are
swept through the Fermi level. These conductance modulations occur, however, while maintaining robust
Kondo singlet correlations of the dot with the electronic reservoir, a direct consequence of the lopsided
nature of the device.
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The quantum coupling of spatially localized discrete
levels to cavity modes has emerged as a key tool for
quantum information processing in different contexts, from
cavity systems in atoms [1] and semiconductor quantum
dots [2] to exciton-polariton condensates in optical systems
[3]. Similarly, coherent coupling of electronic modes to
discrete quantum systems has been explored in quantum
corrals created on metallic surfaces [4], allowing the
manipulation and control of quantum information over
regions a few nanometers across [5]. Recent experiments
have extended this fascinating line of inquiry to systems
implemented on two-dimensional electronic structures in
semiconductors [6,7]. These new systems have paved the
way for quantum engineering in integrated, scalable nano-
scale systems with great flexibility on geometries and
interesting physical behavior.
The control of quantum dot (QD) characteristics in these

systems, such as the tunnel coupling to external current
leads, have also allowed the experimental study of the
Kondo regime, an emblematic many-body effect [8,9]. In
this regime, the net magnetic moment of an unpaired spin in
the QD becomes effectively screened by the conduction
electrons in the leads, forming a delocalized quantum
singlet that involves correlations with the electronic spins
in the lead reservoirs [10]. Moreover, the coupling of a QD
to reservoirs with nontrivial energy dependence gives rise
to a variety of interesting effects on the ensuing Kondo
state, including the appearance of zero-field splittings of the
Kondo resonance [11–13]. As QD systems are designed to
interact with increasingly complex structures, one is led to
ask how such many-body correlations would evolve.
The standard theoretical tool for the description of the

two-terminal conductance through interacting regions is the

Meir-Wingreen (MW) generalization of the Landauer for-
mula for correlated systems [14]. The MW expression is
particularly useful in cases where the coupling matrix
elements between the leads and the system are related to
each other by amultiplicative factor. This conditionwas later
dubbed “proportional coupling” (PC) [15] and it is essential
in writing the conductance in terms of the system’s retarded
Green’s function. In many cases, however, the PC descrip-
tion is inadequate [16] and the evaluation of the conductance
requires an alternative treatment.
A remarkable example of a nanoscale device with non-

PC geometry was recently investigated in Ref. [6]. They
demonstrated coherent coupling between a QD in the
Coulomb blockade regime and a larger, cavitylike region
inscribed electrostatically onto the same two-dimensional
electron gas (2DEG). The QD is coupled to two metallic
leads while the cavity itself is coupled to only one of them,
clearly breaking the PC condition. The size of the cavity
and its coupling to the QD can be controlled by gate
voltages on the device, allowing for fine control over the
spacing between cavity resonances, the tunnel rate of
electrons between cavity and the QD, and the dot-cavity
coupling over a wide range, while studying the conduct-
ance of the entire structure.
In this Letter we extend the applicability of the MW

expression to a large class of non-PC cases, providing
theoretical tools to analyze the transport properties
and temperature dependence of systems with a single
interacting level (such as a QD) embedded in complex
structures, as some studied recently [6,7]. We find it
is possible to write the linear conductance of such
systems as
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G ¼ 2e2

ℏ

~ΓLðεFÞ ~ΓRðεFÞ
~ΓLðεFÞ þ ~ΓRðεFÞ

Z
dω

�
−
∂f0
∂ω

�
AdðωÞ; ð1Þ

where f0 is the equilibrium Fermi function, the cou-
plings ~ΓL;RðεFÞ are effective hybridization functions to
left (L) and right (R) leads, AdðωÞ ¼ ð−1=πÞImGr

dðωÞ
the spectral function, and Gr

d is the retarded Green’s
function at the QD.
The latter two functions can be accurately calculated

through a variety of techniques, such as Wilson’s numerical
renormalization group (NRG) [17].
Although deceptively similar to the MW conductance

formula for a single-level QD [15], this expression incor-
porates the connection of the entire complex system to each
lead through the effective hybridization functions ~ΓL;RðεFÞ.
A crucial difference is that, in the original formula [14],
the hybridization is represented by matrices of functions
ΓL;R involving the couplings and the density of states in the
leads. Here, such complexities are encoded in the intricate
energy structure of ~ΓL;RðωÞ. As we will see below, these
functions can be obtained after careful consideration of the
effective connectivity of the system.
Next, we use this approach to successfully describe and

provide further insight on conductance measurements of a
QD coupled to a cavity [6]. We implement a realistic model
of the curved electrostatic reflector used to define the cavity
in experiments, utilizing both analytical and numerical
approaches. We further calculate the QD spectral density
required by Eq. (1) by applying the NRG to an effective
Anderson model that incorporates the cavity. Our results
show contrasting transport properties in the weak- and
strong-coupling regimes, in excellent agreement with
experiments. As the coupling to the cavity sets in, the
conductance is strongly modulated, especially as different
cavity resonances are swept through the Fermi level in the
leads by applied gates [6]. Moreover, the NRG calculations
allow us to relate the conductance behavior to other
intrinsic characteristics, such as the Kondo temperature
TK . We find that even as the conductance peaks are strongly
distorted due to the interaction with the cavity modes, the
Kondo screening remains robust, with larger TK values for
stronger cavity coupling.
MW formula beyond proportional coupling.—

Proportional coupled systems are those in which the
coupling matrices of the interacting system to L and R
leads are proportional to each other, namely, ΓRðωÞ ¼
λΓLðωÞ where λ is a constant factor [14]. This condition
is clearly violated in the case of a QD connected to a cavity
on only one lead, such as in Fig. 1. An electron in the dot is
transmitted from L by a direct tunneling process regulated
by the couplingmatrix elementVdL and the density of states
in that lead. In contrast, the transmission to the right involves
the coherent interference between multiple paths that
include the cavity resonances and states in R. Figure 1(b)

indicates the different dot-lead (VdR), and cavity-lead (VcR)
couplings that enter as nonzero elements in ΓR, while the
cavity-lead couplings are zero in ΓL, thereby making the
system evidently nonproportional [18].
The main technical difficulty in obtaining a transport

formula is the calculation of the lesser Green’s functions
matrix G< for the interacting region, which appears in the
general expression for the current [14]. The latter gives the
current through the L (R) lead as

JLðRÞ ¼
ie
h

Z
dωtrðΓLðRÞðωÞfG<ðωÞ

þ fLðRÞðωÞ½GrðωÞ −GaðωÞ�gÞ; ð2Þ

where GrðaÞ is the retarded (advanced) Green’s function
matrix [18] and fLðRÞ is the Fermi distribution at the LðRÞ
lead with chemical potential μLðRÞ. Proportional coupling
and current conservation make it possible to simplify the
calculation by ingeniously writing JLðRÞ in terms of
GrðaÞðωÞ. In contrast, for interacting non-PC systems away
from equilibrium, the elimination of G< is in general not
possible. However, in the linear response regime it can be
achieved by recalling that [16]

G<ðωÞ ≈G<
eqðωÞ −

∂f0
∂ω ΠðωÞΔμþOðΔμ2Þ; ð3Þ

where Δμ ¼ μL − μR and ΠðωÞ has a slow ω dependence
within energy windows of kBT corresponding to the
experiments of interest. These conditions eventually lead
to Eq. (1); the detailed derivation is provided in the

(a) (b)

(c) (b)

FIG. 1. (a) Experimental dotþ cavity system; the cavity has
radius l and aperture θC. (b) Schematic of single-level dot (εd)
coupled to multimode cavity (εj). The dot is connected to leads
(L and R), while the cavity is only coupled to the R lead; coupling
matrix elements are indicated. (c) Cavity modes for θC ¼ π are
described by Bessel modes ψn;jðr; θÞ. The n ¼ 1modes dominate
the LDOS at r ≈ 0. (d) Kwant mode simulation for finite aperture
cavity (θC ¼ π=2) coupled to wide leads shows good agreement
with Bessel modes.
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Supplemental Material [18]. Notice that the structure of the
system may result in a cumbersome derivation of the
~ΓL;RðωÞ entering Eq. (1). We now specify the QD-cavity
model that exemplifies this treatment.
Resonant cavity modes.—The key experimental element

is a “mirror” that focuses resonant modes onto the QD, both
elements electrostatically defined on a 2DEG. The cavity
has a length l ∼ 2 μm and angular aperture θC ∼ 45°, as
indicated in Fig. 1(a). Assuming circular symmetry,
the normal modes are given by Bessel functions,
ψn;jðr; θÞ≃ Jnðkn;jrÞ sinðnθÞ. The dot-cavity coupling is
maximal for modes with the largest amplitude in the
vicinity of r ≈ 0, and dominated by resonances with
n ¼ 1, given that JnðkrÞ ∝ ðkrÞn for kr ≪ 1. These modes
have a characteristic energy spacing δcav ≈ 200 μeV for a
cavity with these dimensions, in agreement with the
resonance separations in the experiment [6] and confirmed
by Kwant calculations [18,25].
It is remarkable that although the cavity is immersed in

the R lead, it can be tuned to produce sharply peaked
resonances that strongly modify ~ΓRðωÞ, providing different
electronic paths for the current. In the experiment, a gate
voltage shifts the cavity resonance levels and the coupling
to the QD. This tunability can be incorporated in the
interacting QD model as follows.
Interacting quantum impurity model.—The Hamiltonian

for this system can be written as H¼HdotþHcavityþ
HleadsþHcoupling, where

Hdot ¼
X
σ

εdc
†
dσcdσ þUnd↑nd↓; ð4Þ

Hcavity ¼
X
j;σ

εja
†
jσajσ; ð5Þ

Hleads ¼
X
α;k;σ

εαkc
†
αkσcαkσ: ð6Þ

Here c†dσ , a
†
jσ, and c†αkσ create a spin-σ electron in the

dot, the jth mode of the cavity, and each of the leads
α ¼ L, R. The resonances are assumed equally spaced,
εj ¼ ϵc þ ðj − 1Þδcav, where ϵc is shifted by a gate voltage;
leads have a flat density of states ρðωÞ ¼ ρ0ΘðD − jωjÞ,
symmetric about the Fermi energy (ω ¼ 0). For simplicity
all couplings are assumed local, real, and independent of
either momentum in the leads or cavity-mode index j. The
coupling Hamiltonian is then, see Fig. 1(b),

Hcoupling ¼
X
α;k;σ

Vdαc
†
dσcαkσ þ VcR

X
j;k;σ

a†jσcRkσ

þΩ
X
j;σ

c†dσajσ þ H:c: ð7Þ

QD effective decay widths.—As the Coulomb inter-
actions are localized in the QD, one can find its effective
couplings to L and R leads and the cavity, by calculating
the dot retarded Green’s function for the system withU¼ 0,

Gð0Þ;r
d ðωþÞ≡ ⟪cdσ; c

†
dσ⟫ω. In the wideband limit for

the leads,
P

kðωþ−εkÞ−1→−iπρ0, we obtain Gð0Þ;r
d ðωÞ¼

½ω−εd−Σð0Þ
d ðωÞ�−1, where

Σð0Þ
d ðωÞ ¼ −

i
2
ðΓdL þ ΓdRÞ þ

�
Ω −

i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓdRΓcR

p �
2
~SðωÞ;

ð8Þ
is thenoninteracting self-energy.Here,Γðc;dÞα≡2πρ0jVðc;dÞαj2,
for α ¼ L, R, with the cavity structure contained in SðωÞ≡P

jðω−εjÞ−1 and ~SðωÞ¼SðωÞð1þiSðωÞΓcR=2Þ−1. The
hybridization function of the (noninteracting) dot with the

effective fermionic system is given by ΔðωÞ ¼ −ImΣð0Þ
d ðωÞ.

This approach can be extended to the interacting
Green’s function [12,13], as long as the interactions are
restricted to the QD.
The interference of cavity modes and states in the leads is

contained in the structure of ΔðωÞ, which yields a highly
structured density of states of the “effective” Fermi reser-
voir in which the QD is embedded [18]. Most importantly,
the structure in ΔðωÞ affects strongly the Kondo state in the
system once interactions set in. ΔðωÞ reliably describes the
experimental system once cavity parameters are extracted
either from a microscopic model, and/or determined from
experiments [26].
Conductance for the interacting system.—Equation (1)

determines the conductance through the system under
different cavityþ QD coupling regimes. The QD coupling
to the left (source) reservoir is simply ~ΓL ¼ ΓdL. In
contrast, the coupling to the right (drain) reservoir requires
the full Green’s function and results in [18]

~ΓRðωÞ ¼ ΓdR þ ΓcRj ~SðωÞj2
�
Ω2 þ ΓcRΓdR

4

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓdRΓcR

p
~SðωÞ

�
Ω −

i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓcRΓdR

p �
þ H:c: ð9Þ

This expression encodes information about all nontrivial
interference processes taking place during transport. The
energy dependence of ~ΓRðωÞ prevents the use of the PC
simplification, demanding the more general approach we
put forward here. The spectral function needed in Eq. (1) is
obtained by an NRG approach that uses the full intricate
structure of the effective hybridization function ΔðωÞ
coupling the interacting QD to the environment.
Before discussing the conductance, we analyze the QD

spectral function. In general, AdðωÞ shows a sequence of
asymmetric features whenever ϵc shifts cavity modes near
the Fermi level (ω ¼ 0), with characteristic shape and
width that changes strongly with coupling Ω. Figure 2
illustrates this behavior for weak (Ω < ΓcR=2) and strong
(Ω > ΓcR=2) dot-cavity coupling regimes. For weak cou-
pling [Fig. 2(a)&(c)], the modulation is marked by diagonal
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“valleys” whenever a cavity mode contributes to Δð0Þ,
separated by bright peaks in Ad. The large Ω regime
[Figs. 2(b) and 2(d)] is drastically different: Δð0Þ exhibits
Fano asymmetric line shapes as a function of ϵc, leading to
sharp asymmetric peaks in Adðω < TKÞ [18].
This behavior can be qualitatively understood in terms of

the Friedel sum rule (FSR) [12,27,28], as Adð0Þ is inversely
proportional toΔð0Þ. Accordingly, when a resonant peak of
ΔðωÞ lies close to the Fermi energy, it causes a downturn in
the spectral function, and a consequent splitting of the
Kondo peak may appear in Ad in the ω < TK range [12].
Such splittings do appear for some ϵc values, where Ad
shows two local maxima away from the ω ¼ 0 mark in
Fig. 2(b) (see details in Ref. [18]). Nonetheless, even at
these points, AdðωÞ shows fully developed Kondo reso-
nances of width ∼TK in between Hubbard peaks [insets in
Figs. 2(a) and 2(b)].
The resulting conductance G (in units of G0 ¼ 2e2=h) is

shown in Fig. 3 vs cavity voltage εc, for Ω values from
0.01D (weak) to 0.2D (strong coupling) and for T ¼ 0
and 250 mK.
At low temperatures and small Ω, the conductance

exhibits a quantized peak whenever a cavity resonance is
near the Fermi level, in agreement with the experimental
result [6]. The conductance drops away with ϵc as destruc-
tive interference sets in and results in a nonzero scattering
shift associated with the strongly asymmetric AdðωÞ, as
expected from the FSR.
Conversely, when a cavity resonance is aligned with the

Fermi level in the strong coupling regime, a Fano-like dip
appears in the conductance, with a width much smaller than
the cavity level spacing. This feature is also consistent with

the experimental data of Ref. [6]. Finite temperatures do not
result in qualitative changes of this picture, but suppress the
magnitude of G, as one would expect, with a larger effect
for TK values below the temperature of the reservoir
(here 250 mK).
Notice that the spinful QD remains in the Kondo regime

over this range of coupling to the cavity. In fact, the Kondo
screening is stronger for largerΩ, as monitored by the value
of TK . To quantify this, we calculate TK from the magnetic
susceptibility curves obtained from the NRG, a procedure
that focuses on how the Kondo fixed point is reached at
lower energies, and does not rely on the behavior of the
spectral density [17]. The inset in Fig. 3 shows TK
increasing rapidly with larger QD-cavity coupling Ω. For
Ω ¼ 0.15D − 0.2D, we obtain TK ∼ 0.0048U − 0.03U;
with the experimental U ¼ 0.7 meV, this translates into
TK ∼ 40–240 mK, which is consistent with the observed
value of ∼100 mK, obtained from the conductance peak
width (see supplement in Ref. [6]). Our calculations also
show TK to depend weakly on ϵc. This might appear
counterintuitive, as Δð0Þ is strongly modulated by changes
in ϵc, but the explanation is simple: The effective coupling
defining the Kondo temperature (e.g., Γ in Haldane’s
expression [29]) is given not by Δð0Þ, but rather by an
integral over the full bandwidth, Γ ∝

R
ΔðωÞdðω=DÞ [30].

This “Γ” depends strongly on the dot-cavity coupling Ω
(thereby giving the strong variation of TK with Ω) while
only weakly with ϵc, whose main effect is to shift the peaks
in ΔðωÞ.
The increasing TK indicates that the screening of the QD

spin by the composite cavity-lead environment is in fact
more robust for larger Ω, which is confirmed by an NRG
analysis of the thermal properties of the QD. This is
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remarkable behavior, as the strong variation in AdðωÞ and
resulting conductance are drastically different from the
simply-connected QD in the Kondo regime.
Discussion.—We have presented an approach that allows

one to calculate the linear conductance through interacting
systems beyond the proportional coupling approximation.
This opens the possibility of studying interesting systems
with complex geometries where quantum interference
introduces nontrivial energy dependence on the effective
decay widths ~Γα. We have illustrated the power of the
method by analyzing a recent experiment with very
interesting geometry [6]. Despite the observed splitting
and strong modulation of conductance peaks for growing
cavity coupling, we find that the Kondo screening is in fact
strengthened, as characterized by a larger TK. This inter-
pretation is supported by calculations of the conductance in
excellent agreement with experiment. It would be interest-
ing to be able to measure the expected phase shifts
introduced by the interaction with the cavity to provide
further insights into the coherent interference that these
many-body coupled systems experience.
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