
PHYSICAL REVIEW B 92, 085123 (2015)

Spin versus charge noise from Kondo traps

Luis G. G. V. Dias da Silva
Instituto de Fı́sica, Universidade de São Paulo, C. P. 66318, 05315–970 São Paulo, SP, Brazil
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Magnetic and charge noise have a common microscopic origin in solid-state devices, as described by a
universal electron trap model. In spite of this common origin, magnetic (spin) and charge noise spectral densities
display remarkably different behaviors when many-particle correlations are taken into account, leading to the
emergence of the Kondo effect. We derive exact frequency sum rules for trap noise and perform numerical
renormalization-group calculations to show that while spin noise is a universal function of the Kondo temperature,
charge noise remains well described by single-particle theory even when the trap is deep in the Kondo regime. We
obtain simple analytical expressions for charge and spin noise that account for Kondo screening in all frequency
and temperature regimes, enabling the study of the impact of disorder and the emergence of magnetic 1/f noise
from Kondo traps. We conclude that the difference between charge and spin noise survives even in the presence of
disorder, showing that noise can be more manageable in devices that are sensitive to magnetic (rather than charge)
fluctuations and that the signature of the Kondo effect can be observed in spin noise spectroscopy experiments.
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I. INTRODUCTION

The tunneling of conduction electrons into local charge
traps is a prevalent phenomenon in solid-state physics. Traps
can be realized by artificial structures such as quantum dots
[1] or by natural “unwanted” defects such as dangling bonds
[2] and bound states in metal-oxide interfaces [3]. It has long
been recognized that trap fluctuation causes charge noise in
electronic devices, with the signature of individual traps being
observed with a Lorentzian 1/f 2 noise spectral density in small
structures [4,5] and an ensemble of them causing 1/f noise in
large structures [6]. Here we address the fundamental question
of how the electron spin alters trap noise.

One of the greatest developments of interacting electron
physics was the discovery that a local trap interacting with a
Fermi sea gives rise to the Kondo effect, the formation of a
many-body singlet with conduction-electron spins screening
out the local trap spin [7]. The signatures of the Kondo
effect in transport phenomena are well studied, but key issues
related to dynamics have been addressed only recently with
the emergence of modern numerical renormalization group
(NRG) algorithms [8]. It is particularly interesting to find out
whether trap noise will impact devices that are sensitive to
magnetic fluctuations as opposed to charge, e.g., spin-based
or spintronic devices [9,10], in the same way that it affects
conventional charge-based devices. Recent measurements of
intrinsic magnetic flux noise in superconducting quantum in-
terference devices do indeed confirm that trap spin fluctuation
is the dominant source of noise [11–13]. Moreover, novel
developments in spin noise spectroscopy [14] open several
possibilities for the detection of correlated spin fluctuations in
quantum-dot systems.

Given these interesting prospects, the question that we
address here is the qualitative difference between pure charge
and spin noise of a “Kondo trap” interacting with a Fermi sea,
which we define as a local charge trap in the Kondo regime.

The interplay of Kondo physics and noise has been explored
mostly in the context of transport through quantum-dot

systems, with the Kondo trap right inside the transport path.
In this case trap charge and spin fluctuation are intertwined
in a nontrivial way. Calculations of the shot noise and current
noise in different setups such as single [15–19] and double
quantum dots [20–22] in the Kondo regime have been reported.
Much less studied is the role of the Kondo state in spin
noise. The case of spin-current noise was considered in
Refs. [23,24], and qualitative differences between spin-current
and charge-current noise were found to exist.

In this paper, we show that focusing on pure spin/charge
trap noise (i.e., finite-frequency trap occupation noise) allows
for a different perspective on the problem of Kondo trap
dynamics: it enables a clear separation between the contri-
butions of single-particle excitations and the many-particle
processes connected to the formation of the Kondo singlet
state. Moreover, considering pure spin (charge) trap noise
is important for describing transport experiments with traps
outside the transport channel. In this case, trap fluctuations
produce bias magnetic (electric) noise that in turn may
dominate the spin-current (charge-current) noise.

Our paper is organized as follows. In Sec. II we outline
our model for pure spin/charge trap noise, and establish
its connection to the usual spin/charge susceptibilities. We
demonstrate six exact results: four sum rules and two Shiba
relations. In Sec. III we describe our Hartree-Fock (HF) or
mean-field approximation, which mainly accounts for single-
particle processes. In Sec. IV we present our nonperturbative
NRG calculations, which account for single-particle and
many-particle processes on the same footing. The NRG results
show that finite-frequency spin and charge noises have quite
distinct behaviors and are dominated by completely different
processes. In Sec. V we use NRG and the sum rules to obtain
an analytic approximation to spin noise in the Kondo regime,
and in Sec. VI we use this analytic approximation to study
the interplay between disorder and Kondo correlations in
an ensemble of Kondo traps. We show that, in the presence
of disorder, the spin noise displays a temperature-dependent
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1/f noise that is qualitatively distinct from the temperature-
independent charge 1/f noise. Finally, Sec. VII presents our
concluding remarks, with a discussion of the impact of our
results in the effort to detect Kondo correlations in spin noise
spectroscopy experiments, and our prediction of qualitatively
different 1/f noise impacting spin-based and charge-based
devices.

II. CHARGE TRAP MODEL AND EXACT SUM RULES

Our starting point is the Anderson model [25] for a trapping
center interacting with a Fermi sea,

H =Hband + Hhyb + Htrap, (1)

with

Hband =
∑
k,σ

εkσ nkσ , (2a)

Hhyb =
∑
k,σ

Vdk(c†kσ dσ + d†
σ ckσ ), (2b)

Htrap = εd (n↑ + n↓) + Un↑n↓. (2c)

In the above equations, c
†
kσ (ckσ ) is a creation (destruction)

operator for a conduction electron with wave vector k and
spin σ = ↑,↓, and nkσ = c

†
kσ ckσ counts the number of band

electrons in state k,σ with energy εkσ . Similarly, the operators
d†

σ and dσ create and destroy a trap electron with spin σ ,
respectively, with nσ = d†

σ dσ being the number operator for
electrons with spin σ occupying the trap state with energy εd .
Finally, U is the Coulomb repulsion energy for the trap, with
εd + U being the energy required to add a second electron to
a trap site that already contains one electron.

Our goal is to calculate the trap spin Ss(ω,T ) and charge
Sc(ω,T ) noise spectral densities, defined by

Si=s,c(ω,T ) = 1

2π

∫ ∞

−∞
dt eiωt 〈δÔi(t)δÔi(0)〉, (3)

where δÔi(t) = Ôi(t) − 〈Ôi〉, with trap spin and charge oper-
ators given by Ôs = Sz = (n↑ − n↓)/2 and Ôc = (n↑ + n↓),
respectively, and 〈·〉 denoting the thermal equilibrium average.

We write an exact expression for the spin and charge noise
by performing a spectral decomposition of Eq. (3) in the basis
of energy eigenstates:

Si(ω) =
∑
m,n

e−Em/T

Z
|〈n|Ôi |m〉|2δ(ω − Enm) − 〈Ôi〉2δ(ω) ,

(4)
where Z is the partition function, |m〉 are (many-body)
eigenstates of the Hamiltonian (1) with energy Em (Enm ≡
En − Em), and 〈n|Ôi |m〉 are the many-body matrix elements
of the local operator Ôi . For simplicity, we set � = kB = 1.
Note that Eq. (4) implies that Si(ω,T ) � 0 and Si(−ω,T ) =
e−ω/T Si(ω,T ), as required by our assumption of thermal
equilibrium.

The noise spectra are closely related to the dynamical
susceptibility associated with the operator Ôi . We shall explore
this connection in order to derive the exact frequency sum rules
and Shiba relations [26] for Si(ω,T ). These relationships will

be used in Sec. V to obtain analytical approximations for the
noise spectra.

Assuming that an external field Fi(t) couples to Ôi through
Hext = −ÔiFi(t), the linear response of Ôi to Fi will be
〈Ôi(t)〉F �=0 − 〈Ôi〉F=0 = 2π

∫
dωe−iωtχi(ω,T )Fi(ω), where

χi(ω,T ) is the dynamical susceptibility given by [27]

χi(ω,T ) = i

2π

∫ ∞

0
dt eiωt 〈[Ôi(t),Ôi(0)]〉. (5)

Performing a spectral decomposition of Eq. (5) and compar-
ing it to Eq. (4) lead to the following Lehmann representation:

χi(ω,T ) = 1

2π

∫ ∞

−∞

dω′

ω − ω′ + iη
[Si(−ω′,T ) − Si(ω

′,T )],

(6)
with η → 0+. Separating the susceptibility into real and imag-
inary parts, χi = χ ′

i + iχ ′′
i , using Si(−ω,T ) = e−ω/T Si(ω,T ),

and taking the imaginary part of Eq. (6) lead to

χ ′′
i (ω,T ) = 1 − e−ω/T

2
Si(ω,T ), (7)

which is known as the fluctuation-dissipation theorem. More-
over, taking the real part of Eq. (6) yields

χ ′
i (ω,T ) = 1

2π
P

∫ ∞

−∞

dω′

ω′ − ω
(1 − e−ω′/T )Si(ω

′,T ), (8)

which is the Kramers-Kronig causality relation.
We now derive the frequency sum rules. The first one is

obtained by direct integration of Eq. (4) over all frequencies:∫ ∞

−∞
Si(ω,T ) dω = 〈

Ô2
i

〉 − 〈Ôi〉2. (9)

We call this the spin or the charge sum rule depending
on whether i = s or i = c. Another sum rule is obtained by
setting ω = 0 in Eq. (8) and noting that Eq. (6) implies χi(ω =
0,T ) = χ ′

i (ω = 0,T ):∫ ∞

−∞

1 − e−ω′/T

2πω′ Si(ω,T )dω′ = χi(ω = 0,T ). (10)

Accordingly, we call this the spin or charge susceptibility sum
rule. Altogether Eqs. (9) and (10) form a set of four exact sum
rules that are valid at any temperature T .

Finally, there are two additional exact relationships between
noise and susceptibility that apply only at T = 0. These are
the so-called Shiba relations [26]:

limω→0+
Ss(ω,T = 0)

8π2ω
= [χs(ω = 0,T = 0)]2, (11a)

limω→0+
Sc(ω,T = 0)

2π2ω
= [χc(ω = 0,T = 0)]2. (11b)

They imply that Si(ω,T ) is Ohmic (linear in ω) at T = 0, with
a slope related to the static susceptibility χi(ω=0,T =0).

III. HARTREE-FOCK APPROXIMATION

As a first approximation we calculate the noise spectral
densities using Hartree-Fock (HF) decomposition based on
writing expectation values into products of spectral functions
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[25]. The advantage of HF is that it becomes exact in the U = 0
noninteracting limit [5,28]. The result for charge noise is

SHF
c (ω,T ) =

∑
σ=↑,↓

∫
dεAσσ (ε)Aσσ (ε − ω)

× [1 − f (ε)]f (ε − ω), (12)

and for the spin noise we get simply SHF
s (ω,T ) = 1

4SHF
c (ω,T );

that is, in the HF approximation magnetic noise
is simply 1

4 times the charge noise. In Eq. (12)
f (ε) = 1/{exp [(ε − εF )/T ] + 1} is the Fermi function, and

A↑↑(ε) = 	/π

(ε − εd )2 + 	2
, (13a)

A↓↓(ε) = 	/π

(ε − εd − U )2 + 	2
(13b)

are HF local densities of states for the trap with spin ↑ and
↓, respectively. The energy scale 	 ≡ πρV 2

d models the rate
for escape of a trap electron into the Fermi sea, with ρ being
the energy density at the Fermi level and Vdk ≡ Vd being a
k-independent coupling between the trap and Fermi sea. Note
that Eqs. (13a) and (13b) break the local spin symmetry by
assuming the energy for the ↑ and ↓ trap states are εd and
εd + U , respectively. This result is well known to be incorrect
in that it misses Kondo physics, i.e., the screening of trap spin
by the electron gas spins.

IV. NRG CALCULATIONS

We shall compare the Hartree-Fock approach to nonper-
turbative NRG calculations of the noise spectra that take
into account local spin symmetry and the formation of the
Kondo singlet. The NRG algorithm calculates, within some
well-controlled approximations [8], the many-body spectrum
for the Anderson model [8,29]. Conduction electrons are
assumed to have a continuum spectrum, forming a metallic
band with a half bandwidth D.

At zero temperature, the first term in Eq. (4) can be
computed from the NRG spectral data [8,30,31] down to
arbitrarily small nonzero frequencies |ω| > 0. The spectral
weight at ω=0 and the fulfillment of the sum rules can be
obtained by calculating the expectation values 〈Ôi〉 and 〈Ô2

i 〉
with NRG. Since we will be interested in the large-frequency
regime and our spectral functions obey well-defined sum rules,
we have chosen to use the “complete Fock space” (CFS)
approach [32,33] to calculate Si(ω > 0) at zero temperature.
As discussed in Appendix A, this choice has two important
features: (i) the T = 0 spectral functions are sum rule
conserving by construction, and (ii) broadening artifacts in the
high-frequency regime, which can mask the correct power-law
behavior, are minimized.

Figure 1 shows the calculated charge noise in the case εd =
−U/2 for 	 = 10−4D and several different U . Remarkably,
HF remains a good approximation to charge noise even at large
U . We interpret this result to be evidence that charge noise is
dominated by single-particle processes even when the trap is
deep in the Kondo regime (U � 	 for T = 0).

The situation is drastically different for magnetic noise,
as shown in Fig. 2. While NRG and HF agree with each
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FIG. 1. (Color online) Charge noise as a function of frequency
for the trap in the symmetric case with εd = −U/2. NRG calculations
are shown to be well approximated by a mean-field Hartree-Fock
decomposition (HF) even when U/	 is large and the trap is deep in
the Kondo regime. This shows that charge noise is well described by
single-particle excitations.

other in the U = 0 limit (when HF is exact), as soon as U

becomes nonzero, the two methods show opposite results. As
U increases, the single-particle noise (HF) decreases, while
the many-body noise (NRG) increases. The low-frequency
NRG results can be better visualized in Fig. 3. We find
[Figs. 3(a) and 3(c)] that the magnetic noise for a single
trap is Ohmic at low frequencies, with a peak at ω ≈ TK ,
where TK is the Kondo temperature. The magnetic noise
spectral densities all collapse in the same universal curve
and scale as an anomalous power law ∝ TK/[ω ln2 (ω/TK )] in
the TK �ω�U frequency range [Fig. 3(b)], consistent with
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FIG. 2. (Color online) Spin noise as a function of frequency for
the trap in the symmetric case with εd = −U/2. The NRG results
agree with HF only at U = 0. As U increases, NRG shows that
the magnetic noise increases, developing a peak at ω ≈ TK . In
contrast, the single-particle contributions described by HF decrease
dramatically as U increases. This shows that magnetic noise is
dominated by many-body processes.
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FIG. 3. (Color online) Universal scaling for spin noise in the
Kondo regime for εd = −U/2. (a) and (b) NRG results for spin
noise Ss(ω). Note how all the curves collapse into a single scaling
relation when the noise is written as a function of ω/TK . For ω � TK ,
the magnetic noise scales linearly with ω (Ohmic noise), and for
TK � ω < U it decreases with an anomalous power of frequency
∝ 1/[ω ln2 (ω/TK )]. For ω > U , spin noise is cut off ∝ 1/ω2.
(c) and (d) NRG results for charge noise Sc(ω) do not show universal
Kondo scaling and behave just like the single-particle approximation
(HF) with noise peaked at ω ≈ Max {	,U} with a smooth cutoff 1/ω2

at ω > U .

previous results for the dynamical spin susceptibility [34–38]
and the spin-current noise [24] in the Kondo regime.

V. ANALYTICAL APPROXIMATION FOR SPIN NOISE IN
THE KONDO REGIME

While the HF approximation [Eq. (12)] failed to describe
spin noise, it was shown to give a good description of charge
noise at T = 0 (Fig. 1). In Appendix B we show that HF
actually provides a good approximation for charge noise at
T � 0, in the sense that it approximately satisfies the sum
rules and Shiba relations demonstrated in Sec. II. The goal of
the current section is to use our NRG calculations, sum rules,
and Shiba relations to obtain an analytical approximation for
spin noise at T � 0 in the Kondo regime.

It is well known [8] that NRG has difficulty in calculating
spectral features at frequencies ω < T . Here we propose an
alternate approach to evaluate the spin noise for a broader ω/T

range.
Motivated by the susceptibility sum rule Eq. (10) and

the property Ss(−ω,T ) = e−ω/T Ss(ω,T ), we propose the
following fit function:

SFit
s (ω,T ) = 2ωχs(ω = 0,T )

1 − e−ω/T

	s

ω2 + 	2
s

, (14)

with the ω = 0 susceptibility given by a continuous fit to the
NRG result [39]

χs(ω = 0,T ) =

⎧⎪⎪⎨
⎪⎪⎩

W
8πTK

for T � 0.23TK,

0.68
8π(T +√

2TK )
for 0.23TK < T � 28.59TK,

1
8πT

[
1 − 1

ln (T/TK ) − ln [ln(T/TK )]
2 ln2 (T/TK )

]
for T > 28.59TK,

(15)

where W = 0.4128 is the Wilson number.
In Eq. (14) 	s ≡ 	s(ω,T ) is a fit function of frequency and

temperature that will be determined by the exact sum rules
and the Shiba relations. We recall that previous relaxational
fits for 	s assume no frequency dependence [40]. Here we
allow 	s(ω,T ) to vary in frequency so that the logarithmic
frequency decay discussed in Sec. IV is properly accounted
for.

For T � TK , the perturbative method of Suhl and Nagaoka
[41,42] yields the high-temperature limit (the Korringa law):

	s(ω,T � TK ) ≈ 1

4π

T

1 + 4
3π2 ln2

(
T
TK

) . (16)

At T = 0 the Shiba relation (11a) applied to Eq. (14)
implies [40]

	s(ω = 0,T = 0) = 1

4π2χs(0,0)
= 2TK

πW , (17)

where we used the NRG result χs(0,0) = W/(8πTK ).
In order to interpolate between Eqs. (16) and (17) we

propose the following expression:

	s(ω,T ) = 1

4π

T + 8
W TK

1 + 1
3π2 ln2

[
1 + (

T
TK

)2 + (
ω

αTK

)2] , (18)

where α is a fit parameter to be determined by the spin sum
rule [Eq. (9)]:

Sums(T ) = 4
∫ ∞

−∞
dωSFit

s (ω,T ). (19)

This sum rule is most sensitive to α at T = 0, and
we find that the optimal fit value is quite close to α = 3
when Sums(T = 0) = 0.9994. As an independent check, we
evaluate the spin sum rule at T > 0 and the susceptibility sum
rule at T � 0:

Sumχs
(T ) = 1

χs(0,T )

∫ ∞

−∞
dω

1 − e−ω/T

2πω
SFit

s (ω,T ). (20)

In all cases, we obtain agreement within 36%. A few
examples are shown in Table I. Moreover, we find that Eqs. (14)
and (18) with α = 3 provide an excellent fit of our NRG results
at T = 0, as shown in Fig. 4.

Note that the choice of Eq. (18) implies that TKSFit
s (ω,T ) is

a universal function of ω/TK and T/TK and that the presence
of the temperature-dependent functions χs(0,T ) and 	s(ω,T )
suggest that spin noise has a much stronger temperature
dependence than charge noise. In particular, Eq. (14) fully
accounts for the Kondo screening for T <TK through χs(ω=
0,T ).
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TABLE I. Sum rules [Eqs. (19) and (20)] applied to our analytical
fit of spin noise, Eqs. (14) and (18), with α = 3. For the spin sum
rules we used analytical approximations for χs(0,T ) obtained by
NRG [Eqs. (4.53) and (4.60) in Ref. [39]]. In all cases we find that
the sum rules are satisfied within 30%.

T/TK Sums Sumχs

0 0.9994 0.9518
0.5 0.9247 0.9502
1 0.8245 0.9503
10 0.6910 0.9875
100 0.7777 0.9979

VI. SPIN NOISE IN THE PRESENCE OF DISORDER

In the case of an ensemble of N Kondo traps, the noise
will be affected by disorder. The usual model for trap disorder
(the one that gives rise to ubiquitous charge 1/f noise) [6] is
to assume trap tunneling rate 	 = 	0e

−λ, where λ models the
tunneling distance between the trap and Fermi sea. The model
assumes λ uniformly distributed with density P ′(λ) = N/λmax

for λ ∈ [0,λmax] and P ′(λ) = 0 for λ outside this interval,
resulting in P (	) = (N/λmax)/	 and the corresponding 1/f

frequency dependence for trap charge noise. As we shall show,
this same model applied to Kondo traps gives rise to a much
broader distribution of Kondo temperatures that we denote
P (TK ).

For definiteness, we assume all Kondo traps have fixed εd

and U , with the disorder solely affecting the parameter 	(λ).
The dependence of the Kondo temperature with λ is given
by [43]

TK (λ) =
√

	(λ)U

2π
e

√
3εd (εd +U )

U
1

	(λ)

= T max
K e−[ λ

2 +κ(eλ−1)]. (21)

Here κ = −√
3εd (εd + U )/(U	0) > 0 characterizes the type

of trap. We shall assume κ � (λmax + 1)/2, a limit that is

10-2

100

102

104

106

108

1010

10-8 10-6 10-4 10-2 100 102

S
s

U/
U/
U/

U/
U/
U/
U/

FIG. 4. (Color online) Comparison of the spin noise fit SFit
s (ω)

[Eqs. (14) and (18) with α = 3; lines] with the NRG results (symbols)
at T =0.

typically satisfied by Kondo traps with U � 	. The maxi-
mum and minimum Kondo temperatures of the distribution
are given by T max

K = TK (λ = 0) and T min
K = TK (λ = λmax),

respectively; for TK ∈ [T min
K ,T max

K ] the trap density becomes

P (TK ) = P ′(λ)∣∣ dTK

dλ

∣∣ ≈
N

λmax

TK

[
κ − ln

(
TK

T max
K

)] , (22)

with P (TK ) = 0 for TK �∈ [T min
K ,T max

K ]. Note how P (TK )
is exponentially broader than P (	): we have T max

K /T min
K ≈

exp [κ exp (λmax)], in contrast to 	max/	min = exp (λmax).
In spite of this difference, the normalization condition∫

dTKP (TK ) ≈ N still holds since the logarithm in Eq. (22)
makes P (TK ) flatter than an ∼1/TK distribution, thereby mak-
ing the integral finite. We remark that our P (TK ) is appropriate
to describe highly disordered traps, such as traps randomly
distributed at an insulator close to the metal-insulator interface.
This situation is quite different from Kondo impurities in bulk
alloys, whose P (TK ) is considerably less broad [40,44].

Applying this averaging prescription to our spin noise
Eq. (14) yields

〈Ss(ω)〉 =
∫ T max

K

T min
K

dTKP (TK )SFit
s (ω,T ). (23)

The results are shown in Figs. 5(a) and 5(b). At low
temperatures (T < T max

K ) the noise shows 1/f behavior up to
frequencies of the order of T max

K ; at larger frequencies, Kondo-
enhanced exchange processes lead to a 1/[f ln2(f )] behavior.
For higher temperatures (T > T max

K ) the noise saturates in
the low-frequency region, and the 1/[f ln2(f )] behavior gets
washed out of the high-frequency region.

Interestingly, the frequency range with 1/f behavior gets
reduced as the temperature increases. This shows that spin 1/f

noise behavior is strongly temperature dependent, in marked
contrast to the usually temperature-independent charge 1/f

noise. The additional temperature dependence implies that
temperature actually competes against disorder, converting the
spin 1/f noise into a Lorentzian.

VII. CONCLUDING REMARKS

In conclusion, we presented a theory of charge and spin
noise of a Kondo trap interacting with a Fermi sea. We
showed that trap spin noise is qualitatively different from
charge noise in that the former occurs due to many-body
scattering processes, while the latter is mainly dominated
by single-particle tunneling. This difference implies that spin
noise has a stronger temperature dependence than charge noise
and that it is controllable by tuning Kondo temperature TK

rather than trap tunneling rate 	.
Kondo trap dynamics displays two quite distinct behaviors

depending on which property is probed. The experimental
methods of charge [1] and spin [14] noise spectroscopy
use optical absorption to detect noise via the fluctuation-
dissipation theorem [optical absorption at frequency ω is
directly proportional to χ ′′

i (ω,T ) and to noise as in Eq. (7)].
Our results elucidate how Kondo correlations can be observed
with these methods. Pure charge absorption does not enable
the detection of the Kondo effect; in Ref. [1] the formation
of the exciton state mixes charge and spin fluctuation, and
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FIG. 5. (Color online) Spin noise in the presence of trap disorder. The calculated noise for N traps was averaged according to the prescription
	 = 	0e

−λ, with λ being the tunneling distance between the trap and the Fermi gas uniformly distributed in the interval [0,λmax]. This gives
rise to the broad distribution of Kondo temperatures shown in Eq. (22). The resulting noise, shown here for κ = 10 and λmax = 5, displays
1/f behavior over a frequency range that decreases as the temperature increases. This is in contrast to the temperature-independent charge 1/f

noise described in the literature [6].

this feature was critical in enabling the authors’ observation
of the Kondo effect. For spin noise spectroscopy, universal
scaling with Ohmic behavior at T <ω<TK coupled with a
1/[ω ln2 (ω/TK )] tail for TK �ω�U can be taken as the
signature of the Kondo effect, allowing the extension of
this technique to probe Kondo correlations. However, in the
presence of strong disorder over a range of Kondo temperatures
TK ∈ [T min

K ,T max
K ], we find that the Ohmic behavior is washed

out, and the signature of Kondo correlations is visible only for
ω > T max

K and T < 10T max
K [see Fig. 5(b)].

The qualitative difference between spin and charge noise
survives even in the presence of disorder and high temperatures
(namely, TK � T max

K ). As the temperature increases, the range
of 1/f behavior for spin noise decreases, while the range
of 1/f charge noise remains essentially unaltered. The
additional temperature dependence for spin noise implies that
temperature actually competes against disorder, converting the
spin noise 1/f behavior into a Lorentzian-like dependence.
Given that 1/f noise is notoriously difficult to control [45],
we reach the conclusion that ubiquitous trap noise can be more
manageable in spin- or flux-based devices that are sensitive to
magnetic fluctuations rather than charge.
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APPENDIX A: DETAILS OF THE NRG CALCULATIONS

As we argue in the main text, our choice of the complete
Fock space (CFS) procedure [32] (or, equivalently, the full
density matrix NRG method [33] at T =0) in the NRG
calculations presents some advantages for the calculations of
the correlation functions listed in Eq. (4). To illustrate this

point, we compared results obtained using CFS and the earlier
“density matrix NRG” (DM-NRG) method [46].

The main panel in Fig. 6 presents NRG data for the spin
noise Ss(ω) using DM-NRG (open circles) and CFS (solid
squares) for U = 40	 and other parameters set as in Fig. 3.
In both cases, the NRG calculations were performed using a
discretization parameter � = 2.5 retaining up to 1000 states at
each NRG step, which ensures convergence for the single-trap
Anderson model. The spectral data were broadened using the
usual logarithmic Gaussian functions [Eq. (74) in Ref. [8]]
with a broadening parameter b = ln(

√
�) ≈ 0.46. (We have

used z averaging for some of the data presented, particularly
the data presented in Fig. 1).

Clearly, DM-NRG underestimates the peak at ω=TK

in comparison with CFS. More importantly, it misses
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FIG. 6. (Color online) NRG data for the spin noise Ss(ω) at T = 0
for U = 40	 calculated with DM-NRG and CFS procedures. Inset:
A check of the spin sum rule given by Eq. (A1) for the different
approaches shows that the CFS fulfils the spin sum rule apart from
numerical integration errors.
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the transition from the Ss(TK �ω�U ) ∝ 1/[ω ln2 (ω/TK )]
behavior to the Ss(ω � U ) ∝ ω−2 behavior, which is one of
the important features distinguishing the spin noise from the
charge noise.

We have also compared both methods by checking the
fulfillment of the spin sum rule in Eq. (9). In the absence of
spin polarization (due to, e.g., magnetic fields or ferromagnetic
couplings), 〈Ŝz〉=0 and the spin sum rule is given by∫ ∞

−∞
Ss(ω) dω= 〈

Ŝ2
z

〉
. (A1)

To this end, we performed a static NRG calculation of
〈Ŝ2

z 〉(T → 0) (open squares in the inset of Fig. 6) and compared
it with a numerical integral of Ss(ω). The agreement of the
integrated CFS data (diamonds) is much better than the DM-
NRG (circles), although the fulfillment of the spin sum rule is
not perfect due to numerical errors coming from the integration
procedure.

Alternatively, the integral in Eq. (A1) can be done directly
in Eq. (4), and it becomes a sum over the spectral weights
|〈n|Ŝz|m〉|2 provided that the set of many-body states {|m〉}
forms a complete set. In practice, this procedure can be done
in the CFS scheme, as it retains matrix elements between
“discarded” and “kept” NRG states, making the set of many-
body states complete by construction [32,33]. In this case, free
of numerical integration errors, the CFS data (solid squares)
fulfill the spin sum rule down to machine precision, as shown
in the inset of Fig. 6.

APPENDIX B: VALIDATION OF THE HARTREE-FOCK
APPROXIMATION FOR CHARGE NOISE WHEN T � 0

The HF approximation Eq. (12) was shown to approximate
charge noise at T = 0. Here we check its validity at T � 0 by
direct evaluation of the Shiba relations and sum rules described
in Sec. II.

The static (ω = 0) charge susceptibility in the HF approxi-
mation is given by

χHF
c (ω = 0,T ) = 1

2π

∂

∂εF

∑
σ

〈nσ 〉

= 1

2π

∫
dε

∑
σ

Aσσ (ε)
∂f (ε)

∂εF

= 1

8πT

∫
dε

∑
σ Aσσ (ε)

cosh2
(

ε−εF

2T

) . (B1)

At T = 0 we get

χHF
c (ω = 0,T = 0) = 1

2π

∑
σ

Aσσ (εF ). (B2)

We start by checking the Shiba relation for charge noise,
Eq. (11b). In the HF approximation we get

limω→0+

∫ εF +ω

εF

dε

ω

∑
σ

Aσσ (ε)Aσσ (ε − ω) =
∑

σ

A2
σσ (εF ),

(B3)

which, according to the Shiba relation, should be equal to

2π2
[
χHF

c (0,0)
]2 = 1

2

[∑
σ

Aσσ (εF )

]2

. (B4)

The relation is satisfied exactly at U = 0; however, as U

increases, Eq. (B3) becomes up to two times larger than
Eq. (B4). This discrepancy can indeed be observed in the
comparison with NRG; see the difference in slopes at ω = 0
in Fig. 1. Nevertheless, the discrepancy is not too large.

The charge sum rule [Eq. (9) for i = c] in the HF
approximation reads

∫ ∞

−∞
dωSHF

c (ω,T ) =
∑

σ

∫
dεAσσ (ε)[1 − f (ε)]

×
∫

dωAσσ (ε − ω)f (ε − ω)

=
∑

σ

[1 − 〈nσ 〉]〈nσ 〉

= 〈
Ô2

c

〉
HF

− 〈Ôc〉2
HF , (B5)

where 〈Ôc〉HF = ∑
σ

∫
dεAσσ (ε)f (ε) and 〈Ô2

c 〉HF is ob-
tained by making the approximation 〈n↑n↓〉 ≈ 〈n↑〉〈n↓〉. The
last line of Eq. (B5) is expected to be a good approximation
of the exact result, even in the Kondo regime, when charge
fluctuations are strongly suppressed.

Finally, we verify the charge susceptibility sum rule
[Eq. (10) for i = c] with explicit numerical calculations of
the quantity

Sumχc
= 1

χHF
c (0,T )

∫ ∞

−∞
dω

1 − e−ω/T

2πω
SHF

c (ω,T ). (B6)

As shown in Table II these values are very close to 1 for all
tested parameters.

In conclusion, the HF approximation for charge noise is
consistent with the exact relations of Sec. II for all parameters
checked, indicating that it provides a good analytical approxi-
mation for charge noise even for T > 0.

TABLE II. Charge susceptibility sum rule in the HF approxima-
tion [Eq. (B6)]. The sum rule is seen to be satisfied (Sumχc

= 1) with
high accuracy for several different parameters.

T/	 εd/	 U/	 Sumχc

0.1, 1, 10 0 0 0.9997, 0.9999, 1.000
0.1, 1, 10 −2.5 5 0.9994, 0.9999, 1.000
0.1, 1, 10 −10 20 0.9915, 0.9978, 1.000
0.1, 1, 10 0 5 0.9996, 0.9999, 1.000
0.1, 1, 10 −10 10 0.9996, 0.9999, 1.000

085123-7



LUIS G. G. V. DIAS DA SILVA AND ROGÉRIO DE SOUSA PHYSICAL REVIEW B 92, 085123 (2015)

[1] C. Latta, F. Haupt, M. Hanl, A. Weichselbaum, M. Claassen,
W. Wuester, P. Fallahi, S. Faelt, L. Glazman, J. von Delft, H. E.
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