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Abstract We study the dynamics of holon–doublon pairs
in two-leg Hubbard ladders with the time-dependent Den-
sity Matrix Renormalization-Group approach. Benchmark
results show that the Krylov algorithm is well suited to
calculate the time dependence of observables in these sys-
tems. Furthermore, we show that the dynamics of the holon–
doublon depend strongly on the coupling asymmetry within
the ladder, indicating that the ladder geometry plays a role
in the decay of these elementary charge excitations.

Keywords DMRG · Hubbard model · Two-leg ladders ·
Excitations

1 Introduction

Photo-excited charge excitations in strongly correlated elec-
tron systems (SCES) offers interesting possibilities for en-
ergy harvesting in oxide-based solar cells. Experiments indi-

L.G.G.V. Dias da Silva (�)
Instituto de Física, Universidade de São Paulo, C.P. 66318,
São Paulo 05315-970, SP, Brazil
e-mail: luisdias@if.usp.br

G. Alvarez · M.S. Summers
Computer Science & Mathematics Division and Center
for Nanophase Materials Sciences, Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA

E. Dagotto
Department of Physics and Astronomy, University of Tennessee,
Knoxville, TN 37996, USA

E. Dagotto
Materials Science and Technology Division, Oak Ridge National
Laboratory, Oak Ridge, TN 37831, USA

rectly suggest that many highly correlated oxides could be-
come technologically useful for light-to-energy conversion.
For example, photo-catalytic processes are not quenched in
manganite composites. A crucial question is whether charge
excitations in the metal-insulator will be able to properly
transfer the charge into the metallic contacts, thus establish-
ing a steady-state photocurrent.

Theoretical studies of one-dimensional Mott insulators
indicate that the mechanism for the decay of electron–hole
excitations (i.e., a holon–doublon pair) into magnetic exci-
tations is inefficient, making the holon–doublon pair is long
lived [1, 2]. However, experimental realizations of SCES are
seldom strictly one-dimensional. To control the values of
their potentially useful intrinsic gaps, transition metal oxides
are grown in complex layered superlattices. Therefore, this
real-time study of the excitation propagation on ladders and
other layered structures—as was done on one-dimensional
chains—helps clarify the exciton decay and bound state for-
mation.

The equilibrium properties of ladder systems have been
previously studied in the literature with different tech-
niques: nonperturbative methods to solve extended Hub-
bard models include [3] (i) quantum Monte Carlo methods,
(ii) “diagonalization” methods, such as Lanczos algorithms
and the density matrix renormalization-group (DMRG)
method [4, 5]. These two paths to solve the problem are
more or less complementary. Quantum Monte Carlo meth-
ods, being formulated in Matsubara frequency, have diffi-
culty obtaining real frequency properties of the model (such
as the density-of-states), and sometimes suffer from the so-
called “sign problem” [6].

The DMRG method is a numerical variational tech-
nique to study quantum many body Hamiltonians and thus
could be classified as a diagonalization method. For one-
dimensional and quasi one-dimensional systems, the DMRG
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algorithm is able to truncate, with bounded errors and in a
general and efficient way, the underlying Hilbert space to
a constant size. Recently, a time-dependent version of the
DMRG technique (tDMRG) has been introduced [7, 8], al-
lowing for calculations of the dynamics of observables when
time-dependent perturbations are applied to the equilibrium
state.

In this contribution, we address this issue by studying the
time evolution of charge excitations in two-leg ladders with
tDMRG using the DMRG++ code [9, 10]. The model is in-
troduced in Sect. 2. In Sect. 3, we present the results: We
first establish benchmarks for the time evolution by com-
paring tDMRG calculations for the noninteracting case with
exact results and also the chain and a disconnected ladder.
We then present results for interacting ladders, showing a
strong dependence of the holon–doublon decay with the rel-
ative coupling between the ladder legs. Finally, we present
our closing remarks in Sect. 4.

2 Model and Methods

We consider the total Hubbard-like Hamiltonian

Ĥ =
∑

i,j

tij ĉ
†
iσ ĉiσ + U

∑

i

n̂i↑ni↓ +
∑

i,j

Vi,j n̂i n̂j , (1)

where the notation is similar to that of [1]. The hopping ma-
trix t , however, now corresponds to that of a 2-leg ladder,
such that tij = tx if i and j are nearest neighbors in the x

direction, tij = ty if i and j are nearest neighbors in the y

direction, and 0 (zero) otherwise. The same is true for Vij ,
which is equal to Vx if i and j are nearest neighbors in the
x direction, to Vy if i and j are nearest neighbors in the y

direction, and 0 (zero) otherwise.
We define the holon and doublon operators, respectively,

as h
†
i = ∑

σ ĉiσ (1− n̂iσ̄ ), and d
†
i = ∑

σ ĉ
†
iσ n̂iσ̄ , where ↑̄ =↓

and ¯̄σ = σ .
As in [1, 2], we model the electron and hole created

by light absorption with the excited state at time τ = 0
|Ψe(0)〉 = h

†
i d

†
j |Ψ0〉, where |Ψ0〉 is the ground state of the

system before the excitation, and i and j are chosen fixed
sites where the excitation occurs. In [1], these sites were sit-
uated in the center of the chain. In our case, we will also
locate the interaction in the center, but since we are using a
2-leg ladder, we use the configuration depicted in Fig. 1.

2.1 Time Evolution with the Krylov Method for the
DMRG Algorithm

The next step is to calculate the time evolution of ob-
servables 〈Ô〉(τ ) = 〈Ψe(τ)|Ô|Ψe(τ)〉 where |Ψe(τ)〉 =

Fig. 1 Two-leg Hubbard ladder considered. The filled circles repre-
sent the sites where the holon and doublon excitations are created. The
numbers are the site indexes

e−iĤ τ |Ψe(0)〉 with tDMRG. Many methods for the calcu-
lation of dynamic observables with DMRG have been pro-
posed. For a review, see [11]. Here, we will use the time-
step-targeting Krylov method, as described in [12]. The
main reason for this choice instead of, let us say, the Trotter–
Suzuki decomposition method is that the latter depends on
the form of the Hamiltonian, whereas the Krylov method is
more generic and more suitable for the treatment of ladders.

3 Results

3.1 Accuracy of the Krylov Method: U = 0 Benchmark

We started our computational runs for this project by
first testing the Krylov method, and indirectly the con-
vergence of the DMRG, for the noninteracting U = 0
system. There are two advantages to using the U = 0
system as a test case. First, we can compute all results
exactly with polynomial complexity (code available at
http://www.ornl.gov/~gz1/FreeFermions.), and second, the
U term, being on-site, is not a major source of convergence
problems for the DMRG algorithm.

The observable we test in this section is the local charge,
defined as

ni,j,p(τ ) =
∑

σ=↑,↓
〈Ψ0|djhie

iĤ τ npσ e−iĤ τ h
†
i d

†
j |Ψ0〉, (2)

calculated on the state |Ψe(τ)〉. Results are shown in Fig. 2
for the holon–doublon pair created at sites i = 10 and j =
11 and the charge measured at site p = 11 (see Fig. 3 for
site indexes). The agreement with exact results is excellent,
indicating the time-evolution with the Krylov method works
well.

3.2 Comparison Between the Chain and Disconnected
Ladder

The remaining results will refer to the double occupation

Nd
i,j,p(τ ) = 〈Ψ0|djhie

iĤ τ np↑np↓e−iĤ τ h
†
i d

†
j |Ψ0〉, (3)

of the state |Ψe〉(τ ).
In Fig. 3, we compare the time evolution of the total

double occupation Nd = ∑
p Nd

i,j,p with the WFT-Krylov
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Fig. 2 Local charge at site p = 11 for a holon–doublon pair created
at sites i = 10 and j = 11 with U = 0. The filled circles represent the
exact solution

Fig. 3 Double occupation Nd(τ) vs. time for the chain and uncon-
nected ladder cases with U �= 0

time evolution in two cases: (i) a 6 × 2 two-leg ladder with
tx = 1, ty = 0 (uncoupled ladder legs), U = 10 and (ii) a
6-site Hubbard chain with t = 1 and U = 10. In the follow-
ing, we have subtracted the (constant) ground-state contri-
bution Nd

GS = ∑
p〈Ψ0|np↑np↓|Ψ0〉. We have also checked

the Krylov method by comparing it with the case in which a
Suzuki–Trotter decomposition is used for the chain.1

A comparison of the results show a good agreement, in-
dicating that the Krylov time evolution for the ladder case
yields the expected results in the limiting case when the lad-
der legs are disconnected. It should be noted that the two-
leg ladder is numerically more demanding than the chain,
causing the comparison not to be perfect. Nevertheless, the

1Suzuki–Trotter calculation done using a tDMRG code by Adrian
Feiguin.

Fig. 4 Change in double occupation �Nd(τ) (see text for details) vs.
time for the two-leg ladder cases with U = 10, tx = 1, and ty = 0,1

agreement in Fig. 3 shows that the errors accumulated dur-
ing the Krylov time evolution do not imply significant devi-
ations from the more amenable chain case.

3.3 Results for U �= 0

Next, we have computed the total double occupation
Nd(τ) = ∑

p Nd
i,j,p(τ ) for the case of a 6 × 2 ladder with

U = 10 and horizontal hopping tx = 1. Figure 4 shows
�Nd(τ) = Nd − NGS

d (where NGS
d is the total double occu-

pation of the ground state) for ty = 0,1. Due to the intense
computational demand for this calculations, we present re-
sults for relatively small system sizes and short times. Even
within those limitations, a distinctive difference in the decay
of �Nd(τ) is present, with a hint of a lower plateau in the
ty = 1 data. This might indicate that a more “2D-like” ge-
ometry affects the dynamics of the holon–doublon pair and
the time evolution of the double occupation, possibly offer-
ing an additional decay channel that is not present in the
strictly 1D case. Confirmation of this tendency can be ob-
tained with calculations using larger system sizes and longer
time scales, which will be reported elsewhere [13].

4 Conclusions

In this work, we have studied the time evolution of holon–
doublon pairs in two-leg Hubbard ladders with the time-
dependent DMRG method. Our benchmark results show that
the Krylov algorithm is well suited to calculate the time
dependence of observables in these systems. Furthermore,
we find that the dynamics of the holon–doublon depend
strongly on the coupling asymmetry within the ladder, in-
dicating that the ladder geometry and dimensionality play
an important role in the decay of these elementary charge
excitations.
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