Quantum critical transitions and interference effects in double quantum dot Kondo systems

Luis Dias - Ohio University

Talk Outline

- Kondo physics: a brief review.
- Kondo effect in *double* quantum dots
 - Numerical Renormalization Group methods.
 - Zero-field splitting of the Kondo resonance: interference and "band filtering" effects.
 - Quantum critical transition in DQDs: an effective pseudogapped host.

Conclusions

Mr. Jun Kondo

Kondo effect µ_{Fe}/µ

- 30's Resistivity measurements: minimum in ρ(T);
- T_{min} depends on c_{imp.}
- 60's Correlation between the existence of a Curie-Weiss component in the susceptibility (<u>magnetic moment</u>) and resistance minimum.

Top: A.M. Clogston *et al* Phys. Rev. **125** 541(1962). ⁰⁹⁴ - 4 Bottom: M.P. Sarachik *et al* Phys. Rev. **135** A1041 (1964).

Kondo's explanation for T_{min} (1964)

$$H_{s-d} = J \sum_{k,k'} S^{+} c^{\dagger}_{k\downarrow} c_{k'\uparrow} + S^{-} c^{\dagger}_{k\uparrow} c_{k'\downarrow}$$
$$+ S_{z} \left(c^{\dagger}_{k\uparrow} c_{k'\uparrow} - c^{\dagger}_{k\downarrow} c_{k'\downarrow} \right)$$
$$+ \sum_{k} e_{k} c^{\dagger}_{k\sigma} c_{k\sigma}$$

- <u>Many-body</u> effect: virtual bound state near the <u>Fermi energy</u>.
- AFM coupling (J>0)→ "spin-flip" scattering
- Kondo problem: s-wave coupling with spin impurity (s-d model):

Kondo's explanation for T_{min} (1964)

Perturbation theory in J^3 :

 Kondo calculated the conductivity in the linear response regime

$$R_{\rm imp}^{\rm spin} \propto J^2 \left[1 - 4J\rho_0 \log\left(\frac{k_B T}{D}\right) \right]$$
$$R_{\rm tot} \left(T\right) = aT^5 - c_{\rm imp}R_{\rm imp} \log\left(\frac{k_B T}{D}\right)$$

$$T_{\min} = \left(\frac{R_{\min}D}{5ak_B}\right)^{1/5} c_{\min}^{1/5}$$

- Only <u>one</u> free paramenter: the Kondo temperature T_K
 - Temperature at which the perturbative expansion diverges. $k_B T_K \sim D e^{-1/2J\rho_0}$

A little bit of Kondo history:

- Early '30s : Resistance minimum in some metals
- Early '50s : theoretical work on impurities in metals "Virtual Bound States" (Friedel)
- 1961: Anderson model for magnetic impurities in metals
 - 1964: s-d model and Kondo's solution (PT)
- 1970: Anderson's "Poor's man scaling" approach
- 1974-75: Wilson's Numerical Renormalization Group (non-perturbative) solution
- 1980 : Andrei and Wiegmann's Bethe-Ansatz solution.

History of Kondo Phenomena

- Resistance minimum observed in the '30s...
- ...and explained in the '60s (Kondo)
- Log divergence problem: Wilson's NRG '70s
- Bethe-Ansatz solution (essentially exact): '80s So, what's new about it?
- Kondo signatures in electronic transport observed in many different set ups:
- Quantum dots (experimental control of the parameters)
- STM measurements of magnetic structures on metallic surfaces (e.g., single atoms, molecules. "Quantum mirage")
- New insights: multi-impurity systems, spin interactions,...

TNM Conference – Santa Marta Oct 18 - 2006 Luis Dias

Kondo Effect in CB-QDs

Kondo Temperature T_k : only scaling parameter (~0.5K, depends on V_a)

Kowenhoven and Glazman *Physics World* – Jan. 2001. *TNM Conference* – *Santa Marta*

Oct 18 - 2006

Luis Dias

From: Goldhaber-Gordon et al. Nature **391** 156 (1998)

Kondo Effect in Double QDs Series configuration

Jeong, Chang, Melloch Science 293 2222 (2001)

Craig et al., Science 304 565 (2004)

Luis Dias

Kondo Effect in Double QDs

Double Quantum Dots:

- Allow controlled studies of both intradot and interdot correlations
- Interference and phase measurements.
- RKKY interactions
- Quantum phase transitions.
- Prospects in quantum information processing.

DQD theory: different regimes

Non-identical dots coupled to leads and to each other.
For V_{iR}=V_{iL}; coupling to the symmetric channel only.
Dot 2: effectively non-interacting.

DQD: theoretical description

Non-identical dots coupled to leads and to each other.
For V_{iR}=V_{iL}; coupling to the symmetric channel only.
Dot 2: mixed-valence regime.

$$H_{\text{Leads}} = \sum_{\mathbf{k},j=L,R} \epsilon_k c_{j\mathbf{k}\sigma}^{\dagger} c_{j\mathbf{k}\sigma} ,$$

$$H_{i=1,2} = \epsilon_i a_{i\sigma}^{\dagger} a_{i\sigma} + U_i n_{i\uparrow} n_{i\downarrow}$$

$$H_{\text{Dot-Leads}} = \sum_{\mathbf{k},j=L,R} V_{ij}^{\prime} a_{i\sigma}^{\dagger} c_{j\mathbf{k}\sigma} + \text{h.c.} ,$$

$$H_{\text{Dot-Dot}} = \lambda \left(a_{1\sigma}^{\dagger} a_{2\sigma} + \text{h.c.} \right)$$

Luis Dias

Green's function for dot 1: effective DoS

- •Constant DoS in the leads $\rho(\epsilon) = \rho_0$
- Large band limit ($\varepsilon < <$ D).

3

כוכוונכ – טמוונמ ואמונם

Oct 18 - 2006

Green's function for dot 1: effective DoS

Oct 18 - 2006

Numerical Renormalization Group

Wilson's NRG method:

 Logarithmic discretization of the hybridization function: Lanczos method.

Iterative numerical solution of the many-body Hamiltonian.
Calculation of the spectral function: A₁₁=-(1/π)Im[G₁₁].

Luis Dias

ост 18 - 2006

Side Dot: "Filtering" of the effective DoS.

TNM Conference – Santa Marta Oct 18 - 2006 Luis Dias

Parallel Dot: Pseudo-Gapped effective DoS

Oct 18 - 2006

Parallel dots: p-h symmetric case

 TNM Conference – Santa Marta
 LDS et al. Phys. Rev. Lett. 97 096603 (2006)

 Oct 18 - 2006
 Content

Parallel dots: quantum critical transition

Parallel case: quantum critical transition

General case: Kondo splitting+Pseudo-Gap

Luis Dias

the three regimes can be reached.

• $\Delta(\epsilon=0)$ determines the Kondo temperature.

TNM Conference – Santa Marta Oct 18 - 2006 LDS et al. Phys. Rev. Lett. **97** 096603 (2006)

Conclusions

- DQD systems: experimental realization of a Kondo impurity coupled to an effective DoS with resonances and pseudo-gaps.
- Kondo filtering: resonances in the effective DoS lead to splittings in the Kondo peak at E_{F.}
- Kondo singlet remains and T_K increases for larger interdot hybridization.
- **Quantum critical transition:** Coherent coupling through the leads induces a pseudo-gap in the effective DoS: quantum critical transition to non-Kondo regime.
- Different regimes can be achieved by tuning the gate voltage in Dot 2.

vertices of the second se

Acknowledgements

Collaborators:

- Sergio Ulloa Ohio University
- Nancy Sandler Ohio University
- Kevin Ingersent University of Florida

Support: <u>NSF-IMC</u> and NSF-NIRT grants

Computational Support: BSU cluster

UNIVERSITY

Tii î

Research & Technology Fund

ad maxima

ab minim

Phenomena Institute