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Enhanced Majorana bound states in magnetic chains on superconducting topological insulator edges
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The most promising mechanisms for the formation of Majorana bound states (MBSs) in condensed matter
systems involve one-dimensional systems [such as semiconductor nanowires, magnetic chains, and quantum
spin Hall insulator (QSHI) edges] proximitized to superconducting materials. The choice between each of
these options involves tradeoffs between several factors such as reproducibility of results, system tunability,
and robustness of the resulting MBS. In this paper, we propose that a combination of two of these systems,
namely, a magnetic chain deposited on a QSHI edge in contact with a superconducting surface, offers a better
choice of tunability and MBS robustness compared to magnetic chain deposited on bulk. We study how the
QSHI edge interacts with the magnetic chain, and see how the topological phase is affected by edge proximity.
We show that MBSs near the edge can be realized with lower chemical potential and Zeeman field than the ones
inside the bulk, independently of the chain’s magnetic order (ferromagnetic or spiral order). Different magnetic
orderings in the chain modify the overall phase diagram, even suppressing the boundless topological phase found
in the bulk for chains located at the QSHI edge. Moreover, we quantify the “quality” of MBSs by calculating
the Majorana polarization (MP) for different configurations. For chains located at the edge, the MP is close to
its maximum value already for short chains. For chains located away from the edge, longer chains are needed
to attain the same quality as chains located at the edge. The MP also oscillates in phase with the in-gap states,
which is relatively unexpected as peaks in the energy spectrum correspond to stronger overlap of MBSs.
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I. INTRODUCTION

Recent theoretical proposals and experimental efforts to
implement topological qubits based on non-Abelian anyons
[1–3] have attracted a great deal of attention to the field
of topological superconductivity. One of the simplest real-
izations of anyons with non-Abelian statistics are Majorana
bound states (MBSs), which naturally emerge as edge states
in one-dimensional (1D) p-wave topological superconduc-
tors [4,5]. Several experimental efforts have been devoted
to finding systems that can host MBSs. Examples include
magnetic chains on superconducting surfaces [6,7], topo-
logical insulators proximitized with superconductors [8–12],
and semiconductor nanowires with strong spin-orbit coupling
close to a superconductor [13,14].

When it comes to the first example system above, Ref. [6]
put forward the idea that magnetic adatoms, forming a 1D
chain and deposited on top of a superconducting surface,
could give rise to MBSs. Here, we refer to this arrangement
as “MAG+SC.” The interplay of the coupling between the
localized magnetic moments and superconductivity leads to a
regime where the chain behaves as a 1D topological supercon-
ductor with MBSs appearing at its edges. Several experiments
have reported the presence of localized states at the end of
magnetic chains, consistent with MBSs’ signature [7,15–18].
Due to its simplicity, the idea behind “MAG+SC” has been
used in different contexts to understand the behavior of MBSs.

However, the magnetic impurities themselves are not the only
important element for the formation of MBSs, and different
substrates can change the topological phase.

One of the first proposals for topological superconductivity
was in fact to use topological insulator as a substrate. Fu
and Kane [8] considered the case of BCS superconductors
on the surface of a 3D topological insulator, where a mag-
netic domain produces chiral, propagating Majorana modes
around the domain. Reducing the spatial dimension to a 2D
topological insulator, also known as a quantum spin Hall insu-
lator (QSHI), generates automatically bound Majorana states,
i.e., MBSs, at junctions between magnetism and supercon-
ductivity. We hereafter dub this proposal “QSHI+SC+FM,”
which consists of proximitizing the edge of a QSHI with an
s-wave superconductor (such that the edge modes’ dispersion
is gapped), and forming a 1D junction using a ferromagnetic
insulator [19]. This arrangement gives rise to MBSs at the end
points of the junction, where the three materials meet [4]. The
possibility of using a QSHI as a substrate opens many routes
to study MBSs.

Early theoretical proposals for the realization of the QSHI
phase involves electrons in a honeycomb lattice and strong
spin-orbit interaction [20]. Experimental studies have also
shown that some honeycomb lattice materials can display
QSHI edge states. Recent examples include graphene deco-
rated with Bi2Te3 [21] and monolayer WTe2 systems [22].
Other studies have shown that graphenelike materials, such
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as silicene and stanene, even host induced superconductiv-
ity when doped [11,23–25]. Together, these properties make
two-dimensional (2D) topological insulators with honeycomb
geometry a promising candidate for realizing MBSs in the
QSHI+SC+FM scheme.

In a previous work [25], we established that a combination
of the QSHI+SC+FM and MAG+SC approaches can realize
MBSs at the ends of a magnetic chain placed in the bulk of
a QSHI with induced superconductivity. This arrangement al-
lows for phase diagrams with “boundless” topological phases,
where the topological phase is independent on certain param-
eters, but, notably, where the form of which depends crucially
on the magnetic ordering in the chain.

Here, we take one decisive step further and utilize the most
defining property of QSHI, the edge state. More specifically,
we explore the nontrivial role the QSHI edge states play in
the stability and robustness of the MBS located at the ends of
a magnetic chain. Concretely, we study a chain of magnetic
adatoms deposited on a QSHI described by the Kane-Mele
model on a zigzag strip of honeycomb lattice with induced
superconductivity. This way, it is possible to probe the edge-
Majorana interaction just by moving the chain either toward
or away the edge and changing the magnetic order.

We show that the coupling of the magnetic chain with
QSHI edge states has several important consequences for the
formation and stabilization of MBSs. First, we find that the
shape of the MBS-hosting topological region in the doping vs
magnetic-impurity-strength phase diagram depends not only
on the magnetic ordering along the chain, but changes rather
strongly depending on the chain position relative to the QSHI
edge. More interestingly, we find that this effect is restricted
to the edge region, extending only over distances of about four
times the lattice constant, i.e., two full hexagons. The strength
of the superconducting order parameter does not change any
qualitative properties of the topological phase, suggesting that
it is the interaction between QSHI edge states and the mag-
netic chain that is crucial for the distinct features we observe.
This fact is the reason why the MBSs behave very differently
between bulk and edge locations. This is further supported by
the fact that when the substrate is in a topological insulator
phase, the MBSs behavior depends on its position. However,
when the substrate is in a normal phase, we do not observe
any drastic differences between MBSs in different positions.

In addition, we are able to evaluate the “quality” of the
MBSs by calculating the “Majorana polarization” (MP) intro-
duced in Refs. [26,27]. The MP gives a quantitative measure
of the superposition of electron and hole states forming
MBSs: in other words, the MP is maximum for a “pure,”
particle-hole-symmetric MBS formed by equal contributions
of electron and hole states. Although finite-chain-length ef-
fects can lead to a decrease in the MP (due to the coupling
between MBSs located at the different extremes of the chain),
our results show that the MP increases significantly when
the chain is located at the QSHI edge, thus strongly reduc-
ing any finite-size effects. Another way to put this is that,
for a given chain length, we obtain sharper, more localized,
MBSs by placing the chain at the QSHI edge rather than in
the QSHI bulk. By contrast, nontopological Andreev bound
states (ABSs) do not show such dependence due to their non-
localized nature. This different behavior adds the intriguing

FIG. 1. (a) Honeycomb lattice on top of a superconducting sur-
face (yellow) with white and black dots marking the two sublattices.
Dotted lines in the middle indicate the bulk. Magnetic impurities
are represented as sites in red with spiral magnetic order, θ = π/2.
Zigzag edge (ZZ) and armchair (AC) directions are also marked.
(b) Angle θ between the neighboring magnetic moments defines the
magnetic spiral with in-plane magnetic moments.

prospect of using the distance of the chain to a QSHI edge to
differentiate MBSs and ABSs states in experiments.

The remainder of the text is organized as follows: In Sec. II
we introduce the model Hamiltonian used to describe the
system and discuss the methods used throughout this paper.
The phase diagram for the system is studied in Sec. III, where
we classify the topological phase and discuss its dependence
with the spiral magnetic angle, doping, and distance to the
edge. The interplay of MBSs and QSHI edge states is further
explored in Sec. IV. There, we focus on the dependence of
the low-energy spectrum (and the MBS) with the position
of the chain relative to the QSHI edge. We also show the
dependence of the MP with the size, spiral magnetic angle,
and local magnetic moments of the chain. Finally, we present
our concluding remarks in Sec. V.

II. MODEL AND METHODS

A sketch of the system is shown in Fig. 1(a). A hori-
zontal strip of a honeycomb lattice material with a zigzag
top edge is deposited on a superconducting surface (yellow
background). The sites of the two sublattices are represented
by black and white dots, while the magnetic impurity chain
of adatoms placed at the edge are represented in red, with
arrows representing each magnetic moment in the xy plane.
Each impurity has its magnetic moment rotated by an angle θ

from the preceding one, as shown in Fig. 1(b). In this work, we
consider the cases θ = 0 (indicating ferromagnetic order), and
θ = π/2 (spiral magnetic order), as illustrated in Fig. 1(a).

We assume that the honeycomb lattice material can be
described by the Kane-Mele model [20], allowing for the
appearance of QSHI behavior and topologically protected
helical edge states. As such, the system is described by the
complete Hamiltonian H = HKM + HSC + Himp, where

HKM = t
∑

〈i, j〉,σ
c†

i,σ c j,σ

+ i
λSO

3
√

3

∑
〈〈i, j〉〉,σ

νi j c†
i,σ (sz )σσ ′ c j,σ ′

−μ
∑

i

c†
i,σ ci,σ , (1a)

165312-2



ENHANCED MAJORANA BOUND STATES IN MAGNETIC … PHYSICAL REVIEW B 102, 165312 (2020)

HSC =
∑

i

{�i c†
i,↑ c†

i,↓ + H.c.}, (1b)

Himp =
∑

i∈I,σ,σ ′
Vz c†

i,σ (n̂i · 	s)σσ ′ ci,σ ′ . (1c)

In the above, HKM is the Kane-Mele Hamiltonian, in which
t is the nearest-neighbor hopping in the honeycomb lattice,
μ is the onsite chemical potential, and λSO is the spin-orbit
coupling strength between next-nearest neighbors within each
sublattice. The spin-orbit chirality is given by νi j = (d i ×
d j )z = ±1, with d i, j the unitary vectors connecting sites i and
j, and si is the vector of Pauli matrices in spin space.

Proximity-induced superconductivity is modeled via a
BCS-type Hamiltonian HSC, where �i is a spin-singlet s-wave
superconducting order parameter. It is determined through the
self-consistency condition

�i = Usc 〈ci,↑ ci,↓〉. (2)

This emulates the leaking of Cooper pairs from the super-
conductor into the QSHI via an effective electron-electron
interaction characterized by an onsite attraction with strength
−Usc [28–30]. The condition (2) is updated iteratively until
two steps have an absolute difference of less than 10−3 and is
calculated for a clean sample, i.e., no impurities.

Finally, the magnetic impurities are added to the system
through the Hamiltonian Himp, where the summation runs
over the subset of sites i ∈ I holding adatoms. We describe the
magnetic impurities as independent spins, with a Zeeman-type
strength Vz favoring in-plane alignment at a direction n̂i(θi ) =
(cos [θi], sin [θi], 0). Here, θi = θxi/L is the alignment angle
for a impurity at a lattice index position xi in the chain of
length L and θ is the spiral angle, which defines the type of
magnetic order along the chain. For instance, θ =0 and θ =π

correspond, respectively, to ferromagnetic and antiferromag-
netic order in the chain, while intermediate values between
those indicate spiral magnetic order.

Throughout this work, we use λSO = 0.5t (which gives
a normal-state full energy gap 2λSO = t) and an effective
superconducting attraction Usc = 2t . These parameters yield a
superconducting order parameter �b ∼ 10−3t , in the bulk, and
�e ∼ 3 × 10−1t at the edges, for small doping levels. Due to
the self-consistent condition, the order parameter in the bulk
increases with μ, while the dependence at the edge with μ

is much weaker, due to the approximately constant density
of states of the edge states. As μ increases, the normal-state
energy spectrum goes from that of a topological insulator to
that of a metal, at μ = λSO. Close to the metallic phase, we
observe a strong increase in � at the bulk, which continues
with increasing μ. This, however, does not affect the existence
of a topological phase, as we find that fixing a constant � for
all sites does not change the phase diagram, although general
properties of the system do change. The superconducting or-
der in the middle of the sample is compatible to the one found
in the full bulk calculations [25], i.e., not using a finite slab
system, which ensures that the bulk properties are the same.

We obtain the spectrum of H by solving the Bogoliubov–
de Gennes equations numerically. We use both periodic
boundary conditions (PBCs) and open boundary conditions
(OBCs) along the zigzag edge direction, where the magnetic

chain is located. For PBCs, the magnetic chain with Nx sites
spans the full length of the strip. We then choose Nx such that
we have a integer number of spiral rotations, with k given
by Nx = 2πk/θ where θ is the spiral angle. Alternatively, we
simulate finite chains by using OBCs, with the chain fully em-
bedded in the host. In this case, we use a supercell approach,
such that there is a large buffer region isolating two copies
of the magnetic chain. Although there is no constraint on θ ,
we use the same values as for the PBC calculations to ease
comparisons. We also impose that the first and last impurity
have the same magnetic alignment. In all cases, the transverse
size (armchair), remains fixed with Ny = 60 sites in order to
ensure stable bulk conditions in the interior of the QSHI.

III. TOPOLOGICAL PHASE DIAGRAMS

We start by establishing the topological phase diagrams
as function of both doping and strength of the magnetic im-
purities. The existence of topological phases and the phase
diagram can be determined by the “Majorana number” [1,25]
for the system with PBCs. As mentioned previously, in this
case the magnetic chain spans the full length of the strip of Nx

sites. We then use the definition of Majorana number in terms
of Pfaffian (Pf)

M(HA) = Sgn [Pf (HA(N1 + N2))]
Sgn [Pf (HA(N1))]Sgn [Pf (HA(N2))]

, (3)

where HA is the antisymmetric form of the Hamiltonian H
[1],

HA = 1

2

(1 1
i −i

)
H

(1 −i
1 i

)
(4)

with H given by Eqs. (1a)–(1c) in the basis (c†
↑, c†

↓, c↑, c↓),
Sgn is the sign function and N1 and N2 are the lengths of
two different chains. Assuming N1 =N2 we can simplify the
expression to M(H) = Sgn[Pf (H(2N1))] and the Majorana
number can thus be determined by a calculation of the Pfaffian
of the Hamiltonian for a chain of 2N1 sites. Thus, for a given
spiral angle θ , we use only chains with an even number of
spiral rotations k given by Nx = 2πk/θ such that we only need
to calculate the Pfaffian once (see Ref. [25] for details).

The phase diagrams, Figs. 2 and 3, show the Majorana
number as a function of both the chemical potential μ and
magnetic impurity strength or Zeeman splitting Vz for differ-
ent distances between magnetic chain and the QSHI edge. We
compute the Majorana number for a system with NxNy = 480
sites and chains with Nx = 8 sites for both the ferromagnetic
(θ = 0) (Fig. 2) and four-site periodic spiral chains (θ = π/2)
(Fig. 3), always keeping the transverse direction fixed with
Ny =60 sites. As a consistency check, we consider the cases
where the chain is located in the central part of the sample,
as shown in Figs. 2(d) and 3(d). As expected, these systems
are nearly indistinguishable from the phase diagrams resulting
from a full-bulk calculation [25].

As we move the chain closer to the edge, the topological
phase diagram changes, significantly increasing the phase-
space area of the topological phase for μ � 0.4t [see, e.g.,
Figs. 2(a) and 3(a)]. In addition, the effect of the location of
the chain relative to the edge on the phase diagram is short
ranged: it all but disappears for chains located at distances
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FIG. 2. Phase diagram for a ferromagnetic chain (θ = 0). Topo-
logically nontrivial phases (M = −1) are shaded in (a) black for a
chain at the edge, (b) green for a chain 3a/2 away from the edge,
(c) blue for a chain 3a away from the edge, and (d) red for a chain in
the bulk.

larger than 3a − 4a from the edge. These findings are consis-
tent with the dependence of the QSHI phase on the chemical
potential μ and the properties of the QSHI edge states. Indeed,
our simulations for the Kane-Mele model show that the sys-
tem is metallic already at μ ∼ 0.5t , and we consequently do
not see much change in the phase diagrams beyond these high
doping levels. There is also no significant difference between
bulk and edge chains in this metallic regime. In addition, the
negligible effect of distance from the edge once it is larger
than 4a is consistent with the exponential decay of the QSHI
edge state wave function with the distance to the edge: for
μ = 0.4t , the edge states extend only up to ∼3a away from
the edge. This maximum distance changes depending on the
magnetic ordering along the chain, from ∼1.5a for the ferro-
magnetic order [θ =0, see Figs. 2(a) and 2(b)] to ∼3a, for the
spiral order [θ =π/2, Figs. 3(a)–3(c)], further strengthening
the notion that the QSHI edge has only a very limited range
influence.

FIG. 3. Phase diagram for a spiral chain (θ = π/2). Topologi-
cally nontrivial phases (M = −1) are shaded in (a) black for a chain
at the edge, (b) green for a chain 3a/2 away from the edge, (c) blue
for a chain 3a away from the edge, and (d) red for a chain in the bulk.

In addition, we also find that the shapes of the phase di-
agrams are at least partially determined by the properties of
single impurity, as we showcase further in Appendix A. This
is especially true for the ferromagnetic case. For a single mag-
netic impurity in a gapped superconductor there are always
in-gap states, so-called Yu-Shiba-Rusinov–type (YSR) states
[31–34], located symmetrically around zero energy. The en-
ergy of these states depends on the magnetic impurity strength
Vz, and at a critical strength the energy levels cross each other
at zero energy, marking a quantum phase transition. We find
that the line that describes the quantum phase transition in Vz

vs μ space is in fact remarkably similar to the lower boundary
of the phase diagrams in Fig. 2, with the same dependence on
the edge location relative to the impurity.

While the results in Appendix A show that YSR states are
behind some features of the phase diagram for ferromagnetic
chains, we note that the phase diagram is more complex
in the spiral case. Still, it is possible to find an effective
expression for the (μ,Vz ) dependence of the YSR band cross-
ing, which describes the position-dependent boundary also of
Fig. 3. Such a phenomenological approach is presented in
Appendix B, and accounts for the origin of both the phase-
diagram boundary crossings and the existence of a boundless
region [25]. While the former is mostly accidental and asso-
ciated with the crossings of two pairs of YSR bands at the
same point, the latter is related to the linear density of states,
characteristic of 2D Dirac systems.

Finally, we note that setting the position-dependent su-
perconducting order parameter �i to a constant value does
not produce any significant differences in the overall phase
diagrams for the ferromagnetic chain. As discussed in Ap-
pendix C, setting �i as equal to the (position-independent)
bulk value does not alter significantly the boundaries in the
topological diagram. Moreover, we find that this is valid also
for chains away from the edge. These findings, together with
the persistence of the upper Vz boundary in all phase diagrams,
lead us to believe that the shape of the upper boundary is
mainly determined by the coupling between the magnetic
chain and QSHI states.

IV. MAJORANA BOUND STATES

The existence of topological phases in the system with
PBCs is a clear indicator of the presence of MBSs in finite
chains. To explore this we perform additional calculations
with OBCs and chains of different lengths. We start with
relatively small chains: 20 sites for the ferromagnetic case
and 21 sites for the spiral case. In both cases, the chain is
embedded in a lattice with 40 sites along the zigzag (edge)
direction (Nx) and 60 sites in the armchair direction. We
checked the consistency of these calculations by increasing
the number of sites to 60 (61) for the ferromagnetic (spiral)
cases, embedding the chains in lattices with sizes Nx = 80 and
Ny = 60.

A. Low-lying spectrum

We start by analyzing the energy spectrum for finite mag-
netic chains embedded at different distances from the edge.
In Fig. 4 we show the low-lying spectrum for μ = 0.4t for
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FIG. 4. Ferromagnetic chain (θ = 0) with μ = 0.4t and a fully
embedded 20-site chain at (a) bulk, (b) 3a away from the edge, and
(c) edge. States closest to zero energy are marked in red and shaded
regions mark the Vz range of the topological phase (M = −1) in
Figs. 2(a), 2(c), and 2(d).

ferromagnetic chains located at three different positions rel-
ative to the edge. The shaded region marks the topological
phase obtained in the PBC calculations [see Figs. 2(a), 2(c),
and 2(d)]. The MBSs appear as states at or near zero energy
(marked in red in the shaded region).

At a first glance, using a finite-length chain and OBCs
(instead of PBCs) does not play an important role for a fer-
romagnetic chain located in the bulk. This can be seen in
Fig. 4(a), which shows the MBSs occurring between bulk
energy gap closings in the spectrum at Vz/t ≈ 2 and Vz/t ≈ 7,
values which closely resemble those in the phase diagram
of Fig. 2(d) calculated using PBCs. The figure also shows
how the energy of the two MBSs oscillates as a function of
magnetic impurity strength Vz. These MBS energy oscillations
(MBS oscillations for short) are more prominent for shorter
chains as short chains give both more overlap between the two
end-point MBSs [7,16,35] and to in-gap states living along the
chain [36].

As the chain is positioned closer to the edge, the main
features of the bulk remain, i.e., the MBS oscillation pattern
and the boundaries of the topological region. There are, how-
ever, important differences. First, the MBSs at zero energy
are much better characterized: the energy oscillations as a
function of Vz arising are heavily suppressed when the chain
is positioned at the edge [Fig. 4(c)] as compared to the case

where it is in the bulk [Fig. 4(a)]. Notice that the chains are of
the same length and therefore this is a very important effect of
the QSHI edge. We also note that, in contrast to the case of a
chain located in bulk of the QSHI+SC system, a finite length
of the chain slightly changes the end of the topological phase
in terms of Vz for edge QSHI chains: the gap opening (which
marks the end of the topological phase) occurs at a smaller
value (Vz/t ≈ 6.4) relative to that calculated with PBCs shown
in Fig. 2(c), Vz/t ≈ 6.7.

A key difference between chains at the QSHI edge and in
the QSHI bulk is the increase of the size of the superconduct-
ing gap as the chain is moved from the bulk [Fig. 4(a)] to
the edge [Fig. 4(c)] of the QSHI+SC system. This change is
driven by the increase of the superconducting order parameter
�i when moving toward the edge of the QSHI since there
is more low-energy density of states for a given value of the
chemical potential. This increase in order-parameter strength
is substantial, reaching several orders of magnitude in some
cases. We have already concluded that this increase does not
significantly change the onset of the topological phase (see
discussion at the end of Sec. III), but here we find that it
does play an important role in localizing the MBSs in shorter
chains. One of the signatures is the amplitude decrease of
MBS oscillations: while such oscillations are clearly visible
in Fig. 4(a), they are all but gone in Fig. 4(c) (see Appendix C
for an more in-depth comparison).

The case with spiral magnetic order case (θ = π/2), shown
in Fig. 5, is even more interesting. All the effects mentioned
above are, in a sense, magnified. First, as shown in the phase
diagrams of Fig. 3, for a given value of μ (say, μ = 0.35t) we
can go from a “boundless” topological phase (no maximum
value of Vz) to a “upper bounded” one by simply positioning
the chain closer to the edge. This entails an important change
of MBSs’ behavior, as illustrated in Fig. 5, which shows the
low-lying spectrum for μ = 0.35t and different locations of
the chain (bulk, near the edge, at the edge) within the system.
For chains located at the edge [“upper bounded” topological
regime, Fig. 5(c)], the spectrum shows similar features as
those shown in Figs. 4(a) and 4(b) for the ferromagnetic case:
an accumulation of low-energy bulk states (in black) at both
the onset and end of the topological regions, marking a bulk
phase transition. By contrast, for chains located in the bulk
[Fig. 5(a)], this value of μ corresponds to a topological phase
with no upper boundary [see Fig. 3(d)] and we see no second
bulk phase transition at larger Vz.

In-between, these two extremes, a blurry picture emerges
when the chain is placed near (but not exactly at) the edge. As
shown in Fig. 5(b), some properties of the spectrum are similar
to those found in the bulk such as large MBS oscillation
amplitudes relative to the size of the gap, indicating strong
finite-size effects. On the other hand, the curvatures of the
energy spectrum at the first gap closing (which marks the
onset of the topological phase) are very different from the
bulk and edge cases, suggesting a change in some additional
effective parameter [37].

B. Majorana polarization

To gain a better understanding of effects on the MBSs
by placing the magnetic chain on a QSHI edge, we can
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FIG. 5. Spiral chain (θ = π/2) with μ = 0.35t and a fully em-
bedded 21-site chain at (a) bulk, (b) 3a away from the edge, and
(c) edge. States closest to zero energy are in red, and shaded re-
gions mark the Vz range of the topological phase (M = −1) from
Figs. 3(a), 3(c), and 3(d).

calculate the normalized Majorana polarization (MP) defined
as [26,27]

MP =
∣∣∑

j∈R 2u j,↑v j,↑ + 2u j,↓v j,↓
∣∣∑

j∈R〈� j |� j〉 , (5)

where the sums over j run over only sites located in half of
the system (one polarization measure per MBS), u j,σ (v j,σ )
is the electronic (hole) part of the negative near-zero state at
site j and spin σ , and |� j〉 = (u↑, u↓, v↑, v↓)� is the eigen-
vector of the same negative near-zero state at site j. Thus, a
perfectly particle-hole-symmetric MBS will have MP = 1 and
a normal state (either electronlike or holelike) has MP = 0.
In-between these values lie the near-zero-energy bound states
with “imperfections” in the particle-hole conjugation (the
“quasi-MBSs”). Overall, this gives a quantitative measure of
the “quality” of the low-lying states in the topological regime:
the higher the MP, the closer the state is to a “true” MBS.

Figure 6(a) shows the MP versus Vz for a ferromagnetic
chain with 20 sites located at the QSHI edge at μ = 0.4t .
The topological region shows an example of a MP = 1 MBS.
Notice the rapidly declining from MP = 1 to MP ≈ 0.5 at
Vz/t ≈ 6.4. These are the finite-size effects which cause the
gap to open slightly before the topological phase transition
takes place, as discussed in Sec. IV. For larger values of Vz,

FIG. 6. Majorana polarization for a ferromagnetic chain θ = 0
(a), (b), and spiral θ = π/2 (c), (d), with μ = 0.4t . The ferromag-
netic chain is located at (a) edge with 20 sites and (b) bulk with 20
sites (black line) and 60 sites (red dashed). The spiral chain is located
at (c) edge with 21 sites and (d) bulk with 21 sites (black line) and 61
sites (red dashed). The topological phase is inside the gray region.

the MP further declines from 0.5 to 0, which corresponds to
the conelike ABS state in the spectrum in the region 6.8t �
Vz � 8.9t [see Fig. 4(c)]. This suggests that, while morphing
from MBSs to ABSs, the system retains information from the
topological phase.

As we move the chain away from the edge to the bulk,
the MP overall decreases and oscillates more, as shown in
Fig. 6(b). The maximum MP value now reaches only about
0.7, a clear decrease in “quality” of the MBS as compared
to the case of the chain located at the edge. In this situation,
increasing the chain length to 60 sites [dashed red line in
Fig. 6(b)] results in an increase of the MP maximum values
to approximately 0.9, while the oscillation amplitude also
reduces substantially. Only for very long chains located in
the bulk do we obtain MP values close to 1, indicating the
significance of finite-size effects for chains in the bulk. This is
in clear contrast to the case where the chain is located at the
edge, where 100% Majorana polarization is obtained already
for short chains.

We also computed the MP for the spiral order case near
the boundless region μ = 0.4t . The results [Figs. 6(c) and
6(d)] show a similar trend as in the ferromagnetic case: even
relatively small (∼20 sites) chains located at the edge show
MP values significatively larger as compared to chains in the
bulk. Likewise, the transition from ABS-dominated (small
MP values) to MBS-dominated (large MP values) regimes is
much sharper for chains located at the edge [see Fig. 6(c)].

The MBSs’ “low quality” (as measured by the MP) for
chains located in the bulk of the QSHI+SC system is evi-
denced not only by the rather low maximum values of MP
(about 70%), but also by the rather large amplitude of the MP
oscillations. Such MP oscillations are consistent with the en-
ergy versus Vz oscillations seen in the MBS energy spectrum
in Fig. 4. In fact, the MP vs Vz oscillations occur in phase with
the MBS energy oscillations, as shown in Fig. 7(a). Unexpect-
edly, the peaks in the MBS energy oscillations correspond to
peaks in the MP oscillations. This is the best Majorana quality
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FIG. 7. Majorana polarization (thick black line) and subgap en-
ergy levels (dashed red line) for μ = 0.4t and (a) ferromagnetic chain
θ = 0 with 20 sites in the bulk and (b) spiral magnetic chain θ = π/2
with 21 sites at 3a away from the edge. Note that peaks of MP
correspond to peaks in MBS oscillation. The kink in the spectrum
at (a) Vz ≈ 7.9t and (b) Vz ≈ 16.5t also produces a peak in MP even
though it is an ABS. The topological phase lies inside the gray region.

achieved at finite energy, not at zero energy. This in-phase
oscillation is a specific behavior of the ferromagnetic chain
in this system, and is not present in the spiral magnetic case
[Fig. 7(b)].

In addition, the MP can be used to understand how MBSs
become ABSs, present for example in Fig. 5(b) where there
is a smooth transition between MBS and ABS across the bulk
topological phase transition.1 This transition does not translate
immediately in the decline of MP as seen in Fig. 7(b). Indeed,
the MP has the highest value, 0.94 at Vz = 6.7t , after the clear
deviation of the lowest-energy level from zero in Fig. 5(b).
While at the expected topological phase transition Vz = 9.2t ,
the MP has already decreased to around 0.6, we thus see a
slow transition from a MBS to an ABS. This near-zero energy
state finally joins the bulk spectrum at Vz = 16.5t , where also
the MP jumps to 0.2.

V. CONCLUDING REMARKS

To conclude, we investigated the properties of Majorana
bound states located at the ends of a chain of magnetic im-
purities positioned at the edge of a 2D topological insulator
with proximity-induced s-wave superconductivity. Our main
finding is that the coupling of chain and topological insulator
edge states and the enhancement of the local superconducting
order parameter induced in the chain results in a stronger

1These nontopological low-lying states are localized in the chain
and evolve to MBSs at the topological transition. Thus, we refer to
these as “Andreev bound states” even though in some cases their
energies might be very close to the gap edge.

exponential localization of the MBSs (and, thus, in a substan-
tial decrease in the overlap between them) even for relatively
small chain lengths.

Placing the chain at the edge (as opposed to the bulk) of the
QSHI leads to two main effects: (i) the size of the topological
region in the doping vs magnetic impurity strength phase
diagram significantly increases for small doping levels in the
QSHI regime, and (ii) there is a significant increase in the
overall quality of the MBS, as measured both by the decrease
in amplitude of oscillations around zero energy and by the
increase in MP in the topological region. These improvements
can be understood as the result of several factors, including
the changes in the spectrum of the chain states due to the
coupling with QSHI edge states, as well as the increase of
the superconducting order parameter near the QSHI edge.

The changes in the topological phase diagram for ferro-
magnetic chains located either at the bulk or at the edge are
driven by two distinct contributions. The lower Vz boundary
arises from the zero-energy crossing of in-gap magnetic states
(similar to YSR states of single magnetic impurities) while
the upper Vz boundary is defined by zero-energy crossings of
states arising from a coupling of chain states with QSHI states.
In this sense, the increase in the overall topological region
for chains located at the edge comes mostly from the change
in the shape of the lower boundary of the phase diagram.
This gives us a useful phenomenological picture which, in
principle, can also be applied to the more complex case of
chains with more generic spiral magnetic ordering.

As expected, finite chains display MBSs at its ends when
μ and Vz are tuned to the topological regions of the phase
diagram. Interestingly, the increase in the induced supercon-
ducting order parameter close to the edge of the QSHI (shown
by our self-consistent calculations) leads to a stronger lo-
calization of the MBSs when a chain of a given length is
moved from the bulk to the edge of the QHSI. Such “quality
improvement” of the MBS can be quantified by the Majo-
rana polarization (MP): for chains located at the edges, the
topological transition is characterized by a sharp jump in the
MP value with a maximum value close to 100%. By contrast,
for chains located in the bulk, only in the limit of very long
chains the MP reaches values comparable to 100%. In ad-
dition, for ferromagnetic chains, the MP has oscillations in
phase with the spectrum around zero energy. Together with
the spiral magnetic chain, that has the maximum MP at finite
energies, it suggests the possibility of systems where actually
finite-energy values indicate the most robust MBS.

The proposed system of magnetic adatoms on QSHIs
can be experimentally realized by using magnetic states
(such as adatoms [38] or vacancies [39]) on Kane-Mele–
type honeycomb topological insulator [21,22] placed on a
superconductor substrate. Our results indicate that such an
arrangement would give highly localized MBSs for a chain
of magnetic sites located at a zigzag edge, making it an ideal
platform for studying their properties with local probes such
as STM [7,15–18].
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APPENDIX A: YSR CROSSINGS IN THE
SINGLE-IMPURITY LIMIT

Additional insights on the shapes of the phase boundary
lines for the ferromagnetic case (Fig. 2) can be drawn from
calculations for single magnetic impurities deposited either on
the edge or in the bulk [40] of the QSHI+SC system. In this
limit, the subgap Andreev bound states are usually referred
to as Yu-Shiba-Rusinov states (YSR) and a quantum phase
transition (QPT) occurs as a result of the zero-energy crossing
of YSR states in the spectrum [34,40]. Since the crossing
depends both on Vz and μ, we can construct a critical line in
the μ vs Vz diagram and compare it to the phase boundaries of
the chain calculation shown in Fig. 2.

Figure 8(a) shows the QPT line (in red) as a function of
Vz and μ for a single impurity placed at the edge of the
QSHI+SC system. For completeness, we also plot the bound-
ary lines for ferromagnetic chain phase diagram (in black)
shown in Fig. 2. Calculations were performed using similar
parameters (namely, Nx = 20 sites and Ny = 60 sites, with
the same self-consistent �i) as to allow a direct comparison
between both systems.

The lower boundary of MBS phase diagram clearly re-
sembles the single-impurity QPT line. This underscores the
close link between YSR states and MBSs in our setup, which
can provide an estimate of the lower Vz boundary shape of
the ferromagnetic phase diagram in similar systems involving
magnetic chains on superconducting surfaces. It should be
noted that a similar behavior is observed for an impurity at
the bulk for which the QPT line closely resembles the lower
boundary in that bulk QSHI system (not shown).

APPENDIX B: EFFECTIVE SINGLE-IMPURITY MODEL
FROM YSR BAND CROSSINGS

The connection between the shapes of phase boundaries for
the single-impurity limit and ferromagnetic chains discussed
in the previous Appendix is possible due to the uniaxial spin
alignment in both cases. As such, it cannot be readily applied
to chains with spiral magnetic order for which no such align-
ment exists.

However, we can use the similarities between the phase
diagrams for different magnetic orders to establish an effective
single-impurity limit for the spiral case. The first similarity is
that, in both the ferromagnetic and spiral cases, the shape of
one of the boundaries is essentially independent of the chain
position (see Figs. 2 and 3). The results for the ferromagnetic
case presented in the previous section suggest that the shape

FIG. 8. Topological phase diagram for (a) single magnetic impu-
rity located at the edge of the QSHI. The quantum phase transition
line boundary is shown as red squares. The topological phase of the
chain is inside the gray region. (b) Ferromagnetic chain at edge of
the QSHI using the bulk value �B calculated at μ = 0.025t (with no
self-consistency). The phase-diagram boundary lines are shown as
blue triangles. The boundaries for the ferromagnetic phase diagram
calculated with a self-consistent �i(μ) [same as in Fig. 2(a)] are also
shown for comparison (black circles). The topological phase of the
chain is inside the gray (blue) region with(out) self-consistency.

of the other boundary can be associated with zero-energy
crossings of single-impurity YSR states. Following up on this
idea, we set out to find an effective single-impurity limit for
the YSR states using the shape of this other chain position-
dependent boundary as a starting point.

The topological phase transition is driven by the YSR
bands (two for each impurity) which hybridize, forming the
bands shown in the spectrum (Figs. 4 and 5). In particular,
the PBC spectrum has only four YSR bands (two independent
sets of bands with opposite sign), which cross at zero energy.
These zero-energy crossings then also mark the onset and
offset of the topological phase. In addition, these two sets
have different slopes near the zero-energy crossing and can be
used to distinguish the boundaries near the phase diagram’s
crossing [40,41].

In order to establish the effective single-impurity model,
we assume the YSR bands to have energies E± = ±�(1 −
α2V 2

z )/(1 + α2V 2
z ) with α being a local impurity parameter

associated with the density of states near Fermi energy [41].
We note that the position-dependent boundary of the bulk
phase diagram [Fig. 3(d)] is linear with 1/Vz. As such, we
propose the following ansatz for the μ dependence of the
critical Zeeman parameter value Vzc at the crossing:

Vzc(μ) =
√

1

α2
= V0 +

√
C0

(μ − μ0)2
, (B1)
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FIG. 9. Phase diagram for a spiral chain (θ = π/2), black dots,
and the fit from Eqs. (B1) and (B2), red curve, for a chain (a) in the
bulk, (b) 3a away from the edge, and (c) at the edge.

where V0, μ0, and C0 are (position-dependent) adjustable
parameters.

For chains located in the bulk, Fig. 9(a) shows that indeed
the position-dependent boundary in the spiral chain phase
diagram can be well fitted by Eq. (B1) up to μ ∼ 0.45t . The
breakdown of the fitting is probably related to the QSHI to
metal transition and the corresponding changes in the super-
conducting order parameter.

For chains located near the edge, we can add an extra μ-
dependent term such that

Vzc(μ) = V0 +
√

C0

(μ − μ0)2 + βμ
, (B2)

which takes into account the edge proximity. Again, the
position-dependent boundary in the phase diagram for spi-
ral chains can be well fitted by Eq. (B2) up to μ ∼ 0.45t
[Figs. 9(b) and 9(c)].

Our phenomenological model for Vzc is also moti-
vated by physical insights on the system. As in the
original YSR model [34], the critical parameter α is
proportional to the host density of states (DOS) at
the Fermi energy ν(μ). Even though the bulk DOS

is gapped [40], the system behaves as ν(μ) ∝ |μ−μ0|
near the gap edges. This can be understood as a linear ap-
proximation of the bulk DOS for energies above the QSHI
gap but below the van Hove singularity (λSO � E � t). In
this region, we find ν(E ) ∝ (|E | − μ∗

0 ) �(|E | − λSO), where
� is the Heaviside function, and μ∗

0 = 0.36t . This value is
very close to μ0 = 0.35t , which we find in the fit of Fig. 9(a).
In addition, the proximity to the metallic edge states can, as
a first-order approximation in the DOS, be thought of as an
additional term βμ. Finally, since we are considering YSR
bands of a many-impurity system, we expect an interaction
between different impurities that leads to an effective demag-
netization and screening of the critical Zeeman field, such that
V eff

z = Vz − V0.
The rather simple phenomenological model presented

above explains several distinct features we see in the spi-
ral phase diagram in Fig. 3. The crossings between phase
boundaries occur due to accidental coincidences of two YSR
crossings, each with its own dependence on the doping μ. In
addition, the “upper boundless” regime in the spiral case [25]
can be explained by a divergence in the impurity parameter
α at μ0, associated with the linear vanishing of the DOS
discussed above.

APPENDIX C: BULK AND EDGE SUPERCONDUCTIVITY

As mentioned in Sec. III, the shape of the phase diagram
changes noticeably as the chain is moved from the bulk to the
edge of the QSHI+SC system. In particular, the “expansion”
of the topological region in the phase diagram for small values
of μ all the way down to μ=0 shown in Figs. 2(a) and 3(a)
is remarkable. Since the edge states are conducting, a fair
question is whether edge superconductivity is playing a role
on the shape of the phase diagram or, in other words, what
would be the influence of the strength of the superconducting
order on the phase diagram?

FIG. 10. Ferromagnetic chain (θ = 0) with μ = 0.4t , � = �B,
and a fully embedded 20-site chain at (a) bulk and (b) edge. States
closest to zero energy are in red. (a) Identical to Fig. 4(a).
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To probe this question, we consider the extreme case where
no self-consistency is used and a uniform, site-independent
value of � taken to be equal to the bulk value calculated for
a given μ. In this scenario, we use the � value obtained from
the self-consistent calculation for μ = 0.025t for a chain in
the bulk (�B = 0.0005t), a value much lower than the one
calculated at the edge (�E = 0.22t). Surprisingly, the overall
shape of the phase diagram for the ferromagnetic chain lo-
cated at the edge of the QSHI+SC system remains essentially
unchanged from when no self-consistency is used, as shown
in Fig. 8(b). This indicates that edge superconductivity does
not by itself drive the changes in the shapes of the phase
diagram as the chain moves from the bulk to the edge of
the QSHI.2

2A caveat is that this does not entirely apply for the spiral case as
it shows extra correlations and the superconducting order parameter
might play a more important role for some values of μ.

In Fig. 10, we further explore the effect of superconducting
order-parameter strength by comparing the low-lying energy
spectrum of the chain in the bulk and at the edge when
we again artificially set the superconducting order parameter
equal to the bulk value �B at all sites. The amplitude of the
MBS energy oscillations becomes similar between bulk and
edge magnetic chains. This is in stark contrast to Fig. 4 in
the main text, which shows a difference of more than two
orders of magnitude suppression of the energy oscillations for
edge chains. Although �B is artificially small, it is interest-
ing to see that the main driver behind the change in energy
scale for a ferromagnetic chain placed in different positions
is the superconducting order parameter. However, the change
of �i along the armchair direction does not explain differ-
ences in oscillation pattern, i.e., its amplitude monotonically
increases/decreases or increases and then decreases, as it was
observed in some cases. We expect differences in the oscilla-
tion pattern between different positions, to be associated with
the changes in the spectrum QSHI edge.
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