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Magnetic chains on superconducting systems have emerged as a platform for realization of Majorana bound
states (MBSs) in condensed-matter systems with possible applications to topological quantum computation.
In this work, we study the MBSs formed in magnetic chains on two-dimensional honeycomb materials with
induced superconductivity. We establish chemical potential vs Zeeman splitting phase diagrams showing that
the topological regions (where MBSs appear) are strongly dependent on the spiral angle along the magnetic
chain. In some of those regions, the topological phase is robust even for large values of the local Zeeman field,
thus producing topological regions which are, in a sense, “unbounded” in the large-field limit. Moreover, we
show that the energy oscillations with magnetic field strength due to MBS splitting can show very different
behaviors depending on the parameters. In some regimes, we find oscillations with increasing amplitudes and
decreasing periods, while in the other regimes the complete opposite behavior is found. We also find that the
topological phase can become dependent on the chain length, particularly in topological regions with a very high
or no upper bound. In these systems, we see a very smooth evolution from MBSs localized at chain end points
to in-gap Andreev bound states spread over the full chain.
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I. INTRODUCTION

Majorana bound states (MBSs), which naturally appear
as zero-energy edge states in topological superconductors,
have been receiving a great deal of attention as possible
building blocks in topological quantum computation protocols
[1]. Several theoretical proposals to realize MBSs have been
put forward, including semiconductor nanowires with strong
spin-orbit coupling [2–4] and chains of magnetic atoms [5,6]
deposited on superconducting materials. Shortly after the
predictions, promising experimental verifications were also
reported [7,8].

Interfaces of magnetic systems and topological insulators
in proximity with superconductors also offer attractive possi-
bilities in the search for MBSs in condensed-matter systems
[9–12]. Dating from the early work of Fu and Kane [13], it has
been proposed that topological superconductivity can emerge
in the junction of a quantum spin Hall insulator (QSHI)
supporting conventional s-wave superconductivity and a fer-
romagnetic insulator [4]. Additionally, two-dimensional (2D)
materials with graphenelike honeycomb structure and strong
spin-orbit coupling have long been theoretically proposed
as QSHIs [14]. Recently, experimental observation of QSHI
behavior was reported, such as in graphene decorated with
Bi2Te3 nanoparticles [15] and in monolayer WTe2 systems
[16]. These findings indicate the presence of a topological
phase and support the description given by the Kane-Mele
model [14] in these materials. Other honeycomb lattice ma-
terials, such as silicene and stanene, are also known to have
induced superconductivity when doped [11,17,18]. This fact,
coupled with their substantial spin-orbit interaction, makes all
these materials very promising platforms for MBSs.

A rather simple alternative way to realize a one-
dimensional (1D) topological superconductor is to form a
chain of magnetic impurities (defects or adatoms) on a su-
perconducting surface (away from the edges), such that the
ends of the chain might display MBSs [5,6]. In fact, several
recent experimental works using low-temperature scanning
tunnel microscopy (STM) reported the presence of localized
states at the end of the chains which would be consistent with
MBSs [6,8,19–21]. The main features of this arrangement can
be captured by a simple (single-particle) model, considering a
1D chain of magnetic moments defined by an on-site “Zeeman
field,” such that the ends of the chain might display MBSs
[5,22]. Moreover, recent experimental evidence of long-range
coherent magnetic bound states in a system of diluted mag-
netic atoms on the surface of hexagonal 2D superconductor
dichalcogenide opens interesting possibilities for producing
extended Majorana quasiparticles in these systems [23].

In all of these platforms for realizing MBSs, there are
multiple challenges even on the theoretical side. For instance,
for a given system, it would be highly desirable (i) to es-
tablish the phase diagram, showing the topological phases,
and (ii) to introduce protocols to experimentally differentiate
MBSs from any other nontopological in-gap state. In the
case of semiconductor nanowires, early experiments faced
the challenge of distinguishing MBSs from other nontopo-
logical zero modes [24] such as Kondo resonances [25] and,
especially, Andreev bound states (ABSs), possibly disorder
induced [26], which can mimic some behaviors of the MBSs
but without topological protection. One of the theoretical
proposals for establishing “smoking-gun” signatures is the
splitting of the MBSs due to the finite-size interaction between
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the two MBSs on either end of the wire. This splitting, or
“gap,” was predicted to oscillate with increasing amplitude
for increasing magnetic field, while the amplitudes decay
exponentially with the wire length [27]. Recently, oscillations
were experimentally observed in InAs nanowires [28], but
with decreasing amplitude with increasing field, a behavior
opposite that theoretically predicted. This prompted some
alternative proposals, which pointed possibly to ABSs (and
not MBSs) as the source of the gap oscillations [29]. Several
other recent studies also underlined some of the difficulties in
distinguishing MBSs and ABSs [30,31].

In this work, we focus on the distinction of MBSs
and ABSs but in a different setup. Namely, we study a
chain of magnetic impurities deposited on a QSHI described
by the Kane-Mele model on the honeycomb lattice [14]
with induced superconductivity. Multiple possible realiza-
tions of this simple model already exist, as discussed above
[11,15–18]. Even more importantly here, it is a simple system
to study, yet as we will show, it has an involved phase diagram
and displays complicated relationships between MBSs and
ABSs. An additional motivation for using this system is the
possibility of exploring the role of edge QSHI states in the
formation of MBSs in magnetic chains. Since QSHI edge
states and MBSs occur at similar energy scales, it is important
to first have a firm grip on the physics of the formation of
MBSs away from the edge.

We show that the topological regions in the doping vs
magnetic impurity field strength phase diagram are strongly
influenced by the magnetic ordering along the chain, such as
ferromagnetic, antiferromagnetic, or different spiral orders.
Especially for spiral chains, we find phase diagrams where
there is no upper bound in magnetic field on the topological
phase. In the topological regions, the presence of MBSs is
very generally accompanied by gap oscillations, but these dis-
play surprisingly different behaviors depending on the system
parameters. In some cases, a behavior similar to that predicted
in Ref. [27] is obtained, with oscillation amplitude increasing
and period decreasing with magnetic field strength. However,
in other cases we discover the complete opposite behavior,
with decreasing oscillation amplitudes and/or increasing pe-
riods. Moreover, we find that gap oscillations can also arise
in nontopological regions of the phase diagram, where only
ABSs are present or when the distinction between MBSs
and ABSs in is not clear-cut. As an example of the latter,
we show that the effective topological phase boundary can
become dependent on chain length, with a smooth crossover
from wire-end-point-localized MBSs to ABSs spreading over
the full chain as a function of magnetic field strength. This
behavior is particularly prominent in regions of the phase
diagram without an upper bound in the magnetic field of
the topological phase. Taken together, these results show that
the behavior of MBSs and their distinction from ABSs are
highly parameter dependent. Ascribing particular oscillation
patterns to signal the presence of MBSs can be a treacherous
procedure. Instead, close attention has to be paid to the system
details in order to produce reliable predictions.

The rest of the text is organized as follows: In Sec. II, we
introduce the model Hamiltonian used to describe the system
and introduce the methods used to calculate its properties. The
bulk system is studied in Sec. III, where a robust classification
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FIG. 1. (a) Honeycomb lattice on top of a superconducting sur-
face (yellow) with white and black dots marking the two sublattices.
Added magnetic impurities are represented as sites in blue. (b)
Angle θ between the neighboring magnetic moments defines the
magnetic spiral with in-plane magnetic moments. (c) In calcula-
tions using PBCs, we impose the constraint Nθ = 2πk, where N

is the number of impurities and k is the total number of spiral
rotations.

procedure of the bulk topological phases in terms of Majorana
numbers is presented and used. We also discuss how the bulk
phase diagram depends on the spiral angle of the chain and
doping. Different finite-size chains and MBSs are explored
in Sec. IV. There we primarily focus on gap oscillations in
the low-energy states and study their behavior as a function
of the chain size and other parameters. We close with our
conclusions, given in Sec. V.

II. MODEL AND METHOD

For the description of the honeycomb material on a su-
perconducting surface, we consider the sample in Fig. 1(a),
where the white and black dots represent sites belonging
to the different sublattices in the honeycomb structure. The
impurity chain, formed by magnetic adatoms or substitutional
impurities, is represented by blue dots and is embedded in
the lattice along the zigzag direction but occupies only one
sublattice. This setup mimics that of impurities along a zigzag
edge of the honeycomb material, although here we consider
only chains fully embedded in the bulk. We fix each impurity
to have a magnetic moment confined to the plane of the system
(xy). At each site along the magnetic chain, the magnetic
moment is rotated by a fixed angle θ from the preceding
one, as shown in Fig. 1(b). The cases θ = 0 and θ = π

thus represent ferromagnetic and antiferromagnetic ordering,
respectively. A generic θ �= 0 leads to a spiral magnetic order
in the chain, as illustrated in Fig. 1(c).

To model a QSHI and also accomplish the necessary spin-
orbit coupling for a topological phase even for a ferromagnetic
chain, we consider the Kane-Mele Hamiltonian HKM, which
includes the spin-orbit coupling allowed by symmetry in
2D honeycomb systems. Combined with proximity-induced
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s-wave superconductivity and magnetic impurities, the full
model Hamiltonian reads H = HKM + HSC + Himp, where

HKM = t
∑

〈i,j〉
c
†
i,σ cj,σ + i

λSO

3
√

3

∑

〈〈i,j〉〉
νij c

†
i,σ (sz)σσ ′cj,σ ′

− μ
∑

i

c
†
i,σ ci,σ , (1a)

HSC = −Usc

∑

i

c
†
i,↑ci,↑c

†
i,↓ci,↓, (1b)

Himp =
∑

i∈I
Vzc

†
i,σ (n̂i · 
s)σσ ′ci,σ ′ . (1c)

In the above, t is the hopping between nearest neighbors
in the honeycomb lattice, μ is the chemical potential, and
λSO is the spin-orbit coupling strength within each sublattice
acting between next-nearest-neighbor sites. The chirality of
the spin-orbit term is expressed by νi,j = (di × dj )z = ±1,
where di,j are unitary vectors connecting sites i and j , while
si are the Pauli matrices in spin space. We assume classical
spins such that the magnetic impurities are described by
Zeeman-like, local magnetization terms Vz with an alignment
n̂i (θ ) = (cos [θxi], sin [θxi], 0), where xj is the enumeration
of the chain’s impurities and I is the set of the impurities’
positions. The length of the chain is given by

√
2a times the

number of impurities, with a being the lattice constant.
Finally, HSC represents the proximity-induced BCS-like

superconductivity, given by an effective (attractive) electron-
electron interaction term represented by an on-site interaction
−Usc. This term effectively encodes processes of Cooper pairs
leaking from the superconductor into the honeycomb lattice
by adding a finite-pairing interaction in the honeycomb mate-
rial [32–34]. We treat the superconductivity term in a standard
mean-field approach HSC = ∑

i �ic
†
i,↑c

†
i,↓ + H.c., with �i =

Usc〈ci,↑ci,↓〉 being the superconducting order parameter ex-
pressed though the self-consistency condition. This approach
allows us to calculate � self-consistently by just assuming a
constant value for Usc. This way, � is always appropriately
adjusted, even locally, with respect to the chemical potential
(or any other parameter).

We perform the self-consistent calculations by starting
with an initial guess for � in H. Then we find new � by
first diagonalizing H and then recalculating � from the self-
consistency condition. We reiterate this procedure until the
difference in � between two consecutive iterations is less
than 10−3. This mean-field and self-consistency approach is
clearly justified as we consider induced superconductivity of
a BCS-like superconductor at low temperature. Moreover,
such a proximity setup warrants only considering the two-
dimensionality of the QSHI.

All calculations presented in the paper are done for λSO =
0.5t , which gives a normal-state full energy gap 2λSO =
1t and an electron-electron interaction Usc = 2t , which is
enough to yield a superconducting order parameter � ∼
10−3t in the bulk even at small doping levels, set by a finite
μ. Due to our self-consistent approach, the order parameter
increases with μ, as shown in Fig. 2. As μ increases, the
normal-state energy spectrum goes from that of an insulator to
that of a metal, followed by an increase in �. This, however,
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FIG. 2. Superconducting order parameter � as a function of
doping μ. For small values of μ, � ∼ 10−3t but increases rapidly
with doping. The vertical dashed line indicates the transition from
insulator to metal.

does not affect the existence of a topological phase and MBSs.
It should be noted that, in a finite system, the order parameter
is generally larger at the edges [35,36], so that these values of
� are actually a lower bound.

We have checked that the resulting superconducting order
parameter � does not change significantly in the bulk of
the sample if the self-consistency procedure is applied in a
system with or without magnetic impurities. For improved
numerical efficiency, we therefore calculate superconductivity
self-consistently in a clean sample with no impurities in order
to obtain �. This bulk value of � is then used in the system
with impurities. This procedure is further justified by the
fact that features such as gap oscillations are, in general,
not affected by inducing a local � on the magnetic impurity
sites [29].

In order to obtain the bulk spectrum for H, we solve the
resulting Bogoliubov–de Gennes equations numerically by
putting the system on a torus, which is equivalent to applying
periodic boundary conditions (PBCs) and sampling only at the
� point. In this setup, the magnetic chain spans the full length
of the system. As such, the spiral angle θ and the number of
chain sites N are related by Nθ = 2πk, where k is the total
number of spiral rotations, as illustrated in Fig. 1(c). Thus, the
longitudinal size of the system will depend on θ , while the
number of sites in the transverse (armchair) direction remains
fixed, where we use 20 sites unless otherwise stated. When
instead simulating finite chains fully embedded in the host,
we use a supercell approach to fully isolate the chain from
its periodically repeated copies, and θ is thus not constrained
in this situation. Nevertheless, we used the same θ values to
compare both calculations.

III. TOPOLOGICAL PHASE DIAGRAMS

In order to verify the presence of a topological phase, we
calculate a “Majorana number” for the Hamiltonian H (N ),
where N is the number of (real-space) sites of the chain
using PBCs. In general, the Majorana number M(H) for a
1D Hamiltonian H is defined in terms of the Pfaffian (Pf)
as [1]

M(H) = Sgn{Pf[H(N1 + N2)]}
Sgn{Pf[H(N1)]}Sgn{Pf[H(N2)]} , (2)
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where Sgn is the sign function and N1 and N2 are the sizes of
two chains with different lengths. It is clear that for N1 = N2

we have M(H) = Sgn{Pf[H(2N1)]}, and the Majorana num-
ber can thus be determined by a calculation of the Pfaffian of
the Hamiltonian for a chain of 2N1 sites. In our case, applying
PBCs in both spatial directions of the honeycomb lattice, we
arrive at a pseudo-1D system along the chain direction with a
finite width set by the transverse dimension. However, as long
as this finite width is kept constant, the parity of the ground
state and thus the Majorana number do not change. We can
therefore apply Eq. (2) to gain a topological characterization
even in the case of the inhomogeneous 2D system given by
H (N ) [22]. We notice, however, that the calculation of the
Majorana number in terms of the Pfaffian is restricted to those
cases when the spiral angle θ is such that the number of spiral
rotations k1 = N1θ/(2π ) of the system with N1 sites is an
integer. In these cases, it is clear that the number of spiral
rotations k for H (2N1) is an even number. Thus, for a given
θ and N , some care needs to be taken as the Pfaffian and
the Majorana number can have different signs if k is odd.
Numerically, the Pfaffian was calculated using the package of
Ref. [37].

Having established a convenient way of deducing the exis-
tence of a topological phase, we study several different spin
spiral configurations. To this end, we consider an 800-site
system with a 40-site chain for the ferromagnetic case θ = 0
and a 640-site system with a 32-site chain for spiral chains
θ = π/4 and π/2, always keeping the transverse direction
fixed. We map the Majorana number as a function of both
the chemical potential μ and Zeeman splitting Vz for these
three configurations, with the results summarized in Fig. 3.
The results show that the spiral angle θ strongly influences
the shape of the phase diagram. In the FM case [Fig. 3(a)],
the boundaries between trivial and topological phases are
marked by curves of the form μ ∼ 1/Vz + μmin such that
for a given μ > μmin there is always a topological phase
for some value of Vz. This result is similar to that found
for a ferromagnetic domain at the edge of a honeycomb
QSHI [11].

In sharp contrast we find the results for the spiral cases in
Figs. 3(b) and 3(c). In these cases, there are “crossings” of the
phase boundaries such that there are discrete values of μ for
which no topological phase exists. Also interestingly, there
are regions where the phase boundaries become essentially
horizontal. For a given μ in these regions, a lower bound
exists for Vz to enter a topological phase, but no upper bound
exists where a trivial phase reenters. As we shall see, in
these unbounded topological regions, the distinction between
MBSs and ABSs is not as clear-cut as in bounded regions.
Finally, for the antiferromagnetic alignment θ = π , we found
only a trivial phase, which is consistent with previous results
[22]. We note in passing that the spiral angle is not easily
controlled in experiments, which makes this distinction an
even greater challenge for experimentalists. We have also
checked that for θ = 0 the topological phase is robust for a
sublattice asymmetric spin-orbit and a next-nearest-neighbor
hopping. This point is further discussed in the Appendix. For a
finite spiral angle, the phase diagrams are more complicated,
and some regions are somewhat enhanced, while others are
suppressed, but with no qualitative changes.

FIG. 3. Phase diagram for (a) a ferromagnetic chain (θ = 0),
(b) spiral chain with θ = π/2, and (c) spiral chain with θ = π/4.
Topologically nontrivial phases (M = −1) are shaded in gray, while
trivial phases (M = +1) are white. Dashed red lines correspond to
the parameter space chosen in subsequent plots.

IV. MAJORANA BOUND STATES

The above characterization of topological phases for bulk
systems is very helpful to identify MBSs in the energy
spectrum of systems which have finite magnetic chains. An
example is shown in Fig. 4 for a ferromagnetic chain (θ = 0)
for the parameter choices indicated by the dashed red line in
Fig. 3(a).

The spectrum of the system with a finite chain seen in
Fig. 4(b) clearly shows low-lying edge states which are absent
in the bulk calculation in Fig. 4(a). These states occur between
gap closings in the bulk spectrum at Vz/t ≈ 2 and Vz/t ≈
7, values that coincide with those of the topological phase
transitions for this particular value of μ in Fig. 3(a). These
are therefore MBSs of the finite chain.

We see that the MBSs oscillate as a function of the Zeeman
field Vz, effectively opening and closing the gap. Similar gap
oscillations have been identified as signatures of MBSs in
quantum wires where the gap has been found to change with
Vz according to the ansatz [27]

�ε(Vz) ∼ kF (Vz)e−2L/ξ cos [kF (Vz)L]. (3)
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FIG. 4. (a) Ferromagnetic chain (θ = 0) with μ = 0.4t with
PBCs and (b) a fully embedded 20-site chain. States closest to zero
energy are in red, horizontal dotted blue lines mark the value of the
superconducting order parameter in the bulk ±�, and shaded regions
mark the Vz range of the topological phase (M = −1) from Fig. 3(a).

Here L is the chain length, kF (Vz) ∝ Vz is the Fermi wave-
length, and ξ is the localization length of the MBSs along
the wire. Notably, this ansatz leads to an increased amplitude
and decreased period for the gap oscillations with increasing
magnetic field Vz and also an exponential suppression with
wire length.

Although Eq. (3) was originally derived for a single-band
semiconductor nanowire [27], our results indicate that it can
at least be qualitatively applied to describe the oscillations in
�ε(Vz) also in systems with magnetic impurities for some
parameter regimes. For example, in Fig. 4(b) we show how
the amplitude of the MBS energy level oscillations increases
with increasing Vz, in agreement with the ansatz in Eq. (3).
Moreover, Fig. 5 shows that the oscillation amplitude of
the peaks marked by colored symbols in Fig. 4(b) also de-
creases exponentially with the chain length, in agreement
with the ansatz in Eq. (3). This is consistent with exponential

FIG. 5. Exponential decay of the amplitude of the peaks marked
in Fig. 4 as a function of length (number of sites) of the impurity
chain.
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FIG. 6. (a) Spiral θ = π/2 chain with μ = 0.4t with PBCs and
(b) a fully embedded 21-site chain. States closest to zero energy are
in red, horizontal dotted blue lines mark the value of the supercon-
ducting order parameter in the bulk ±�, and shaded regions mark
the Vz range of the topological phase (M = −1) from Fig. 3(b).

topological protection for the MBSs in the limit of large
chains [27]. It is worth mentioning that increasing the length
of the chain also increases the overall number of oscillations
within the topological phase “window” in Vz, which is also
consistent with Eq. (3). After the crossing at Vz/t ≈ 7, the
lowest-lying states are still subgap states inside the supercon-
ducting gap, but now localized over the whole impurity chain.
However, they show no oscillatory pattern, and their energy is
far from zero. Such states can therefore be identified as ABSs,
which are clearly distinct from the MBSs in the topological
region 2 � Vz/t � 7.

The distinction between MBSs and ABSs found in Fig. 4
is, however, not as clear-cut in other parameter regimes.
Figure 6 shows results for a 21-site chain with spiral ordering
(θ = π/2) at μ = 0.4t . The bulk phase diagram in this case
[Fig. 3(b)] shows that the topological region for this value of
μ starts at Vz ≈ 4t , while the upper boundary line becomes
essentially parallel to the Vz axis, such that the upper bound
in Vz occurs at a relatively large value of V bulk

zc ≈ 18t . These
topological phase transitions are fully consistent with the bulk
energy band crossings in the spectrum shown in Fig. 6(a).
Comparing the bulk spectrum with that of the finite chain in
Fig. 6(b), we find low-lying MBSs and also some important
additional features. As a general trend, the energy oscillations
of the MBSs deep in the topological phase actually decrease
in amplitude with increasing Vz. This clearly contradicts the
prediction of the ansatz in Eq. (3). We attribute this opposite
behavior to a strong hybridization between the chain and
the bulk states, which is much more relevant for magnetic
impurities than in nanowires. The strong hybridization is, in
fact, evident when comparing Figs. 6(a) and 6(b), as they
show how the finite chain introduces hybridization-driven an-
ticrossings in the spectrum that repel the bulk states at higher
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FIG. 7. Low-lying spectrum of the spiral θ = π/2 chain with
μ = 0.4t for (a) 21 sites, (b) 41 sites, (c) 61 sites, and (d) 121 sites.
Other parameters are the same as in Fig. 6(b).

energies. The decreasing of the MBS oscillation amplitude
with increasing Vz remains even in the case of larger chain
lengths, as shown in Fig. 7. While the overall amplitude of
the oscillations is strongly suppressed with increasing chain
size, corroborating the exponential localization of the MBSs
as in the case nanowires, the oscillation amplitude always
decreases with Vz for a given size L. Thus, this provides an
explicit example of MBS oscillations that do not increase with
magnetic field, as is often assumed.

Another important aspect shown in Fig. 6 is that the
upper magnetic field for which the gap closes V L

zc is shifted
downwards from V bulk

zc ≈18t to V L=21
zc ≈10t , where we find

the last zero-energy crossing for the low-energy state. In fact,
there is no closing of the bulk gap; only the MBSs start
to very slowly approach the bulk energy gap. This shift of
the phase transition is size dependent, as shown in Fig. 7.
However, while the upper critical V L

zc increases with the chain
length L, up to V L=121

zc ≈ 15t for a 121-site chain, as seen in
Fig. 7(d), it is still significantly smaller than the bulk value
of V bulk

zc ≈18t . A possible explanation for this behavior is that
the low-lying MBS always shows hybridization with the bulk
states, producing a slight shift in the gap closing point and no
closing of the bulk spectrum even for longer chains. In fact, we
see the bulk having a tendency to a gap closing in the longest
wire (black states in Fig. 7) but not in any of the shorter wires.
The experimental implications of this result are far reaching:
The MBSs located at the chain end points exist only within
the topological phase but evolve energywise smoothly into the
ABSs in the trivial phase. The transition not only is smooth
in energy but also happens at a magnetic field strength that
depends on the chain length. It thus becomes experimentally
very hard to distinguish between the MBSs and a topological
phase versus the trivial phase with its ABSs.

A further check to differentiate MBSs and ABSs is the
local density of the lowest-lying states, at energy ±Eb, in
the Bogoliubov–de Gennes spectrum (both electron and hole
contributions) at each site i along the chain, i.e., |�(Eb, i)|2.
Another important and closely related quantity, which can
be accessible using local probe experiments such as STM
setups, is the electronic local density of states for the (bound)
states within the superconducting gap, which is calculated as
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FIG. 8. Left: Local-density profile |�(Eb, i )|2 (electron and hole
components) of the state with energy ±Eb at site position i for the
lowest-lying states marked in Fig. 7(c). Shaded gray region indicates
the sites along the 61-site chain. Right: Electron component of the
local density of states |�e(E, i )|2 of subgap states (−� � E �
+�). Each panel corresponds to a different value of Vz, as indicated
by the corresponding symbol in Fig. 7(c): (a) Vz =10t , (b) Vz =15t ,
(c) Vz =17t , and (d) Vz =20t . The results show a smooth transition
between MBSs in (a) and ABSs in (d).

|�e(E, i)|2 as it takes into account only the electron contribu-
tion of the Bogoliubov–de Gennes spectrum. Figure 8 shows
both quantities for a 61-site chain and for the Vz values marked
in Fig. 7(c). These plots confirm the smooth evolution from
MBSs to ABSs as Vz approaches V L=61

zc . Deep in the topo-
logical regime (Vz � V L=61

zc ), the density profile along the
chain is consistent with that expected for MBSs: The density
is strongly localized at the ends of the chain, and |�e(E, i)|2
shows a large contribution at E=0, as shown in Fig. 8(a).
As for Vz � V L=61

zc in Fig. 8(d), the low-lying states instead
show a clear ABS character, with |�(Eb, i)|2 being more de-
localized along the entire chain and having large |�e(E, i)|2
contributions at E �=0, as well as a slight asymmetry in
energies |�e(E, i)|2 �= |�e(−E, i)|2. Figures 8(b) and 8(c)
illustrate the smooth MBS-ABS transition for Vz ∼ V L=61

zc .
For the cases when there is no upper bound in Vz for the

topological region it is even harder to make a clear distinction
between MBS and ABS states. One such case is shown in
Fig. 9 for θ = π/4 and μ = 0.2t . The corresponding phase
diagram in Fig. 3(c) shows a lower bound for the topological
region at Vz ≈8t , but we find no upper bound up to Vz =40t .
In this situation, the lowest-energy state’s amplitude oscilla-
tions seen in Fig. 9(b) increase in amplitude, as predicted by
the ansatz in Eq. (3). There is, however, a clear increase in
the oscillation period, which is at odds with the predictions
of Eq. (3). Intriguingly, the overall amplitude can be of the
order of the superconducting gap (� ≈ 0.004t). Moreover,
just inside the topological phase we find MBSs localized at the
wire end points, as anticipated, but even for moderately small
Vz, we find the lowest-energy state instead being localized
across the full chain, behaving as an ABS instead. Thus, the
same phenomenon of a moving phase boundary with wire
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FIG. 9. (a) Spiral θ = π/4 chain with μ = 0.2t with PBCs and
(b) a fully embedded 25-site chain. States closest to zero energy are
in red, horizontal dotted blue lines mark the value of the supercon-
ducting order parameter in the bulk ±�, and shaded regions mark
the Vz range of the topological phase (M = −1) from Fig. 3(c).

length as in Fig. 7 is likely present here as well, although exact
boundaries are not possible to establish due to the unbounded
topological phase.

Clearly, the results for spiral chains in Figs. 6 and 9 show
that one needs to exercise extreme caution in using an ansatz
such as Eq. (3) as a test for the presence or absence of MBSs
in the spectrum as well as their properties. Depending on the
microscopic details, the MBSs can show both increasing and
decreasing oscillation amplitude and periods with increasing
Vz as well as a very smooth transition to ABSs within any
finite-chain setup even if the infinite chain is in the topological
phase.

Finally, we consider the crossing points of the boundary
curves in the θ �= 0 phase diagrams in Figs. 3(b) and 3(c).
These points correspond to values of μ where no topolog-
ical phases appear independently of the value Vz; any low-
energy state states should thus all be ABSs. One example is
θ = π/2 and μ = 0.192t , as shown in Fig. 10. The subgap
states appearing in the finite-chain calculations [red points
in Fig. 10(b)] are all ABSs, and the gap oscillations are
clearly distinct from those cases where MBSs appear. We
have confirmed that these states are also not localized on the
chain end points but spread over the whole chain. We notice
also that the gap does not close completely (within numerical
precision).

V. CONCLUDING REMARKS

To summarize, we studied the topological phases and
MBSs in a chain of magnetic impurities on a honeycomb
topological insulator with induced s-wave superconductiv-
ity. The shape of the doping vs magnetic field phase dia-
gram changes significantly for different configurations of the

- 0.005
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0.005

E
/t

0 5 10 15 20

- 0.005

0.000

0.005

E
/t

(a)

(b)

V /tz

FIG. 10. (a) Spiral θ = π/2 chain with μ = 0.192t with PBCs
and (b) a fully embedded 21-site chain. States closest to zero energy
are in red, and horizontal dotted blue lines mark the value of the
superconducting order parameter in the bulk ±�. Here μ is chosen
to induce a topologically trivial region for all Vz.

magnetic ordering along the chain, showing features such as
crossings of phase boundaries and unbounded topological re-
gions depending on the spiral angle of the magnetic moments.

Importantly, we also showed that the effectiveness of using
gap oscillations as a tool to distinguish topological Majorana
bound states and nontopological Andreev bound states in
this system is strongly impaired. In some cases, a behavior
similar to that predicted in the literature for nanowires [27],
with increasing amplitude and decreasing oscillation period
with magnetic field, was obtained. In other cases, however,
we obtained MBS-generated gap oscillations which behave
completely differently, decreasing in amplitude and/or in-
creasing in oscillation period, as well as similar oscillatory
behavior in nontopological regions of the phase diagram,
where only ABSs are present. We note that a comparison
between the studied system and simple nanowires might not
be done easily, as the models are quite different. However,
since both belong to the same topological class, we expect
that a similarly varied behavior of the gap oscillations is also
present in more elaborate models for nanowires. The difficulty
in using gap oscillations to distinguish MBSs and ABSs is
most pronounced in regions of the phase diagram without a
clear upper bound in magnetic field for the topological phase.
Here the magnetic chain length also plays a fundamental role
in the formation of MBSs or ABSs, even if the infinite chain
is in the topologically nontrivial phase.

In conclusion, our results show that topological phases and
their associated MBSs can show wildly different behaviors
even in very simple models of real materials. In particular,
our results strongly caution against interpreting experimen-
tal results of oscillating low-energy states as indicative of
nontrivial topology based on specific oscillations properties.
Our results could potentially be verified using transport and
local density of states measurements in a honeycomb QSHI
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material [15,16], with magnetic impurities, deposited on top
of a conventional superconductor.
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APPENDIX: INFLUENCE OF NEXT-NEAREST-NEIGHBOR
HOPPING AND SPIN-ORBIT ASYMMETRY IN THE PHASE

DIAGRAMS

In this appendix we consider the influence of two correc-
tions to the Kane-Mele model Hamiltonian given by Eq. (1a),
which might be present in real materials forming bipartite
hexagonal lattices, namely, (i) adding a next-nearest-neighbor
(NNN) hopping term t2 and (ii) considering a sublattice
asymmetry in the spin-orbit coupling.

Let us begin by considering a finite NNN term. As is
well known, NNN hopping induces particle-hole symmetry
(PHS) breaking in the band structure of bipartite honeycomb
lattices [38]. Since MBSs are zero-energy modes protected
by the symmetries guaranteeing the nontrivial topology, it
is important to consider the stability of the phase diagram
when breaking various symmetries. We note, however, that
due to the finite chemical potential PHS is already broken
in Eq. (1a). Furthermore, including finite NNN, we find that
it actually increases the topological regions in the phase
diagrams. As shown in Fig. 11(a), the topological regions in
the phase diagram for a FM chain are, in fact, enlarged as the
NNN hopping increases. Most interestingly, the lower phase
boundary extends all the way down to μ≈0 for t2 �=0.

0.0
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0.4

0.6

μ /
t

t2:
0
0.05t
0.1t

0 5 10 15 20
0.0

0.2

0.4

0.6

Vz/t

μ/
t

λA:
0
+0.1t
- 0.1t

(a)

(b)

FIG. 11. Phase diagrams for a ferromagnetic chain (θ = 0) with
(a) next-nearest-neighbor hopping t2 and (b) sublattice asymmetric
spin-orbit couplings λA/λSO = ±0.2 or 20% asymmetry. The data
for t2 =0 and λA =0 are the same as presented in Fig. 3.

This latter effect we can attribute to the importance of
breaking the PHS: At finite μ PHS is already broken, but
at μ = 0 a nontrivial topological phase appears only for
finite NNN hopping. As NNN hopping is certainly relevant
to realistic experimental realizations, the results presented in
Fig. 11 indicate that the topological phases will be even more
robust in realistic samples and more independent of the doping
level.

The second effect is a sublattice asymmetry in the spin-
orbit coupling λSO in Eq. (1a). To investigate this, we im-
plement a spin-orbit coupling of the form λ

A(B )
SO = λSO ± λA,

such that a nonzero λA breaks the sublattice symmetry of
the spin-orbit coupling. Figure 11(b) shows that even a large
asymmetry of 20% in the A, B spin-orbit couplings does not
bring any significant changes to the phase diagram, apart from
the topological region again stretching down to μ = 0 due to
an effective PHS breaking.
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