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Manipulating Majorana zero modes in double quantum dots
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Majorana zero modes (MZMs) emerging at the edges of topological superconducting wires have been
proposed as the building blocks of novel, fault-tolerant quantum computation protocols. Coherent detection and
manipulation of such states in scalable devices are, therefore, essential in these applications. Recent detection
proposals include semiconductor quantum dots (QDs) coupled to the end of these wires, as changes in the
QD electronic spectral density due to the MZM coupling could be detected in transport experiments. Here, we
propose that multi-QD systems can also be used to manipulate MZMs through precise control over the QDs’
parameters. The simplest case where Majorana manipulation is possible is in a double quantum dot (DQD)
geometry. By using exact analytical methods and numerical renormalization-group calculations, we show that
the QDs’ spectral functions can be used to characterize the presence or not of MZMs “leaking” into the DQD.
More importantly, we find that these signatures respond to changes in the DQD parameters such as gate voltages
and couplings in a consistent fashion. Additionally, we show that different MZM-DQD coupling geometries
(“symmetric,” “in-series,” and “T-shaped” junctions) offer distinct ways in which MZMs can be switched from
dot to dot. These results highlight the interesting possibilities that DQDs offer for all-electrical MZM control in
scalable devices.
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I. INTRODUCTION

The search for Majorana quasiparticles in condensed mat-
ter systems has gained renewed attention in the last decade,
motivated by the exciting prospects for achieving scalable,
fault-tolerant topological quantum computation protocols in
nanoscale devices [1–4]. From the landmark theoretical pro-
posals for realizing Kitaev’s model of a 1D topological su-
perconductor [5,6] using semiconductor quantum wires with
strong-spin orbit coupling and proximity-induced supercon-
ductivity [7,8], the field rapidly evolved towards the first
experiments reporting data consistent with these predictions
[9–11]. As a result, the last few years have been full of
excitement as continuing improvements in sample growth and
characterization techniques have allowed for more consistent
experimental evidence for Majorana bound states in semicon-
ductor quantum wires [12–14].

In these setups, “Majorana signatures” are characterized by
zero-bias signals in the conductance across the device due
to the emergence of robust zero-energy modes localized at
the edges of the quantum wire. An important requirement is
to distinguish these so-called Majorana zero modes (MZM)
from other zero-bias phenomena, such as the Kondo effect
[15], which have been found in similar systems [16]. A large
effort in recent experimental proposals was put on ways to
uniquely identify MZMs, including proposals for measuring
the signatures of non-Abelian statistics [17–19]. Although this
last property is crucial in the implementation of fault-tolerant
quantum computers, its measurement has been elusive so far
as it requires overcoming several experimental issues related
to the need of “moving” Majorana quasiparticles in order to
perform braiding operations [20,21].

A rather straightforward proposal to detect MZMs consists
of attaching a quantum dot (QD) to the edge of a topological

quantum wire and then measuring the electrical conductance
through the QD [22]. In such an arrangement, the MZM
at the end of the chain “leaks” into the attached QD [23],
reducing the zero-bias conductance through the dot by the
sizable amount of e2

2h . This detection method offers two key
advantages over other approaches: (i) no direct charge transfer
between the MBS and the dot is necessary, thus preventing
“quasiparticle poisoning” [24], and (ii) a clear distinction
with Kondo physics is warranted, even if the experiment is
performed at temperatures below the Kondo temperature TK

[25–27]. Recently, topological quantum wire-QD junctions
have been realized in experiments [12,14], paving the way for
further experiments involving the detection of MZMs using
quantum dots.

Venturing beyond simple “detection” setups, the large de-
gree of control over the QD parameters offers the unique
possibility of manipulating MZMs inside multidot systems.
The simplest case where Majorana manipulation is possible
is in a double quantum dot (DQD). Tunneling Majorana
modes in these basic structures have inspired theoretical
studies [28–31] and experimental setups confirming the ob-
servations of Andreev molecules [32]. However, despite the
fact that DQDs offer several possibilities for manipulation
of MZMs, there is still no complete analysis of the possible
transitions of these Majorana signatures between the QDs
even in a simple model.

In this paper, we explore the different possibilities for
Majorana manipulation in a device consisting of a DQD
coupled to a MZM and a metallic lead (see Fig. 1). The sim-
plicity of this model allows us to analytically explore different
geometries of QD’s from symmetric and “in-series” couplings
to T-shaped junctions (Fig. 2). We considered both noninter-
acting and interacting regimes, observing major agreement
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FIG. 1. Model for the DQD-Majorana system. Solid lines rep-
resent the hoppings (tdots: interdot coupling, V1,V2 couplings of
QD1 and QD2 with the lead.). Dashed lines: MZM-DQD spin-down
effective couplings t1, t2. The atomic energy levels appear inside each
QD ε1, ε2 are tuned by the gate voltages. The Coulomb interaction in
each dot is represented by U1,U2. The red dashed horizontal lines
represent the Fermi level of the metallic lead.

between both approaches about the location of the Majorana
signature.

We performed a detailed study of the noninteracting DQD
limit by using Zubarev’s procedure [33] to provide an exact
formula to calculate the spectral functions. For the interacting
case, we resort to numerical renormalization group (NRG)
[34] calculations for this model. While the noninteracting
regime is suitable to obtain exact expressions for the Green
function, the interacting case shows how the Majorana signa-
ture co-exists with strongly correlated phenomena such as the
Kondo effect [15] and RKKY interactions [35–37].

This paper is organized as follows. In Sec. II we describe
the model of a DQD coupled to a MZM and to a metallic
lead, as well as the methods used. The results are presented in
Sec. III where we compare the noninteracting density of states
(LDOS) (Sec. III A) with the low-energy interacting results in
Sec. III C. Finally, our conclusions are given in Sec. IV.

II. MODEL AND METHODS

We consider the setup shown in Fig. 1, in which a single
MZM γ1 located at the edge of a 1D topological superconduc-
tor is coupled to a double quantum dot (DQD) attached to a
single metallic lead. The Hamiltonian of the entire system can

FIG. 2. MZM-DQD-lead coupling geometries considered.
(a) Symmetric “parallel” MZM-DQD-lead coupling (with no
interdot coupling). (b) “T-dot” arrangement, where dot 2 is coupled
only to dot 1, and (c) MZM and quantum dots coupled “in series”
with the lead.

be expressed as:

H = HDQD + Hlead + HDQD−lead + HM−DQD (1)

where the different terms describe, respectively, the (interact-
ing) DQD, the (noninteracting) metallic lead, and the DQD-
lead couplings, written as:

HDQD =
∑

i=1, 2
σ =↓, ↑

(
εi + Ui

2

)
n̂iσ + Ui

2

(∑
σ

n̂iσ − 1

)2

+
∑

σ

tdots(d
†
1σ d2σ + d†

2σ d1σ ) ,

Hlead =
∑
kσ

εkc†
kσ ckσ ,

HDQD−lead =
∑
kσ

∑
i=1,2

Vikc†
kσ diσ + V ∗

ikd†
iσ ckσ , (2)

while the DQD-MZM coupling is given by [22,25,26,38,39]:

HM−DQD =
2∑

σ,i=1

tiσ (d†
iσ γ1 + γ1diσ ) . (3)

In the equations above, εi is the energy level of dot i, Ui

is the Coulomb repulsion, and tdots is the coupling parameter
between both QDs. The operator d†

iσ creates a particle in dot i
with spin σ and n̂iσ = d†

iσ diσ is the particle number operator of
state i, c†

kσ is the creation operator a particle with momentum
k, and spin σ in the lead. Finally, εkl is the corresponding
energy and Vi(k) describes the tunneling coupling between the
lead and dot i.

We take the length of the wire to be large so that we can
safely neglect both the overlap between the two Majorana
modes and the (much smaller) coupling between the DQD
and the γ2 MZM located at the other edge of the wire. We
also note that the DQD-γ1 coupling strength tσ i in Eq. (3)
above is, in general, spin dependent [14,38,39] and can be
written in terms of the γ1 MZM “spin canting angle” θ1 as
(t↑i, t↓i ) ≡ ti(sin θ1

2 ,− cos θ1
2 ). For the purposes of this work,

we take θ1 =π such that only spin down dot operators are
coupled to the MZM, making HM−DQD fully spin conserving.
This choice adds an extra symmetry (spin down parity) to the
full Hamiltonian, which will turn out to be important in the
NRG calculations presented in Sec. III C.

It is also useful to recast the last term of Eq. (1) in terms
of (Dirac) fermionic operators. Following Refs. [25,26], we
choose to write the MZMs γ1 and γ2 as a superposition of
the creation ( f †

↓ ) and annihilation ( f↓) operators of a (fully
polarized) spin down fermion:

γ1 = 1√
2

( f †
↓ + f↓) , γ2 = i√

2
( f †

↓ − f↓) . (4)

In this representation, the effective coupling between the
MZM and the DQD given by Eq. (3) becomes:

HM−DQD =
∑

i

ti(d
†
i↓ f †

↓ + f↓di↓ + d†
i↓ f↓ + f †

↓di↓) , (5)

where ti ≡ t↓i is the coupling strength between the MZM and
QD i.
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In order to identify the presence/absence of MZMs “leak-
ing” from the edge of the TS into the dots [22,23,25,26], the
quantities of interest are the spin-resolved spectral functions
(or, equivalently, the local density of states) of the quantum
dots. As usual, the spectral function for spin σ in dot i is
defined as:

ρiσ (ω) ≡ − 1

π
Im

[
Gdiσ ,d†

iσ
(ω)

]
, (6)

where Gdiσ ,d†
iσ

(ω) ≡ 〈〈diσ , d†
iσ 〉〉ω is the retarded (diagonal)

Green’s function involving dot i operators diσ and d†
iσ . Next,

we describe the procedures for calculating ρiσ (ω) in the
regimes of weak (Ui 	 V, ti) and strong (Ui 
V, ti) electron-
electron interaction in the dots.

A. Noninteracting limit: Graph-Gauss-Jordan elimination

In the noninteracting limit (Ui =0), the Hamiltonian H is
quadratic in the fermionic operators and we can obtain ana-
lytic expressions for the spectral densities defined in Eq. (6).
Using Zubarev’s equation of motion (EOM) approach [33],
we can derive exact expressions for the Green functions asso-
ciated to both quantum dot operators (Gd1d†

1
(ω), Gd2d†

2
(ω)).

The EOM equations define a 8 × 8 linear system where
the Hamiltonian parameters (t1, t2, ε1 . . .) and the energy ω

are taken as algebraic variables. The solution for these types
of equations is a finite continued fraction of multivariate
polynomials with maximum degree 8, which makes it dif-
ficult to provide an exact solution using either analytic or
numerical methods. To bypass this problem, we introduce a
Graph-Gauss-Jordan elimination process [40] to iteratively
solve the coupled equations of motion. We briefly describe
the procedure here.

We begin by representing the Majorana-DQD quantum dot
system in a “flow graph,” where each spin-resolved fermion
operator (e.g., d†

1↓, d1↓, f↓, f †
↓ , etc.) is represented as a

“vertex.” The coefficients of the quadratic terms (such as
d†

1↓d1↓ or c†
k↓ck↓, etc.) are associated to each node as “self-

energies” while the coupling terms involving two fermion
operators (such as d†

1↓ f↓ or d†
1↓ f †

↓ , etc.) are associated to the
“links” connecting the respective vertices (see Fig. 10 in the
Appendix).

We then proceed to iteratively remove both vertices and
links by rewriting the self-energies and couplings in terms
of the eliminated variables, such that each vertex elimination
depicts another step in the Gauss-Jordan process. In the end,
the self-energy of the only remaining vertex will contain the
full information needed in order to compute the target Green’s
function.

This method proved to be efficient in solving complex
systems of coupled Green’s functions as the graph elimination
process provides a natural linear algorithm to compute the
targeted continued fraction. Moreover, the graphic representa-
tion simplifies the procedure and allows one to readily identify
minimal coupling points, which could reduce the complexity
of the solution. A detailed description of the method is given
in Appendix.

After applying the Graph-Gauss-Jordan process, we obtain
a closed form for the noninteracting Green’s functions. For
instance, the GF for dot 1 (which is directly coupled to the

MZM) will be given by:

Gd1↓,d†
1↓

(ω) = 1

ω − ε+
DQD − ‖T+‖2

ω−εM− ‖T−‖2

ω−ε−DQD

, (7)

where the energies ε±
DQD are given by

ε±
DQD = ±ε1 +

∑
k

V1V ∗
1

ω − εk
+

∥∥ ± tdots + ∑
k

V1V ∗
2

ω−εk

∥∥2

ω ∓ ε2 − ∑
k

V2V ∗
2

ω−εk

, (8)

T± = ±t1 ± t2

( ± tdots + ∑
k

V1V ∗
2

ω−εk

)
ω ∓ ε2 − ∑

k
V2V ∗

2
ω−εk

, (9)

and

εM = ω − ‖t2‖2

ω − ε2 − ∑
k

V2V ∗
2

ω−εk

− ‖t2‖2

ω + ε2 − ∑
k

V2V ∗
2

ω+εk

. (10)

The spin-up spectral density, which is not coupled to the
MZM, can be obtained by taking t1, t2 = 0 in Eqs. (7)–(10),
hence giving

Gd1↑,d†
1↑

(ω) = 1

ω − ε+
DQD

. (11)

The final results will depend on the broadening parameter of
QD i with the lead (	i), given, in the broad-band limit, by:

−i	i = lim
s→0

∑
k

V ∗
i Vi

ω + is − εk
. (12)

Finally, we compute the spin-resolved LDOS in dot 1 as:

ρ1σ (ω) = − 1

π
Im

[
Gd1σ ,d†

1σ
(ω)

]
. (13)

Similar results can be obtain for the LDOS of the second ρ2σ

by exchanging the indexes 1 and 2 in Eq. (11).

B. Interacting limit: Wilson’s NRG

To address the case of interacting quantum dots, we em-
ploy the numerical renormalization group (NRG), one of the
most successful methods to study interacting quantum impu-
rity models (QIMs) [34,41,42]. In general, a QIM describes a
system spanning a finite and relatively small Hilbert space (the
“impurity”) coupled to a much larger system (a “continuum”),
spanning a large (typically infinite) Hilbert space. As it turns
out, the Hamiltonian in Eq. (1) can be cast as a QIM where the
impurity is the DQD coupled to the Majorana mode, which
is then coupled to the continuum of electrons in the metallic
leads.

We notice that the DQD-Majorana tunneling term given
by Eq. (5) effectively breaks total spin Sz and charge Q
conservation of the whole system, while it preserves spin-↓
parity P↓ =±1 and spin up particle number N↑. To improve
the efficiency of the method, we used these symmetries to
maintain a block structure during NRG’s iterative diagonal-
ization process [25,26,34]. Both the states serving as a basis
for the initial impurity Hamiltonian and the single-site Wilson
chain states can be grouped in (N↑, P↓) blocks. Thus, the
(N↑, P↓) block structure is preserved during the entire NRG
iteration process [34]. In order to compute the (interacting)
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spectral functions, we use the density matrix NRG (DM-
NRG) procedure [43] in combination with the z-trick method
[44], which improves spectral resolution at high energies. We
have checked the accuracy of the results by comparing the
results with the complete Fock space method [45] for some of
the parameters used.

III. RESULTS

For the remainder of the paper, we will focus on the
Majorana-DQD coupling geometries depicted in Fig. 2: a
“symmetric coupling” arrangement [Fig. 2(a)], a “T-shaped”
configuration [Fig. 2(b)], and the case where the Majorana
and both dots are coupled “in-series” [Fig. 2(c)]. As we shall
see, the intensity of the MZM signature in each dot can be
controlled by external gate voltages which change the position
of the dot levels ε1,2 relative to the Fermi energy in the leads.

As mentioned previously, the spin-resolved spectral den-
sity (or local density of states LDOS) of each quantum dot
provides significant information about the effective tunneling
(or not) of a Majorana zero mode into the dot. By comparing
the spectral densities for the cases with and without DQD-
Majorana couplings, we could identify two generic types of
signatures of the Majorana presence in quantum dot i, which
we define as follows:

(i) Type I: The spin-down LDOS is half of the spin-up
LDOS at the Fermi energy (ρi↓(0) = ρi↑(0)/2).

(ii) Type II: The spin-up spectral density of dot i shows
a zero mode of height ρi↓(0) = 0.5

π	1
while no such signature

appears in the spin-up spectral density.
We should point out that the identification of MZM signa-

tures is much simpler in the case of single-quantum dots cou-
pled to an MZM mode considered, e.g., in Refs. [22,23,26]. In
that case, the generic MZM signature is essentially given by
the “type-II” condition defined above, which amounts to the
spin-down spectral function value at the Fermi energy pinned
at 0.5/(π	). If the QD energy level is tuned to the particle-
hole symmetric case, the spin up spectral function pinned
at 1/(π	) such that both “Type-I” and “Type-II” conditions
apply.

In the double quantum dot setup considered here, things
are more complex as quantum interference effects give rise
to situations where only one of these conditions is met. As
we shall see in the following sections, either one of these two
types of signatures appear over a wide range of parameters in
our results. In practice, we find that the appearance of Type-I
or Type-II signatures are related to the behavior of the spin-
up spectral density near the Fermi energy ρi↑(ω ∼ 0): Type
I often appears when ρi↑(0) displays a peak, while Type II
typically emerges in situations where ρi↑(0) ≈ 0.

Hereafter, we shall refer to “MZM manipulation” the
changes in the Majorana signatures in the dot spectral func-
tions induced by the tuning of the dot gate voltages (ε1, ε2) in
the three different setups depicted in Fig. 2. In each case, we
consider definite values of the couplings 	2, tdots, t1, and t2, as
follows. In the configuration shown in Fig. 2(a), we coupled
the QD symmetrically to the lead and the MZM by setting
t1 = t2. Within this setup, we expect the MZM signature to
“split” due to quantum interference and identical signatures
should appear in the spectral densities of both dots. We also

FIG. 3. Spin-resolved spectral densities (LDOS) ρiσ (ω) for non-
interacting dots i = 1, 2 in the symmetric coupling setup [Fig. 2(a)].
Panels (a), (c), and (e) show ρ1σ (ω) while panels (b), (d), and (f)
depict ρ2σ (ω). Each row corresponds to different dot level positions
ε1, ε2 controlled by gate voltages applied to each dot. (a), (b):
ε1 = ε2 = 0. (c), (d): ε1 = 5	1, ε2 = 0. (e), (f): ε1 = 0, ε2 = −5	1.
Spin-up LDOS ρi↑(ω) are marked by bold blue lines while ρi↓(ω) are
by thin red lines. Insets show where the MZM signatures, represented
by a red dashed circle, are located.

considered setups in which only one of the dots is coupled
directly the MZM or to the metallic lead. Hence, there are only
two distinct coupling geometries: either both the MZM and
the lead are coupled to the same dot, forming a “T-junction”
or “side-dot” configuration (t2(1) =0 and 	2(1) =0), as shown
in Fig. 2(b). Alternatively, the MZM can be coupled to one of
the dots and the lead to the other, such that the MZM and dots
are coupled in series [t1(2) =0 and 	2(1) =0, see Fig. 2(c)]. In
the remainder of the paper, we take 	1 as the energy unit.

A. MZM manipulation in noninteracting quantum dots

The noninteracting results for setups (a), (b), and (c) of
Fig. 2 are shown in Figs. 3, 4, and 5, respectively. In all
cases, the left (right) panels depict the spectral density of
dot 1 (dot 2). Each row represents a different gate voltage
configuration in the dots, starting with ε1 =ε2 =0 (first row),
ε1 =5	1, ε2 =0 (second row), and finally ε1 =0, ε2 =−5	1

(third row). The insets in each row show where the Majorana
signature, represented by a red dashed circle inside the dot, is
mainly located.

Figure 3 shows results for the symmetric coupling setup
[Fig. 2(a)] in the noninteracting regime. For the particle-hole
symmetric case (first row), both spin-down [ρ↓(ω), thin red
line] and spin-up [ρi↑(ω), bold blue line] spectral densities
are identical in both dots, as expected. Notice, however, that
the ρ↓(ω) shows a three-peak structure, a consequence of the
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FIG. 4. Spin-resolved spectral densities (LDOS) ρiσ (ω) for non-
interacting dots i = 1, 2 in the “T-shaped” configuration [Fig. 2(b)].
Panels (a), (c), and (e): ρ1σ (ω). Panels (b), (d), and (f): ρ2σ (ω).
Gate-voltage-controlled energy level positions are identical as in
Fig. 3: (a), (b): ε1 = ε2 = 0. (c), (d): ε1 = 5	1, ε2 = 0. (e), (f):
ε1 = 0, ε2 = −5	1. Spin-up LDOS ρi↑(ω) are marked by bold blue
lines while ρi↓(ω) are by thin red lines. Insets show where the MZM
signatures, represented by a red dashed circle, are located.

coupling with the Majorana mode. Moreover, the spin-down
LDOS value at the Fermi energy is half of the respective spin-
up LDOS value (ρi↓(0) = 1

2ρi↑(0)), which signals the MZM
tunneling into the dots. This Majorana signature is similar to
the one observed when a single dot is coupled to a Majorana
mode [22,23] and falls in our “type-II” category mentioned
above. We thus may conclude that the MZM is delocalizing
into both dots in this symmetric configuration.

More interesting, we find that such delocalization can be
reversed (and thus manipulated) by applying gate voltages in
the dots. If a positive or negative gate voltage is induced in
one of the dots, the spin-down LDOS at the Fermi energy can
vanish at that dot while the type-I MZM signature ρi↓(0) =
1
2ρi↑(0) remains in the other dot. This is shown in panels
(c)–(f) of Fig. 3 for the case of positive [Figs. 3(c) and 3(d)]
and negative [Figs. 3(e) and 3(f)] gate voltages.

The location of the MZM signature can also be controlled
by quantum interference, as illustrated in panels (a) and (b) of
Fig. 4. Here, the MZM is coupled directly only to dot 1, which
is then coupled to the lead, while dot 2 is coupled only to
dot 1 via the interdot tunneling term, resulting in a “side-dot”
configuration [see Fig. 2(b)]. Interestingly, if the energy level
of dot 2 is fixed to be in resonance with the Fermi energy of
the lead, quantum interference causes the spectral function in
dot 1 to vanish at the Fermi level [Fig. 4(a), while a type-
I MZM signature appears in dot 2 only (Fig. 4(b)]. This
interference-induced MZM signature in dot 2 is robust against
shifts in dot 1’s gate voltage, as depicted in Figs. 4(c) and 4(d).

FIG. 5. Spin-resolved spectral densities (LDOS) ρiσ (ω) for non-
interacting dots i = 1, 2 in the “in-series” configuration [Fig. 2(c)].
Panels (a), (c), and (e): ρ1σ (ω). Panels (b), (d), and (f): ρ2σ (ω).
Gate-voltage-controlled energy level positions are identical as in
Fig. 3: (a), (b): ε1 = ε2 = 0. (c), (d): ε1 = 5	1, ε2 = 0. (e), (f):
ε1 = 0, ε2 = −5	1. Spin-up LDOS ρi↑(ω) are marked by bold blue
lines while ρi↓(ω) are by thin red lines. Insets show where the MZM
signatures, represented by a red dashed circle, are mainly located.
Inset in (c): Magnification of the low-energy region.

While dot 1’s LDOS is pinned at zero at the Fermi energy, dot
2’s spin-down LDOS exhibits a robust zero mode of height
0.5
π	

, which is a type-II MZM signature.
This qualitative picture is radically altered when dot 2’s

gate voltage is shifted away from zero [Figs. 4(e) and 4(f)]. In
this case, dot 2 is no longer in resonance with the leads, which
changes the interference conditions such that dot 1 spectral
function is no longer pinned at zero. The plots clearly show
that the MZM signature, previously located in dot 2, now
appears in dot 1. Moreover, the spin-up and spin-down LDOS
in dot 1 become very similar to the spectral densities observed
in the case of a single dot [22,23], which indicates that dot 2
is essentially decoupled from the MZM.

Finally, we consider the “in-series” configuration depicted
in Fig. 2(c), which is similar to the “side-dot” configuration
[Fig. 2(b)] except for the fact that the (spin-down) MZM is
coupled only to dot 2. Thus, results for the spin-up LDOS
are identical to those shown in Fig. 4. However, the MZM
signatures in the spin-down LDOS are quite distinct. As an
example, when both dots are in resonance with the lead
[Figs. 5(a) and 5(b)], the spin-down LDOS does not vanish
at ω=0 as in the previous case. Instead, both dots show
(ρ↓(0) = 0.5

π	
), which leads to MZM signatures of type-I in

dot 2 and type-II in dot 1.
An important feature of the “in-series” geometry is that dot

1 presents a robust, gate-voltage-independent MZM signature,
despite the fact that it is not directly attached to the topological
wire. As shown in Figs. 5(c) and 5(d), while a a shift in dot
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1’s gate voltage erases the MZM signature in dot 2, it does
not affect the MZM signature in dot 1. At the same time, the
MZM signature in dot 1 is robust against changes in the dot
2’s gate voltage, as shown in Figs. 5(e) and 5(f). The only
difference here is that MZM signature types are reversed: dot
1 now shows a type-I signature while dot 2 shows a type-II
one.

B. Interacting dots: MZM-mediated indirect exchange

We now turn to the more realistic case of quantum dots in
the Coulomb blockade regime where local electron-electron
interaction terms are relevant. We consider the dots to be in
an odd-N Coulomb blockade valley where Kondo correlations
are dominant at low temperatures. The local Coulomb energy
in the dots is accounted for by the terms Ui

2 (
∑

σ n̂iσ − 1)2 in
Eq. (2). For simplicity, we consider equal Coulomb repulsion
energies (U1 =U2 ≡ U ) for both dots. For concreteness, the
NRG calculations were performed with U =17.3	1 in both
dots and a half bandwidth of the lead electrons set at D =
2U = 34.6	1.

Let us review some of the main features of the spectral
densities of the dots in the absence of the MZM coupling.
For a single dot coupled to a metallic lead, the Kondo effect
is characterized by the appearance of a sharp resonance in
the spectral function near the Fermi energy with a width
of order kBTK ∼ √

U	1 exp [−π
|ε1||ε1+U |

U	1
]. Here, TK 	 U is

the Kondo temperature of the system [15], which will be
largest at the particle-hole symmetric point (phs) ε1 =−U

2 .
In the case of two dots at phs (εdi =−Ui

2 ), both symmet-
rically coupled to a single lead (	1 =	2), there will be an
additional effective exchange interaction between the dots
mediated by the lead [46,47]. Such exchange will com-
pete with the antiferromagnetic Kondo coupling, produc-
ing a three-peak structure in the spectral density of both
dots.

Figure 6(a) shows the spectral functions for both dots
in this case. At large energies, the spectral density displays
Hubbard peaks at ω ∼ εdi ± 8.6	1 = ±U

2 , representing the
single-particle hole and electron excitations whose width is
of order ∼4	1. At low energies, the spin-independent spectral
densities show a central Kondo peak accompanied by indirect-
exchange-induced satellite peaks at ω ∼ ±3.46	2

1/U , giving
an energy separation that scales as ∼	2

1/U [see also insets in
Fig. 6(a)].

Such exchange-driven three-peak structure remains when
the MZM is coupled to the system in the symmetric coupling
configuration, as shown in Fig. 6(b). More striking is that
the indirect-exchange splitting between the dots increases
considerably with the MZM coupling up to ∼ ± 8	2

1/U : Our
calculations show that the peak separation of the Majorana
satellites increases quadratically with the MZM coupling
t1 = t2 as 4t2

1 /U and this effect enters in superposition with
the indirect-exchange-induced satellites in Fig. 6(a). This
indicates a MZM-mediated spin-spin correlation between the
quantum dots. Thus, the coupling to a spin-down-polarized
MZM (which is the case) affects the spin-up component of
the spectral densities through this indirect spin-spin interac-
tion. Additional details of these interesting features will be
discussed elsewhere [48].

FIG. 6. Spectral density (LDOS) for interacting dots (U1 =U2 =
17.3	1) in the symmetric coupling configuration (	1 =	2 and t1 =
t2). (a) Uncoupled MZM (t1 = t2 =0). Spin up and down spectral
densities are identical and given by the black line. (b) Coupled MZM
(t1 = t2 =	1): Spin-up (bold blue lines) and spin-down (thin red lines)
spectral densities are shown. Insets: Magnification of the low-energy
region.

C. MZM manipulation in interacting dots

One of the key results of Fig. 6 is that, in the symmet-
ric configuration, both quantum dots display type-I MZM
signatures [ρi↓(0) = 1

2ρi↑(0)] co-existing with a Kondo-
related zero-energy peak. A similar result was reported in
Refs. [25,26] for the simpler case of an topological nanowire
coupled to a single quantum dot. As in that case, here both
Kondo and MZM signatures occur in the low-energy part of
the spectral function ω � 	1, as illustrated in the inset of
Fig. 6(b). Within this scale, we can trace some interesting
parallels with the noninteracting regime.

As an example, Fig. 7 shows the NRG results for the
symmetric setup in Fig. 2(a). As in the noninteracting case
(Fig. 3), type-I MZM signatures appear in both dots. These
signatures can be manipulated by tuning the gate voltage of
one of the dots to induce the MZM signature to appear only
in the other dot. The LDOS at figures Fig. 7(d) shows a type-I
MZM signature with ρ↓(0) ≈ 1

2ρ↑(0). This MZM signature
is stable against gate-voltage-induced energy shifts in dot 2
away from particle-hole symmetry (
ε2 ≡ ε2 + U/2) in the
range 
ε2 � 6	1 [see Fig. 7(e)]. For larger values of 
ε2,
dot 2 enters the mixed-valence regime and the Coulomb peak
originally located at ω ∼ ±8.7	1 for 
ε2 =0 now overlaps
with the Fermi energy and both Majorana and Kondo signals
are lost.

Results for the interacting “side-dot” setup [Fig. 2(b)] are
shown in Fig. 8. As in the noninteracting case, the spin-
up spectral density of dot 1 vanishes at the Fermi level
due to single-particle quantum interference, as shown in
Fig. 8(a). In dot 2, the spectral density is drastically reduced
at the Fermi level, but it remains nonzero [Fig. 8(b) and
inset], while still showing a type-I MZM signature, namely,
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FIG. 7. Spin-resolved spectral densities ρiσ (ω) for interacting
dots i = 1, 2 with U1 =U2 =17.3	1. Here we consider the symmetric
coupling configuration shown in Fig. 2(a). Panels (a) and (b) show
ρ1σ (ω) and ρ2σ (ω), respectively, for the particle-hole symmetric case
ε1 =ε2 =−U/2. Panels (c) and (d) show ρ1σ (ω) and ρ2σ (ω) for
ε1 =−U/2 + 
ε1 and ε2 =−U/2 with 
ε1 = 5	1. Symmetrically,
in panels (e) and (f), ε2 =−U/2 + 
ε2 and ε1 =−U/2 with 
ε2 =
−5	1. Insets show where the MZM signatures, represented by a red
dashed circle, are mainly located. (g): Evolution of ρi↓(0)/ρi↑(0) vs

ε2, for ε1 =−U/2. Dashed line: 
ε2 = 0 as in (a), (b). Barred line:

ε2 = 5	1 as in (c), (d).

ρ2↓(0) = ρ2↑(0)
2 . This picture is qualitatively similar to the

noninteracting case discussed previously, but it begs the ques-
tion of what is the fate of the Kondo resonance in the dots in
this configuration.

To try and answer this question, we note that a similar
interplay between Kondo physics and single-particle interfer-
ence on a T-shaped double dot geometry has been studied in
earlier works by one of us [49–51]. It has been established
that, for the case of the dot coupled to the lead (dot 1, in
the present case) being noninteracting, its spectral density
vanishes at the Fermi energy, while the spectral density in
the second dot (dot 2) shows a “splitted” Kondo resonance
for strong enough interdot coupling. The Kondo screening in
this second dot, however, is still present. In fact, the Kondo
temperature increases with the interdot coupling [49,51]. Here
the situation is slightly different as dot 1 is also interacting
but we believe the analogy still holds. This picture would
explain why the up and down components of the spectral
density in dot 2 do not vanish at the Fermi energy (although
they are quite suppressed) while still showing the MZM type-I
signature [ρ2↓(0) = 1

2ρ2↑(0)].

FIG. 8. Spin-resolved spectral densities ρiσ (ω) for interacting
dots i = 1, 2 in the “T-shaped” configuration [Fig. 2(b)]. Panels
(a), (c), and (e): ρ1σ (ω). Panels (b), (d), and (f): ρ2σ (ω). Energy
level positions are identical as in Fig. 7: (a), (b): ε1 =ε2 =−U/2.
(c), (d): ε1 = −U/2 + 5	1, ε2 = −U/2. (e), (f): ε1 = −U/2, ε2 =
−U/2 − 5	1. Spin-up LDOS ρi↑(ω) are marked by bold blue lines
while ρi↓(ω) are by thin red lines. Insets show where the MZM
signatures, represented by a red dashed circle, are mainly located.
Inset in (b): Detail of the low-energy features.

When gate voltages are applied in either dot 1 or dot 2, a
MZM signature appears in dot 1. This is shown in Figs. 8(c)–
8(f): a type-II MZM signature [ρ1↓(0) = 0.5

π	1
, ρ1↑(0) ≈ 0]

appears in dot 1 while neither type-I or type-II signatures are
evident in dot 2. This is clearly distinct from the noninteract-
ing case, in which a shift in the gate voltage of dot 1 [Figs. 4(c)
and 4(d)] leads to a type-II MZM signature in dot 2 and vice
versa. When interactions are present and the system is tuned
out of the particle-hole symmetric point, no clear type-I or
type-II MZM signatures appear in dot 2’s spectral density
[see Figs. 8(d) and 8(e)]. Instead, ρ2↓(ω) displays asymmetric
resonances near the Fermi energy with comparable widths
as the resonances in ρ1↓(ω). We attribute those to Fano-like
single-particle interferences with dot 1 which are common in
T-shaped structures [50].

Finally, Fig. 9 depicts the NRG results for the “series” con-
figuration shown in Fig. 2(c). In this configuration, the MZM
is coupled directly to dot 2 only. As in the noninteracting
case, the most consistent MZM signatures (type-II, in this
case) occur in dot 1’s spectral properties. As an illustration,
Figs. 9(a), 9(c) and 9(e) show robust zero-energy peaks in
the spin down spectral densities of dot 1 obeying ρ1↓(0) =
0.5
π	1

while ρ1↑(0) ≈ 0. The strong difference between spin up
and down spectral densities clearly identifies this as a MZM
signature rather than a Kondo peak.

The type-II MZM signature remains in dot 2 despite
changes in either 
ε1 [Fig. 9(c)] or 
ε2 [Fig. 9(e)]. More-
over, a type-I MZM signature also appears in dot 2 in the
particle-hole symmetric case, as depicted in Fig. 9(b). Away
from particle-hole symmetry, the MZM traces in the spectral
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FIG. 9. Spin-resolved spectral densities ρiσ (ω) for interacting
dots i = 1, 2 in the “in-series” configuration [Fig. 2(c)]. Panels (a),
(c), and (e): ρ1σ (ω). Panels (b), (d), and (f): ρ2σ (ω). Energy level
positions are identical as in Fig. 7: (a), (b): ε1 =ε2 =−U/2. (c), (d):
ε1 = −U/2 + 5	1, ε2 = −U/2. (e), (f): ε1 = −U/2, ε2 = −U/2 −
5	1. Spin-up LDOS ρi↑(ω) are marked by bold blue lines while
ρi↓(ω) are by thin red lines. Insets show where the MZM signatures,
represented by a red dashed circle, are mainly located. Inset in (b):
Detail of the low-energy features.

properties of dot 2 are less clear. While a shift in the dot
1 energy 
ε1 = +5	1 has little effect in the dot 2 spectral
density [Fig. 9(d)], changing the energy of dot 2 by an amount

ε2 = −5	1 gives a zero-energy peak in ρ2↓(ω) [Fig. 9(f)]
which essentially meets the type-II MZM signature condition
for these parameters.

Although this result seems to agree with the noninteracting
case [see Fig. 5(f)], a closer inspection shows that this MZM
signature in ρ2↓(ω ∼ 0) is parameter dependent. In fact, the
height of the zero-energy peak scales roughly as ρ2↓(ω ∼
0) ∼ (
ε2)2 for 
ε2 � 6	1. Thus, for interacting dots, the
categorization of a MZM signature in dot 2 is clear only in
the 4	1 � 
ε2 � 6	1 range, in contrast with the noninteract-
ing case where the MZM signature is robust and largely ε2

independent.
One way to understand these features is to use the “Majo-

rana leaking” analogy of Ref. [23]. In the series configuration
of Fig. 2(c), both dots can be thought of as nontopological
“extensions” of the Kitaev chain, with dot 1 being the “last
site” or the “edge.” Thus, due to the leaking of the MZM to
the neighboring sites (as it is the case of a MZM attached
to a single quantum dot [23,26]), it would be expected that
edge-mode signatures in dot 1 would be quite robust against
changes in gate voltages.

IV. CONCLUDING REMARKS

In this paper, we have addressed the following question:
Can one manipulate and detect Majorana zero modes (MZMs)
in an all-electric setup using semiconductor double quantum
dots? To this end, we considered a minimal model of a

MZM coupled to a double quantum dot (DQD) and metallic
leads and calculated the spectral signatures in both strongly-
and weakly-interacting regimes. By comparing exact ana-
lytical solutions in the noninteracting system and numer-
ical renormalization-group results for interacting quantum
dots, we were able to characterize the displacements of the
MZM inside the double quantum dot for the three setups in
Fig. 2.

Our results for both weakly- and strongly-interacting
regimes show that gate-voltage tuning in the dots allows for an
effective manipulation of the tunneling of the MZM into the
DQD system. By considering different MZM-DQD coupling
geometries (“symmetric,” “T-shaped,” and “in-series”) we
found that the presence or not of the MZM in each dot can be
monitored by two types of signatures in the spectral density
(or local density of states) of the dots.

In the symmetric configuration, the MZM is equally cou-
pled to both dots. As in a “double slit” setup, the MZM
signature will appear in both dots if the gate voltages are tuned
to the particle-hole symmetric (phs) point. By changing the
gate voltage in one of the dots (the equivalent of “closing one
of the slits”), the MZM signature will move to the other dot.
In the “T-shaped” configuration, when the MZM is directly
coupled only to dot 1, the MZM signature will appear only
in one of the dots: either dot 2 (at phs or if a gate voltage is
applied to dot 1) or in dot 1, when a gate voltage is applied to
dot 2.

We also considered a configuration with the MZM coupled
“in-series” with both dots, which is closely connected with re-
cent design proposals for topological quantum computational
circuits involving MZMs [20,21]. In this case, there is a robust
MZM signature in the “far dot” (the one not directly coupled
to the MZM) for all gate voltage configurations, while the
MZM signature in the dot directly coupled to the MZM can
be manipulated via gate-voltage tuning.

Electron-electron interactions will add some interesting
effects to this picture. First, there will be the appear-
ance of a Kondo resonance in the dots, which will split
due to the indirect exchange between the dots mediated by
the leads. More interestingly, we find that the coupling of
the dots to the (spin-polarized) MZM will also contribute
to the indirect exchange, thus creating a MZM-mediated spin
exchange between the dots. These indirect exchange effects
are more prominent in the symmetric configuration, where
satellite peaks in the spectral density reflect the combined
Kondo-Majorana physics at low energies.

An interesting question is how robust are these features
with regards to single-particle effects such as Zeeman in
the QDs or the coupling of the two MZMs at the ends in
the quantum wire. In order to address this issue, we have
performed additional calculations to include these effects in
the noninteracting limit discussed in Sec. II A. Our findings
show that the overall effect of these terms is similar to the
situation in the single QD coupled to a topological quantum
wire [22,23,26]. The energy shifts produced by Zeeman terms
in the spin-resolved spectral densities are analogous to the
changes in gate voltages shown in Figs. 3, 4, and 5 such that
the qualitative picture remains. As to the effect of the MZM-
MZM coupling, we find a result similar to that of Ref. [22]:
that spin-up and spin-down spectral densities are similar for

085429-8



MANIPULATING MAJORANA ZERO MODES IN DOUBLE … PHYSICAL REVIEW B 100, 085429 (2019)

energies lower than the coupling energy scale such that the
MZM signature disappears.

As both Zeeman splitting and the coupling between MZMs
are single particle in nature, we have no reason to believe that
the same qualitative picture will not hold in the interacting
regime. The main effect would be a suppression of the Kondo
resonance, similar to the case discussed in Ref. [26].

Finally, the results presented here provide a “recipe” for
manipulating MZMs signatures present in double quantum
dots by using gate voltages and different connection geome-
tries. This opens the interesting prospect of using multi-
QD setups as a high-control system displaying non-Abelian
braiding [52], which can readily be integrated in recent archi-
tecture designs for scalable topological quantum computers
[20,21,53].
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APPENDIX: NONINTERACTING GREEN’S
FUNCTIONS CALCULATION

The spectral representation of the retarded Green function
[33] associated to two fermion operators A(t ), B(t ′) is

GA,B(ω) ≡ −i
∫

eiωt�(t )〈{A(t ), B(0)}〉dt . (A1)

Using the equations of motion technique we obtain the fol-
lowing relation [33]

ωGA,B(ω) = δA†,B + G[A,H ],B(ω). (A2)

We apply this expression to Hamiltonian H given by Eq. (1),
with B ≡ d†

1↓ and A varying between the fermion operators

d†
i↓, f †

↓ , c†
k↓, di↓, f↓, ck↓. Taking (ω, t1, t2, ε1 . . .) as fixed pa-

rameters, we obtain a closed linear system of eight equations
with eight variables of the form GA,d†

1↓
(ω). Hence, this system

has a unique solution.
We are interested in computing an analytic expression for

Gd1↓,d†
1↓

(ω). The expected solution is a polynomial fraction

of degree eight, whose complexity depends on the number
of couplings between the fermion operators. The method
described in this paper borrows ideas from graph theory
to simplify the Gauss-Jordan elimination process [40]. We
use this method to deduce a simple algorithm to solve the
equations of motion of Hamiltonian H of Eq. (1).

Before describing the general procedure, we note that the
equations of motion of Eqs. (A2) for A equal to f↓ and f †

↓ are

ωG f↓,d†
1↓

(ω) = ωG f †
↓ ,d†

1↓
(ω) (A3)

=
2∑

i=1

ti√
2

(Gdi↓,d†
1↓

(ω) − Gd†
i↓,d†

1↓
(ω)). (A4)

Since G f †
↓ ,d†

1↓
(ω) = G f↓,d†

1↓
(ω) it is possible to eliminate the

variable G f †
↓ ,d†

1↓
(ω) from the system even before starting the

Gauss-Jordan elimination.
Writing the remaining EOMs in Eqs. (A2) for A varying

between d†
i↓, c†

k↓, di↓, f↓, ck↓, we obtain the following linear
system

T �Gd†
1

= ê1, (A5)

where ê1 is the vector with entries ê1n = δ1n, T is the matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω − ε1 −V ∗
1 −tdots −t1 0 0 0

−V1 ω − εk −V2 0 0 0 0

−t∗
dots −V ∗

2 ω − ε2 −t2 0 0 0

−t∗
1 0 −t∗

2 ω t∗
2 0 t∗

1

0 0 0 t2 ω + ε2 V ∗
2 t∗

dots

0 0 0 0 V2 ω + εk V1

0 0 0 t1 tdots V ∗
1 ω + ε1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A6)

and �Gd†
1

is the column vector

[
Gd1↓,d†

1↓
(ω), Gck↓,d†

1↓
(ω), Gd2↓,d†

1↓
(ω), G f↓,d†

1↓
(ω),

Gd†
2↓,d†

1↓
(ω), Gc†

k↓,d†
1↓

(ω), Gd†
1↓,d†

1↓
(ω)

]T
.

The graph associated to the matrix given by Eq. (A6) is
shown in Fig. 10. Each vertex depicts the first subindex of
the Green function. The values inside each node are obtained
by subtracting the corresponding diagonal term from ω. We
usually refer to these terms as “self-energies.” The couplings
are determined by the off-diagonal terms multiplied by −1.

1. Solution for a DQD attached to a metallic lead

Before attempting to solve the entire system, we will
proceed to explain the Graph-Gauss-Jordan [40] elimination
process in a DQD model without Majorana fermions (t1 =
t2 = 0). This is equivalent to find the solution for the 3 × 3
upper-left block matrix given in Eq. (A6)⎡

⎣ω − ε1 −V1 −tdots

−V ∗
1 ω − εk −V2

−t∗
dots −V ∗

2 ω − ε2

⎤
⎦, (A7)

which can be represented by the graph in Fig. 11(a). In order
to eliminate the vertex ck↓ we just need to subtract from
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FIG. 10. Graph-Gauss-Jordan algorithm [40] applied to the
DQD-Majorana model. (a) Initial transport flow diagram. (b) Graph
obtained after removing vertices ck↓, c†

k↓, d2↓, and d†
2,↓. New cou-

plings in Eqs. (A11)–(A13). (c) Final graph after removing vertices
f↓, d†

1↓. The value of dot d†
1↓ depicts the self energy of the entire

system ω − G−1
d1↓,d†

1↓
.

Eq. (A7) the rank-1 matrix that cancels the row and the
column corresponding to ck↓. This matrix is⎡

⎢⎢⎣
V ∗

1 V1

ω−εk
−V ∗

1
V2V ∗

1
ω−εk

−V1 ω − εk −V2

V ∗
2 V1

ω−εk
−V ∗

2
V ∗

2 V2

ω−εk

⎤
⎥⎥⎦. (A8)

The result of Eqs. (A7) through (A8) is⎡
⎢⎣

ω − ε1 − V ∗
1 V1

ω−εk
0 −tdots − V2V ∗

1
ω−εk

0 0 0

−t∗
dots − V ∗

2 V1

ω−εk
0 ω − ε2 − V2V ∗

1
ω−εk

⎤
⎥⎦ (A9)

which is mapped to the graph in Fig. 11(b).
Note that it is possible to associate the correction to the

energies and couplings in Fig. 11(b) to the “walks” passing

FIG. 11. Graph-Gauss-Jordan algorithm applied to a DQD at-
tached to a lead. (a) Initial transport flow diagram. (b) Graph obtained
after removing vertex ck↓. (c) Remaining vertex with self energy
ε+

DQD.

through the vertex ck↓. For instance, d1↓’s energy ε1 gets an
extra term V ∗

1 V1

ω−εk
representing an additional “walk” from d1↓

to d1↓ passing through ck↓. The terms V ∗
1 and V1 represent a

movement from d1↓ to ck↓ and vice versa, while the division
by ω − εk can be thought of as a penalty for passing through
ck↓. The same logic applies to the coupling terms. The correc-

tion to tdots is V ∗
1 V2

ω−εk
which corresponds to a path from d1↓ to d2↓

passing through the removed vertex ck↓. Note that this term
includes the multiplication of both couplings with the vertex
divided by ω − εk . This correspondence between the energy
correction and eliminated paths through the graph makes this
process straightforward.

The next step is to remove the vertex d2↓ following the
same procedure. At the end, the “self-energy” inside vertex
d1↓ will be

ε+
DQD = ε1 +

∑
k

V1V ∗
1

ω − εk
+

∥∥tdots + ∑
k

V1V ∗
2

ω−εk

∥∥2

ω − ε2 − ∑
k

V2V ∗
2

ω−εk

(A10)

and the green function of Gd1↓d†
1↓

(ω) in a DQD is 1
ω−ε+

DQD
[see

Fig. 11(c)].

2. The Graph-Gauss-Jordan algorithm

The previous method to compute the Green function
Gd,d† (ω) of an operator d can be summarized in the following
steps:

(1) Computing the equations of motion with the second
term of the Green function fixed in the creation operator d†.
The result is a linear system of the form T �Gd† = ê1 as in
Eq. (A5).

(2) Mapping the linear system to the associated directed
flow graph, labeling the vertices of the graph as νn, with
ν1 = d . The self-energy εn of each vertex νn is initialized
as ω minus the corresponding diagonal term tnn of T (εn =
ω − tnn). The coupling terms ci j connecting two vertices νi

and ν j are given by the (i, j)-off-diagonal terms ti j of the
matrix T multiplied by −1 (ci j = −ti j ).

(3) Removing one-by-one the vertices of the graph, start-
ing by the last vertex νN . When a vertex νn is removed, an
extra term is added to each energy and coupling. These extra
terms are computed as follows:

(1) Self-energy εi: Let cin, cni be the coupling constants
associated to the links from νi to νn and from νn to νi,
respectively. Note that cni = c∗

in since the matrix T is
hermitian. Then there is an indirect path from νi to itself
passing through νn. When νn is eliminated, the extra term
added to εi is cinc∗

in
ω−εn

.
(2) Coupling ci j : Let cin, cn j �= 0 be the coupling con-

stants associated to the links from νi to νn and from νn to ν j .
Then there is an indirect path from νi to ν j passing through
νn. When νn is eliminated, the extra term added to ci j is
cincn j

ω−εν
.

This process is iterated from n = N until n = 1.
(4) The self-energy in the remaining vertex ν1 = d is

related with the Green’s function as εd = ω − 1
Gd,d† (ω) .

This algorithm is equivalent to the Gauss-Jordan elimina-
tion process used in earlier real-space decimation methods
[54] in order to obtain noninteracting Green’s functions. Our
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approach has two additional insights: (1) The number of
operations scales linearly with the number of vertices. (2) The
graph structure allows one to identify minimal and maximal
cutting points which simplifies the complexity of the solution.
As pointed out in previous works [40], selecting a good order
of elimination of the vertices can improve the efficiency of the
algorithm. In Fig. 10(a), for instance, it is preferable to start
eliminating the vertices at the links, ck↓ and c†

k↓, each one
is coupled to just two nodes. Instead, the Majorana operator
f↓ will be eliminated at last since it is the one with a higher
number of couplings.

3. Solution for a DQD-Majorana system

From these ideas, we can execute the graph elimination
process on the model in Fig. 10(a). We start by removing the
vertices ck↓, c†

k , d2,↓, and d†
2,↓, in that order [see Fig. 10(b)].

The energies associated to d1,↓ and d†
1,↓ will be similar to those

in Eq. (A10), obtaining

ε±
DQD = ±ε1 +

∑
k

V1V ∗
1

ω − εk
+

∥∥ ± tdots + ∑
k

V1V ∗
2

ω−εk

∥∥2

ω ∓ ε2 − ∑
k

V2V ∗
2

ω−εk

.

(A11)
There is also a correction in the couplings between the Majo-
rana mode and d1,↓, d†

1,↓ given by

T± = ±t1 ± t2

( ± tdots + ∑
k

V1V ∗
2

ω−εk

)
ω ∓ ε2 − ∑

k
V2V ∗

2
ω−εk

. (A12)

In addition there appears a self-energy εM in the Majorana
operator due to the coupling between f↓ and d2↓. This new
term is

εM = ω − ‖t2‖2

ω − ε2 − ∑
k

V2V ∗
2

ω−εk

− ‖t2‖2

ω + ε2 − ∑
k

V2V ∗
2

ω+εk

.

(A13)

With all the terms of the graph in Fig. 10(b) computed, it only
remains to remove the vertices d†

1↓ and f↓, in that order. This
will lead us to the final result (7).

Gd1↓,d†
1↓

(ω) = 1

ω − ε+
DQD − ‖T+‖2

ω−εM− ‖T−‖2

ω−ε−DQD

. (A14)

From this analytic expression we can compute rapidly dy-
namic quantities such as the density of states in the noninter-
acting regime. In this project, it allowed us to achieve a better
understanding of the system in the different couplings, and
also, to predict parameters that exhibit an interesting behavior.
These parameters where simulated afterwards through NRG,
which has a larger run time.

We introduced the Graph-Gauss-Jordan algorithm as a
simple, didactic, and graphical method to solve the equations
of motion of quadratic Hamiltonians. We hope for its extended
use in condensed matter physics.
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[46] R. Žitko and J. Bonča, Quantum phase transitions in systems of
parallel quantum dots, Phys. Rev. B 76, 241305(R) (2007).

[47] Y.-H. Liao, J. Huang, and W.-Z. Wang, Real two-stage Kondo
effect in parallel double quantum dot, J. Magn. Magn. Mater.
377, 354 (2015).

[48] J. D. Cifuentes and L. G. G. V. Dias da Silva (unpublished).
[49] L. G. G. V. Dias da Silva, N. P. Sandler, K. Ingersent, and S. E.

Ulloa, Zero-Field Kondo Splitting and Quantum-Critical Tran-
sition in Double Quantum Dots, Phys. Rev. Lett. 97, 096603
(2006).

[50] L. G. G. V. Dias da Silva, N. Sandler, K. Ingersent, and S. E.
Ulloa, Transmission in double quantum dots in the Kondo
regime: Quantum-critical transitions and interference effects,
Physica E 40, 1002 (2008).

[51] L. G. G. V. Dias da Silva, C. H. Lewenkopf, E. Vernek, G. J.
Ferreira, and S. E. Ulloa, Conductance and Kondo Interference
Beyond Proportional Coupling, Phys. Rev. Lett. 119, 116801
(2017).

[52] C. Malciu, L. Mazza, and C. Mora, Braiding Majorana zero
modes using quantum dots, Phys. Rev. B 98, 165426 (2018).

[53] M. Barkeshli and J. D. Sau, Physical Architecture for a Uni-
versal Topological Quantum Computer based on a Network of
Majorana Nanowires, arXiv:1509.07135.

[54] H. Aoki, Decimation method of real-space renormalization for
electron systems with application to random systems, Physica
A 114, 538 (1982).

085429-12

https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1103/PhysRevB.94.045316
https://doi.org/10.1103/PhysRevB.94.045316
https://doi.org/10.1103/PhysRevB.94.045316
https://doi.org/10.1103/PhysRevB.94.045316
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.84.201308
https://doi.org/10.1103/PhysRevB.84.201308
https://doi.org/10.1103/PhysRevB.84.201308
https://doi.org/10.1103/PhysRevB.84.201308
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1103/PhysRevB.89.165314
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.87.241402
https://doi.org/10.1103/PhysRevB.87.241402
https://doi.org/10.1103/PhysRevB.87.241402
https://doi.org/10.1103/PhysRevB.87.241402
https://doi.org/10.1103/PhysRevB.91.115435
https://doi.org/10.1103/PhysRevB.91.115435
https://doi.org/10.1103/PhysRevB.91.115435
https://doi.org/10.1103/PhysRevB.91.115435
https://doi.org/10.1038/s41598-018-33529-1
https://doi.org/10.1038/s41598-018-33529-1
https://doi.org/10.1038/s41598-018-33529-1
https://doi.org/10.1038/s41598-018-33529-1
https://doi.org/10.1088/0953-8984/28/43/435702
https://doi.org/10.1088/0953-8984/28/43/435702
https://doi.org/10.1088/0953-8984/28/43/435702
https://doi.org/10.1088/0953-8984/28/43/435702
https://doi.org/10.1103/PhysRevB.96.035417
https://doi.org/10.1103/PhysRevB.96.035417
https://doi.org/10.1103/PhysRevB.96.035417
https://doi.org/10.1103/PhysRevB.96.035417
https://doi.org/10.1103/PhysRevB.99.165306
https://doi.org/10.1103/PhysRevB.99.165306
https://doi.org/10.1103/PhysRevB.99.165306
https://doi.org/10.1103/PhysRevB.99.165306
https://doi.org/10.1103/PhysRevB.99.155159
https://doi.org/10.1103/PhysRevB.99.155159
https://doi.org/10.1103/PhysRevB.99.155159
https://doi.org/10.1103/PhysRevB.99.155159
https://doi.org/10.1038/s41467-017-00665-7
https://doi.org/10.1038/s41467-017-00665-7
https://doi.org/10.1038/s41467-017-00665-7
https://doi.org/10.1038/s41467-017-00665-7
https://doi.org/10.1070/PU1960v003n03ABEH003275
https://doi.org/10.1070/PU1960v003n03ABEH003275
https://doi.org/10.1070/PU1960v003n03ABEH003275
https://doi.org/10.1070/PU1960v003n03ABEH003275
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRevB.96.045440
https://doi.org/10.1103/PhysRevB.96.045440
https://doi.org/10.1103/PhysRevB.96.045440
https://doi.org/10.1103/PhysRevB.96.045440
https://doi.org/10.1103/PhysRevB.96.085418
https://doi.org/10.1103/PhysRevB.96.085418
https://doi.org/10.1103/PhysRevB.96.085418
https://doi.org/10.1103/PhysRevB.96.085418
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/PhysRevLett.85.1508
https://doi.org/10.1103/PhysRevLett.85.1508
https://doi.org/10.1103/PhysRevLett.85.1508
https://doi.org/10.1103/PhysRevLett.85.1508
https://doi.org/10.1103/PhysRevB.49.11986
https://doi.org/10.1103/PhysRevB.49.11986
https://doi.org/10.1103/PhysRevB.49.11986
https://doi.org/10.1103/PhysRevB.49.11986
https://doi.org/10.1103/PhysRevB.74.245114
https://doi.org/10.1103/PhysRevB.74.245114
https://doi.org/10.1103/PhysRevB.74.245114
https://doi.org/10.1103/PhysRevB.74.245114
https://doi.org/10.1103/PhysRevB.76.241305
https://doi.org/10.1103/PhysRevB.76.241305
https://doi.org/10.1103/PhysRevB.76.241305
https://doi.org/10.1103/PhysRevB.76.241305
https://doi.org/10.1016/j.jmmm.2014.10.138
https://doi.org/10.1016/j.jmmm.2014.10.138
https://doi.org/10.1016/j.jmmm.2014.10.138
https://doi.org/10.1016/j.jmmm.2014.10.138
https://doi.org/10.1103/PhysRevLett.97.096603
https://doi.org/10.1103/PhysRevLett.97.096603
https://doi.org/10.1103/PhysRevLett.97.096603
https://doi.org/10.1103/PhysRevLett.97.096603
https://doi.org/10.1016/j.physe.2007.08.098
https://doi.org/10.1016/j.physe.2007.08.098
https://doi.org/10.1016/j.physe.2007.08.098
https://doi.org/10.1016/j.physe.2007.08.098
https://doi.org/10.1103/PhysRevLett.119.116801
https://doi.org/10.1103/PhysRevLett.119.116801
https://doi.org/10.1103/PhysRevLett.119.116801
https://doi.org/10.1103/PhysRevLett.119.116801
https://doi.org/10.1103/PhysRevB.98.165426
https://doi.org/10.1103/PhysRevB.98.165426
https://doi.org/10.1103/PhysRevB.98.165426
https://doi.org/10.1103/PhysRevB.98.165426
http://arxiv.org/abs/arXiv:1509.07135
https://doi.org/10.1016/0378-4371(82)90345-4
https://doi.org/10.1016/0378-4371(82)90345-4
https://doi.org/10.1016/0378-4371(82)90345-4
https://doi.org/10.1016/0378-4371(82)90345-4

