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Tunable spin-polarized edge transport in inverted quantum-well junctions
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Inverted HgTe/CdTe quantum wells have been used as a platform for the realization of two-dimensional
topological insulators, bulk insulator materials with spin-helical metallic edge states protected by time-reversal
symmetry. This paper investigates the spectrum and the charge transport in HgTe/CdTe quantum well junctions
both in the topological regime and in the absence of time-reversal symmetry. We model the system using the
Bernevig-Hughes-Zhang effective Hamiltonian and compute the transport properties using recursive Green’s
functions with a finite differences’ method. Specifically, we have studied the material’s spatially resolved
conductance in a setup with a gated central region, forming monopolar (n-n′-n) and heteropolar (n-p-n, n-TI-n)
double junctions, which have been recently realized in experiments. We find regimes in which the edge states
carry spin-polarized currents in the central region even in the presence of a small magnetic field, which
breaks time-reversal symmetry. More interestingly, the conductance displays spin-dependent, Fabry-Perót-like
oscillations as a function of the central gate voltage producing tunable, fully spin-polarized currents through the
device.
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I. INTRODUCTION

The role of topology in the properties of electronic systems
has gained renewed attention over the last decade with the dis-
covery of several materials that support topologically protected
surface and edge states, dubbed topological insulators (TIs)
[1–3]. Particular attention has been given to two-dimensional
(2D) topological insulators, where the quantum spin Hall
(QSH) effect [4] allows for edge electron transport through
spin-polarized helical edge states. The theoretical proposal [5]
and later observation [6] of the QSH effect in HgTe/CdTe
quantum wells has triggered intense activity in the study of
these systems.

The electronic current in 2D topological insulators is carried
by edge states protected by time-reversal symmetry (TRS). In
the absence of TRS, backscattering between the edge modes
becomes allowed and the gaplessness of the edge states is
no longer guaranteed. It has been argued [6] that even a
small magnetic field is sufficient to open a gap in the edge
states, thereby suppressing edge transport in 2D topological
insulators. The argument supporting this view comes from the
early experiments [6] on HgTe/CdTe quantum wells, which
show that the magnetoconductance shows a cusplike feature
at zero field, quickly decaying as the field increases. Such
behavior, however, can only be accounted for when a rather
strong disorder (of the order of the bulk gap) [7] combined
with TRS breaking is considered. In addition, dephasing can
also be a factor as it has been argued that the resilience of edge
transport against dephasing induced by inelastic scattering is
weaker as compared to quantum Hall chiral states [8,9].

In many situations, however, breaking TRS does not imply
a suppression of edge transport channels in these systems.
Several theoretical studies [10–16] as well as experimental
evidence [17–19] point to a scenario where edge transport
in HgTe/CdTe quantum wells (QWs) is quite relevant up to
magnetic fields of a few Tesla. For instance, theory predicts
[11,13,14] a transition from helical QSH to chiral QHE edge
states at a critical field of a few Tesla.

A recent theoretical study on HgTe/CdTe QWs has shown
that for small system sizes the edge states remain unaffected
by a combination of moderate disorder and weak magnetic
fields [20]. The transport properties change in long samples
when considering charge puddles [20]. This kind of disorder
and the corresponding local potential fluctuations have been
extensively studied in graphene systems [21–23]. It has been
found that charge puddles give rise to a disordered landscape
of p-n junctions that are key to understand the low-energy
electronic transport in realistic graphene samples [24–26].

Recent theoretical [27–29] and experimental [19,30,31]
works have studied the transport properties of heteropolar
lateral junctions in HgTe/CdTe QWs in the inverted regime.
Some experiments [19,31] investigate electronic transport
through double junction systems by applying a gate voltage
Vg in the central region of a HgTe quantum-well Hall bar.
By varying Vg , the system can be tuned from an n-n′-n type
junction (Fermi energy lying in the electronlike states of the
junction) to n-p-n (Fermi energy lying in the holelike states of
the junction). When Vg is tuned close to the charge neutrality
point, Vg = V CN

g , the Fermi energy lies near the gap of the
central region and the transport across the junction is expected
to be dominated, in the absence of magnetic field, by QSH
edge states (n-TI-n).

The results presented in Ref. [19] show that, in the presence
of a strong perpendicular magnetic field (B � 7 T) the system
enters the quantum Hall regime. The longitudinal conductance
displays plateaus consistent with those expected for graphene
junctions in the QHE regime [32,33]: 2e2/h in a monopolar
n-n′-n junction (Vg � V CN

g ) and e2/2h in the bipolar n-p-n
junction (Vg � V CN

g ). In the n-TI-n configuration (Vg ≈ V CN
g ),

a nonquantized conductance value was measured. More
intriguingly, well-defined conductance plateaus have not been
observed for weaker magnetic fields [19]. This regime has
no clear interpretation yet, calling for further theoretical
investigation.

With this motivation, we present a simplified model to
describe the weak field limit (non-QHE regime) of HgTe/CdTe
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QW junctions. We compute the transport properties of pristine
HgTe/CdTe QWs and homopolar and heteropolar double
junctions by combining a discrete model Hamiltonian with
the recursive Green’s functions method (RGF) [34]. For
concreteness, we consider the Bernevig-Hughes-Zhang (BHZ)
model [5] in the presence of a perpendicular magnetic
field [14,35]. Our work extends and complements previous
theoretical studies that have addressed the electronic transport
in TI-double junctions in the absence of external magnetic
fields [28,29].

We calculate the space-resolved transmission across differ-
ent types of junctions (n-n′-n, n-edge-n, n-p-n) as a function
of a gate voltage Vg applied at the system central region and
of an external magnetic field. The latter is believed to destroy
the topological protection, since it allows for backscattering in
the spin-polarized edge states. Interestingly, our results show
that, for fields up to a few Tesla, there is always a range of
Vg where edge transmission in the central region dominates
the transport properties. We refer to this configuration as an
n-edge-n junction. We show that some of the transport features
of the studied n-TI (or p-TI) junctions bear similarities with
the case of graphene junctions where the transmission to a
region where the transport is forbidden can be understood in
terms of snakelike states at the interface [36,37].

One of our main results is that, in an n-edge-n junction,
the combined effect of quantum interference from reflection
at the junction barriers and edge-state backscattering due to
the breaking of TRS creates a spin-dependent Fabry-Pérot
pattern in the transmission amplitudes. These gate-controlled
oscillations are strong enough to provide fully spin-polarized
currents across the junction.

The paper is organized as follows. In Sec. II we present the
BHZ model used to describe the HgTe junctions and discuss
the recursive Green’s functions approach employed to investi-
gate the local currents in the system. Our numerical results are
presented in Sec. III, where we study the effect of a perpendic-
ular external magnetic field on the transport properties across
the junction. Finally, we present our concluding remarks in
Sec. IV.

II. MODEL AND METHODS

We describe the physical properties of HgTe/CdTe QWs at
low energies and zero magnetic field using the four-band BHZ
Hamiltonian [5]

Ĥ = C1 + M�5 − (D1 + B�5)

h̄2

(
p̂2

x + p̂2
y

)

−A�1

h̄
p̂x + A�2

h̄
p̂y, (1)

where �1, �2 and �5 are 4×4 matrices spanning the basis
{|E↑〉,|H↑〉,|E↓〉,|H↓〉}, which can be expressed in terms of
Pauli matrices σj , namely

�1 =
(

σx 0
0 −σx

)
, �2 =

(−σy 0
0 −σy

)
,

�5 =
(

σz 0
0 σz

)
, (2)

E ↑ E ↓

H ↑ H ↓

H ↑

E ↑ E ↓

H ↓

E ↑ E ↓

H ↑ H ↓ H ↑

E ↑ E ↓

H ↓

FIG. 1. Sketch of the hopping matrix element structure in our
discretized model. Each site (large circle) has a fourfold orbital struc-
ture with states (black circles) of the basis {|E↑〉,|H↑〉,|E↓〉,|H↓〉}.
The lines represent the nonvanishing hoppings between states that
belong to different sites. No hopping between states in the same site
is allowed. Left: Hoppings between orbitals belonging to the sites at
(n,m) and (n + 1,m). Right: Hoppings between (n,m) and (n,m + 1).

and 1 is the identity. The numerical parameters A,B,C,D
depend on system properties such as the QW thickness.

We caution that the indices “↑” and “↓” indicate degenerate
Kramers pairs related by TRS in the low-energy effective
model obtained from the original k · p six-band model for
HgTe near the � (k = 0) point [5]. In this sense, the latter are
not pure spin 1/2 states since the H states carry contributions
from p-type heavy-hole bands with spin Jz = ±3/2. However,
to a good approximation, these states represent spin-1/2 states
related by TRS [12,14] and we will treat them as such
in the present paper. In addition, since our focus will be
on the TRS-broken regime, we will neglect TRS-preserving
perturbations such as inversion-breaking [16] and Rashba
spin-orbit coupling [28,29] terms that give rise to coupling
between the spin-up and the spin-down sectors [38].

The numerical calculation of the QW transport properties
follows the prescription of Ref. [14]. We discretize the four-
component spinor �(x,y) in a square lattice of spacing a in
both x and y directions. The spinor �(x,y) becomes �n,m

where x = na and y = ma and n and m are integer. Figure 1
shows the orbital structure of the hopping matrix elements. We
note that the hopping terms between electron and hole states
are nonzero only if the spin projection is preserved.

Using two and three points derivatives for the momenta
discretization

px�(x,y) → − ih̄

2a

(
�m

n+1 − �m
n−1

)
,

p2
x�(x,y) → − h̄2

a2

(
�m

n+1 − 2�m
n + �m

n−1

)
,

py�(x,y) → − ih̄

2a

(
�m+1

n − �m−1
n

)
,

p2
y�(x,y) → − h̄2

a2

(
�m+1

n − 2�m
n + �m−1

n

)
, (3)

the eigenvalue problem Ĥ�(x,y) = E�(x,y), becomes

E�m
n = Hm,m

n,n �m
n + H

m,m
n,n−1�

m
n−1 + H

m,m
n,n+1�

m
n+1

+Hm,m−1
n,n �m−1

n + Hm,m+1
n,n �m+1

n , (4)
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FIG. 2. Top: Sketch of the HgTe/CdTe quantum well of thickness
d , width W , and length L. Middle: Sketch of the real-space
discretization. N is the number of vertical slices in the central region
and M is the number of sites in each slice. Each site contains
four orbitals represented by black dots. The yellow shaded regions
correspond to the left and right leads. The gray area represents the
HgTe regions over which a gate voltage Vg is applied. Bottom: Local
band structure shift due to the effect of a negative gate voltage Vg .
This configuration corresponds to an n-edge-n (or n-TI-n at B = 0)
junction.

where

Hm,m
n,n =

[
C1 + M�5 − 4

(D1 + B�5)

a2
+ μBB�z

g

2

]
, (5)

H
m,m
n,n+1 =

[
(D1 + B�5)

a2
+ iA�1

2a

]
eima2(eB/h̄), (6)

Hm,m+1
n,n =

[
(D1 + B�5)

a2
− iA�2

2a

]
, (7)

H
m,m
n,n−1 = (

H
m,m
n,n+1

)†
, Hm,m−1

n,n = (
Hm,m+1

n,n

)†
. (8)

The above model Hamiltonian accounts for the presence of
an external magnetic field perpendicular to the QW (B = B ẑ)
by means of the gauge A(r) = −Byx̂ and by a Zeeman term
[12] μBB�z

g/2 where �z
g = diag(ge,gh, − ge, − gh) contains

the effective g-factors for electrons ge and holes gh and μB is
the Bohr magneton. The Peierls phase (e/h̄)

∫ (n+1,m)
(n,m) A · dl =

ma2(eB/h̄) modifies the hopping matrix elements between the
sites (n,m) and (n + 1,m) in Eq. (6). Comparisons with full
eight-band k · p calculations show that this low-energy model
offers a good description for HgTe/CdTe QWs near the � point
for magnetic fields up to B ∼ 2 T [10].

We address the transport properties of a QW of thickness
d, width W , and length L. The system is attached to
left and right semi-infinite leads, aligned to its longitudinal
direction, parallel to the x axis, as we illustrate in Fig. 2.

(a) (b)

FIG. 3. (a) Spectrum of an infinite HgTe/CdTe QW of width
W = 200 nm. (b) Detail of the edge states near k = 0 showing a
small gap for W = 200 nm (blue squares) and essentially no gap
for W = 1000 nm (black triangles). Symbols correspond to our
finite differences calculation and the solid lines to analytic results
of Ref. [39].

For computational convenience the QW region is divided into
transverse slices that are labeled by n ranging from n1 to n2,
see Fig. 2. We model homopolar and heteropolar junctions
by introducing a gate voltage Vg acting on the system central
region, corresponding to a term

[HG]m,m
n,n = eVg1 (9)

for n1 � n � n2. In this way, we approximate the model
Hamiltonian of Eq. (1) by a discrete Hamiltonian on a square
lattice of dimensions M×N , where W = Ma and L = Na,
containing 4MN orbitals in the central region.

The choice of the lattice parameter a is a compromise
between computational cost and accuracy. The value of a is
fixed as follows: We solve the eigenproblem in Eq. (4) using
periodic boundary conditions in the x direction for a chosen
width W in the y direction. The reduced eigenvalue problem
reads

E�n = Hn,n�n + Hn,n−1�n−1 + Hn,n+1�n+1, (10)

where Hn,n′ has the block structure [Hn,n]m,m′ = Hm,m′
n,n

(δm′,m + δm′,m−1 + δm′,m+1) and [Hn,n±1]m,m′ = H
m,m
n,n±1δm′,m.

Here H
m,m′
n,n′ is a 4×4 matrix, given by Eqs. (5)–(8).

Due to translational invariance �n can be written as �n =
ψeikxna , where ψ has 4M components. For a given width W

we choose a by requiring an accuracy of 10−2 meV in the
energy gap as compared to the analytical results obtained in
Ref. [39]. In practice, we fix M = 200 for all calculations,
which sets a lattice parameter a for a given width W . We find
that this procedure satisfies the required accuracy for systems
with W � 2 μm.

Figure 3 shows valence and conduction bands of two
infinite HgTe/CdTe QWs of widths W = 200 nm and W =
1000 nm obtained using the material parameters of a d = 7 nm
thick QW [39,40] A = 364.5 meV nm, B = −686 meV nm2,
C = 0, D = −512 meV nm2, M = −10 meV in the absence
of an external magnetic field (B = 0). We find that an
HgTe/CdTe QW with W = 200 nm presents a gap of about
0.44 meV. The gap tends to close as we increase the width and
reaches values as small as 10−5 meV for W = 1000 nm.

We address the charge transport properties of the
HgTe/CdTe QWs using the Landauer approach [41,42]. In the
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case of a vanishingly small source-drain bias, the zero tem-
perature conductance of the system reads G = (e2/h)T (EF ),
where T (EF ) = T↑(EF ) + T↓(EF ) is the total transmission
between the left and right contacts at the Fermi energy EF and

Tσ (EF ) = Tr
[
�L(EF )Gr

σ (EF )�R(EF )Ga
σ (EF )

]
(11)

are the transmissions for each spin σ = ↑,↓. Here Gr
σ (Ga

σ =
[Gr

σ ]†) is the retarded (advanced) Green’s function for charge
carriers with spin σ and �L (�R) is the (spin-independent)
linewidth function accounting for the injection and lifetime of
the carriers states in the left (right) contact.

The discrete model Hamiltonian presented above allows
for a very amenable implementation of the recursive Green’s
functions technique [34]. We compute the linewidths �L and
�R with standard decimation methods [43] and the full retarded
Green’s function Gr

σ in the system central region using the
RGF [34]. We gain additional insight by computing the local
transmission

T α
i,j ;σ (EF ) = −2Im

{[
Gr

σ�αGa
σ

]
i,j

tj,i
}

(12)

between two neighboring states i and j connected by the
hopping matrix element ti,j for the charge current injected
from the contact α = L,R.

III. RESULTS

In this section, we analyze the magnetotransport properties
of homopolar and heteropolar junctions in HgTe/CdTe QWs
by studying the local transmission of different possible double
junction system configurations, namely, n-n′-n, n-TI-n (n-
edge-n for B �= 0), and n-p-n junctions. We present separately
the analysis of the cases of B = 0 (Sec. III A) and B �= 0
(Sec. III B).

A. Zero magnetic field

Here we study the charge transport through n-n′-n, n-TI-n,
and n-p-n junctions in the presence of TRS, that is B = 0.
As mentioned previously, we consider the case of an inverted
HgTe/CdTe quantum well, M < 0 in Eq. (1). Such systems
support topologically protected edge states when TRS is
preserved. Thus, the edge portion of the junction represents
a topological insulator.

Let us begin by discussing the eVg = 0 case, where the
system is uniform. Since here the spectrum is known (e.g.,
Fig. 3), the current profile serves to test the accuracy of our
results and to introduce the tools we use in this study.

Using Eq. (12) we calculate the stationary local left-to-
right transmission between the sites i and j as T (xij ,yij ) ≡
|T α=L

i,j ;↑ (EF ) + T α=L
i,j ;↓ (EF )| where (xij ,yij ) is the midpoint

between the sites. For each EF value, we plot a color
map of the normalized left-to-right transmission T̄σ (xi,yj ) ≡
(T (xij ,yij )/Tmax)ησ where Tmax is the maximum value of
T (xij ,yij ) and ησ is the fraction of T (xij ,yij ) composed by
the spin σ = ↑,↓ component. In this scheme, the values of
ησ belong to the interval [0,1] satisfying η↑ + η↓ = 1. Thus,
T̄σ (xi,yj ) for each σ varies between 0 and 1, with the unit
representing full spin polarization and maximum transmission.

Typical results for T̄σ (xi,yj ) are shown in Fig. 4. For EF

within the gap [Fig. 4(a)], there is only a single pair of states

0

y
(n

m
)

↓↓↑200

0

0

0000000000000000

y
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m
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m
)

↓
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0

(a)
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(c)

FIG. 4. Local currents in a homogeneous (eVg = 0)
200×1000 nm HgTe/CdTe QW for different values of the
Fermi energy EF in the contacts, namely (a) EF = 0 meV, (b)
EF = 10 meV, (c) EF = 25 meV, and B = 0. Spin-polarized edge
transport (from left to right) is evident for EF inside the gap.

crossing the Fermi energy, which are localized at the QW
edges. Thus, the current is carried by edge states with the
expected spin texture of a topological insulator. As EF is tuned
closer to the bottom of the conduction band, the local currents
still flow mostly through spin-polarized states near the edges
but the contribution from bulk states become more prominent,
as shown in Fig. 4(b).

In the n and p regions (EF above and below the gap,
respectively) there are well-defined spin-polarized stripes of
current through the bulk. This is an interesting pattern: It
implies a spatial separation of the spin-polarized currents
through the bulk. This pattern originates from the different
pairs of bulk and edge states crossing the Fermi level
with positive group velocity, vk = ∂E(k)/∂k > 0. The helical
nature of the states implies that each pair will have opposite
spin polarizations. Moreover, the states in each pair are mostly
symmetrically localized around the center of the strip, in
opposite sides of the system, creating the pattern shown in
Fig. 4(c).

We now turn to the eVg �= 0 case. Depending on the mag-
nitude of Vg , we model a n-n′-n junction [Fig. 5(a)], a n-TI-n
junction [Fig. 5(b)], or a n-p-n heteropolar junction [Fig. 5(c)].
As we discuss below, these junctions are characterized by a
very distinct current density flow behavior.

Now we fix EF at 30 meV to study n-n′-n junctions
[Fig. 5(a)]. The current flow shows spin-polarized stripes
across the QW transverse direction, similar to those observed
for EF outside the gap in the eVg = 0 case. The situation
is different in the n-p-n configuration [Fig. 5(c)]. Here, the
stripe pattern in the central region seen in the n-n′-n junction
vanishes due to the spatial mismatch between n-type and
p-type states with positive group velocity. As a consequence of
this mismatch, in the p-doped region the electronic transport
is concentrated at the system edges, even though there are bulk
states crossing the Fermi energy.

The n-TI-n configuration [Fig. 5(b)] shows a spatial
filtering, where the current flows through spin-polarized edge
states. Interestingly, reflections at the n-edge interface create
a snakelike pattern for the spin-polarized currents.
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FIG. 5. Local currents in different junctions: (a) n-n′-n (b) n-TI-n,
and (c) n-p-n junctions. In all cases, we considered a 200×1000 nm
HgTe/CdTe QW and B = 0. The gate voltage in the central region
was held, respectively at (a) eVg = 10 meV (b) eVg = 30 meV and
(c) eVg = 60 meV. The EF in the contacts was set to 30 meV from the
bottom of the valence band. Notice the edge-dominated transport in
the n-TI-n junction, for which EF is set inside the gap in the central
region.

This is better illustrated by Fig. 6, where the spin-up
component of the transmission near the interface is shown
for clarity. As previously discussed, in the TI region the
spin-up current is localized at the bottom edge. This behavior
becomes increasingly clear as one moves away from the
interface. Figure 6 also shows a strong downward flow of
spin-up electrons parallel to the interface, represented by the
(blue) vertical arrow. Spin-up electron injected in the upper
part of the junction cannot propagate the TI region and move
along snakelike trajectories along the interface [36,37], which
channels the flow towards the system bottom edge.

On the n-doped side of the junction the behavior is
strikingly different. The spin-up electrons flow alternates in
direction along the system transversal direction. As above, the
bottom edge states also contribute to the left-right current in the
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FIG. 6. Detail of the spin up current along the interface in an
n-TI junction, showing a snakelike pattern in the n side (left) of the
junction. In the TI side (right), the spin-up electrons flow parallel to
the interface to the bottom edge state, where the left-right transmission
across the junction takes place.

FIG. 7. Landauer conductance as a function of eVg for a
200×1000 nm HgTe/CdTe ribbon for B = 0. Transport in the n-n′-n
shows plateaus, with small oscillations, while the n-TI-n region is
characterized by a clear 2e2/h plateau. The little bump at ≈22.5 meV
signals a small gap in the spectrum shown in Fig. 3. Strong oscillations
in the n-p-n region occur due to the mismatch of the wave functions
in n and p regions.

n-region, producing a strong left-to-right spin-up component
matching the flux on the TI side. By contrast, the contribution
from bulk states is either (i) reflected at the interface, producing
small vortexlike patterns and a backward flow, or (ii) injected
in the TI region in the upper section and then channeled
downward along the interface. The combination of these two
effects produces the current pattern in the n-doped region
indicated by the (blue) horizontal arrows in Fig. 6.

This picture allows us to interpret the conductance in these
systems. Figure 7 shows the conductance per spin as a function
of the gate voltage Vg . The conductance plateaus in the n-n′-n
region essentially count the number of open modes at the Fermi
energy in the central region for a given Vg . As Vg is tuned so
that the EF lies inside the gap, a clear 2e2/h plateau appears.
A small depression in the transmission near eVg ≈ 22.5 meV
signals the presence of a finite-size gap in the spectrum. The
gap is small enough so that the effective broadening arising
from the coupling of the system to the contacts (which is
captured by the RGF approach) is sufficient to give a large
contribution to the transmission at that energy value. In the
n-p-n region, the conductance oscillates rapidly with Vg . This
is a result of the multiple reflections and the wave mismatch
between n and p regions. Note that the states with positive
group velocity, that contribute to the left-to-right charge flow,
have opposite phase velocity in n and p regions, which enhance
the mismatch between those states.

B. Transport at nonzero field

We now study the transport properties of HgTe QW
junctions under an external perpendicular magnetic field B.
We consider QWs of W = 200 nm. In this case, the transition
to a regime where transport is dominated by quantum-Hall-like
chiral edge modes occurs at Bc ≈ 7–8 T [14]. Thus, we restrict
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FIG. 8. Wave functions for states inside the bulk gap for L =
200 nm and (a) B = 0, (b) 0.5, and (c) 1.0 T for different kx values,
as marked on the corresponding dispersion relations (d)–(f). As B

increases, the spin-up states remain localized close to the edge,
while the spin-down states move toward the bulk. The resulting
hybridization opens a gap in the spin-down spectrum. Red dashed
(blue solid) lines represent spin-up (spin-down) states. Backward-
(vk < 0) and forward-moving (vk > 0) states are marked by circles
and triangles, respectively. Solid (open) symbols represent spin-down
(spin-up) states.

our analysis to B fields up to 2T, where counterpropagating
helical states are still present in the system.

As it is well known [1–3], a magnetic field breaks TRS and
thus the edge states lose their topological protection. Moreover,
the Zeeman term in Eq. (1), although small, also breaks the spin
degeneracy. The combination of these two effects substantially
changes the spin-dependent transport properties across the
junction.

We begin by exploring the nonzero B case for the eVg = 0
case. Figure 8 contrasts the probability distributions of the
system states at EF = 0 and the dispersion relations for
representative values of B. Consistent with previous studies
[13], for B = 0.5T, a well-pronounced gap (∼10 meV)
appears for spin-down states, while the spin-up states show
no gap. As the field increases, the probability density of the
spin-up states remains concentrated at the edges, while the
spin-down states penetrate deeper into the bulk. This behavior
is consistent with the local currents shown in Figs. 9(b)–9(d)
for selected values of the Fermi energy. In those cases, the
asymmetry with respect to the y axis (across the width) appears
because only the forward-moving states at one edge are present
in the transport.

For n- and p-type transport, Figs. 9(a) and 9(e), respec-
tively, the bulk currents flow along nearly spin-polarized
stripes, similarly to the B = 0 case. However, some interesting
differences appear. When the Fermi energy lies inside the
spin-down gap, the current is fully spin-up polarized, flowing
through the lower edge [Fig. 9(b)]. As EF is tuned slightly
below the spin-up gap, the system shows spin-polarized
transport on both edges, similar to the topological case, as
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FIG. 9. Local currents for an homogeneous (eVg = 0) 200×1000
nm HgTe/CdTe QW subjected to a perpendicular magnetic field at
B = 0.5T. The currents are shown for different values of the Fermi
energy EF in the contacts, namely (a) 40 meV (n-type transport),
(b) 15 meV, (c) 5 meV, (d) −16 meV, and (e) −40 meV (p-type
transport) (see Fig. 3).

shown in Fig. 9(c). Note that the threshold for spin-up bulk
states is higher in energy than the spin-down states, leading to
a region where we have transport dominated by bulk spin-up
and edge spin-down currents Fig. 9(d).

We now consider the local currents in HgTe n-(central)-
n junctions at a finite magnetic field. Figure 10 shows the
behavior for different values of Vg such that EF lies close to
the spin-down local gap in the central region. Figures 10(a) and
10(e) correspond to n-n′-n and n-p-n junctions, respectively.
In these cases the transport properties are dominated by bulk
states and orbital interference effects.

When EF lies within the spin-down gap, a spin-up polarized
current flows through the lower edge of the central region
[Fig. 10(b)] and it is injected in the right n region through an
edge state. A slight increase in eVg (from 20–22.5 meV) is
sufficient to bring EF to cross the first spin-down edge state
below the gap, thereby allowing spin-down transport through
the upper edge of the central region [Fig. 10(c)].

Surprisingly, a further small increase in eVg (from 22.5–
25 meV) causes the spin down current in the central region to
practically vanish, as shown in Fig. 10(d). This is at odds with
the homogeneous case (Fig. 9) where spin-down currents are
always present as long as EF lies outside the spin-down gap.
We attribute this suppression to the large change in momentum
across the n-edge junction necessary for the propagation of
spin-down electrons in the central region, as inferred from the
band structure in Fig. 8(e).

Let us now examine the conductance across the junction as a
function of the gate voltage Vg for B = 0.5 T. Figure 11 shows
a clear oscillatory pattern of the spin-down current for eVg >

20 meV up to the onset of n-p-n behavior at eVg ≈ 40 meV. In
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FIG. 10. Local currents for a n-(central region)-n junction in a
200×1000 nm HgTe/CdTe QW, with B = 0.5T and EF = 30 meV
for different eVg values, namely (a) −10 meV (n-n′-n junction),
(b) 20 meV, (c) 22.5 meV, (d) 25 meV, and (e) 60 meV (n-p-n
junction).

the same Vg range, the spin-up conductance remains at a e2/h

plateau, indicating spin-polarized edge transmission for the Vg

values where the spin-down current essentially vanishes.

FIG. 11. Conductance per spin versus Vg for different values of
the magnetic field. The eVg range sweeps the junction from n-n′-n
(eVg = 10 meV) to n-p-n (eVg = 60 meV). For weak fields, the
currents are nearly spin independent, with a 2e2/h plateau due to
edge state transport. A gap in the spin-down spectrum becomes more
prominent for larger fields. For B = 0.5 T, a clear oscillatory pattern
(on/off) in the spin-down current appears between the spin gap edge
(eVg = 20 meV) and the onset of n-p-n behavior (eVg ≈ 40 meV).
Notice that this edge current behavior extends to fields as large as
B = 2 T, (d).

FIG. 12. Spin-down transmission peak spacing versus 1/LC (LC

is the central region length) for different magnetic field values.
The 1/LC scaling in all cases is consistent with Fabry-Pérot-like
oscillations due to backscattering via reflection with the step potential
at the junction interface.

We associate these peaks with Fabry-Pérot resonances
caused by backscattering at the junction interfaces. Figure 12
shows that the spacing 	Vg between the transmission peaks
displays a linear scaling with the inverse of the central
region length LC , indicating single-particle interference due
to backscattering at the interfaces. Similar phenomena has
been investigated previously in two-terminal devices in the
presence of a magnetic field [11,44]. Here, the presence of the
interfaces magnifies the effect, leading to strong oscillations
where a perfect spin-polarized transport across the junction is
possible.

Fabry-Pérot-like oscillations also appear for larger mag-
netic field values and are suppressed for lower ones. In fact,
the oscillations seem to occur only in the presence of a
fully developed gap in the spin-down spectrum, as shown in
Figs. 11(b) and 11(c).

For B = 2T, Fig. 11(d), the behavior is similar. Since the
spin-down gap is significantly larger, the range of Vg for which
the current displays full spin-up polarization increases from
eVg ≈ 12.5–20 meV for B = 0.5 T to eVg ≈ 5–25 meV for
B = 2 T. Interestingly, for larger Vg values (eVg � 35 meV),
spin-up drops to zero and full spin-down polarization is now
possible. Thus, for these moderate magnetic field values, the
junction operates as a gate-tunable spin polarization switch.

IV. CONCLUDING REMARKS

In this paper we have theoretically studied the spin-
dependent local currents in HgTe/CdTe quantum-well
monopolar and heteropolar junctions. We considered the de-
pendence of the transport properties with an applied magnetic
field perpendicular to the sample and the resulting transition
from topologically protected edge transport to a regime where
spin backscattering is allowed at the junction barriers.

For zero magnetic field, our recursive Green’s functions
calculations for the local currents show distinct characteristics
for n-n′-n, n-TI-n and n-p-n junctions. While the bulk
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contributions to the current are strong in monopolar (n-n′-n)
junctions, in the heteropolar case transport is dominated by
edge states in the central region. In n-TI-n junctions, the
spin-resolved flow alternates in direction along the system
transverse direction in the n side of the first n-TI interface.
By contrast, the TI side shows currents flowing parallel to the
interface toward the edges, where the main flow occurs.

Edge states still give a strong contribution to the
transmission in the presence of TRS-breaking perpendicular
magnetic field. Interestingly, the magnetic field opens a gap for
one of the spins. Quantum interference due to backscattering
at the interface produces spin-resolved Fabry-Pérot-like
oscillations in the transmission as a function of the gate
applied to the central region.

The combination of the gap opening and the Fabry-Pérot
oscillations for only one of the spins allows for the production

of tunable spin-polarized currents across the junction for
moderate (B < 1 T) values of the magnetic field. We stress that
these results are generic for other inverted QWs displaying 2D
topological insulator behavior such as InAs/GaSb [45,46]. This
opens the prospect for applications of inverted QW heteropolar
junctions in spintronic devices.

ACKNOWLEDGMENTS

D.N. and L.R.F.L. acknowledge support from the Brazil-
ian funding agencies CNPq, FAPERJ and CAPES. L.D.S.
acknowledges support from CNPq Grants No. 307107/2013-2
and No. 449148/2014-9, and FAPESP Grant No. 2016/18495-
4, and PRP-USP NAP-QNano. C.H.L. is supported by
CNPq Grant No. 308801/2015-6 and FAPERJ Grant No.
E-26/202.917/2015.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).
[4] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[5] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[6] M. Konig, S. Wiedmann, C. Brune, A. Roth, H. Buhmann,

L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[7] J. Maciejko, X.-L. Qi, and S.-C. Zhang, Phys. Rev. B 82, 155310
(2010).

[8] A. Mani and C. Benjamin, J. Phys.: Condens. Matter 28, 145303
(2016).

[9] A. Mani and C. Benjamin, Phys. Rev. Appl. 6, 014003 (2016).
[10] M. J. Schmidt, E. G. Novik, M. Kindermann, and B. Trauzettel,

Phys. Rev. B 79, 241306 (2009).
[11] G. Tkachov and E. M. Hankiewicz, Phys. Rev. Lett. 104, 166803

(2010).
[12] B. Buttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brune, H.

Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C.
Zhang, and L. W. Molenkamp, Nat. Phys. 7, 418 (2011).

[13] J.-c. Chen, J. Wang, and Q.-f. Sun, Phys. Rev. B 85, 125401
(2012).

[14] B. Scharf, A. Matos-Abiague, and J. Fabian, Phys. Rev. B 86,
075418 (2012).

[15] O. E. Raichev, Phys. Rev. B 85, 045310 (2012).
[16] M. V. Durnev and S. A. Tarasenko, Phys. Rev. B 93, 075434

(2016).
[17] G. M. Gusev, Z. D. Kvon, O. A. Shegai, N. N. Mikhailov, S. A.

Dvoretsky, and J. C. Portal, Phys. Rev. B 84, 121302 (2011).
[18] G. M. Gusev, E. B. Olshanetsky, Z. D. Kvon, N. N. Mikhailov,

and S. A. Dvoretsky, Phys. Rev. B 87, 081311 (2013).
[19] G. M. Gusev, A. D. Levin, Z. D. Kvon, N. N. Mikhailov, and

S. A. Dvoretsky, Phys. Rev. Lett. 110, 076805 (2013).
[20] S. Essert and K. Richter, 2D Mater. 2, 024005 (2015).
[21] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet,

K. von Klitzing, and A. Yacoby, Nat. Phys. 4, 144 (2008).
[22] E. R. Mucciolo and C. H. Lewenkopf, J. Phys.: Condens. Matter

22, 273201 (2010).
[23] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.

Phys. 83, 407 (2011).

[24] V. V. Cheianov, V. I. Fal’ko, B. L. Altshuler, and I. L. Aleiner,
Phys. Rev. Lett. 99, 176801 (2007).

[25] L. R. F. Lima and C. H. Lewenkopf, Phys. Rev. B 93, 045404
(2016).

[26] Z. Fan, A. Uppstu, and A. Harju, 2D Mater. 4, 025004
(2017).

[27] L. B. Zhang, K. Chang, X. C. Xie, H. Buhmann, and L. W.
Molenkamp, New J. Phys. 12, 083058 (2010).

[28] L. B. Zhang, F. Zhai, and K. Chang, Phys. Rev. B 81, 235323
(2010).

[29] L. B. Zhang, F. Cheng, F. Zhai, and K. Chang, Phys. Rev. B 83,
081402 (2011).

[30] S. U. Piatrusha, V. S. Khrapai, Z. D. Kvon, N. N. Mikhailov,
S. A. Dvoretsky, and E. S. Tikhonov, arXiv:1703.09816.

[31] M. R. Calvo, F. de Juan, R. Ilan, E. J. Fox, A. J. Bestwick,
M. Muhlbauer, J. Wang, C. Ames, P. Leubner, C. Brune, S. C.
Zhang, H. Buhmann, L. W. Molenkamp, and D. Goldhaber-
Gordon, arXiv:1702.08561.

[32] D. A. Abanin and L. S. Levitov, Science 317, 641 (2007).
[33] J. R. Williams, L. DiCarlo, and C. M. Marcus, Science 317, 638

(2007).
[34] C. H. Lewenkopf and E. R. Mucciolo, J. Comp. Electron. 12,

203 (2013).
[35] B. Scharf, A. Matos-Abiague, I. Žutić, and J. Fabian, Phys. Rev.
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