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Abstract. We propose a simple method to calculate periodic orbits in two-dimensional systems with no
symbolic dynamics. The method is based on a line by line scan of the Poincaré surface of section and
is particularly useful for billiards. We have applied it to the Square and Sinai’s billiards subjected to a
uniform orthogonal magnetic field and we obtained about 2000 orbits for both systems using absolutely
no information about their symbolic dynamics.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.45.Pq Numerical simulations
of chaotic models – 05.45.Mt Semiclassical chaos (“quantum chaos”)

1 Introduction

The interest in the magnetic properties of mesoscopic sys-
tems has increased considerably in the last years. Many
theoretical progresses have been recently achieved [1,2]
motivated by exciting experiments involving trapped elec-
trons in semiconductor heterostructures [3]. The behav-
ior of these systems can be largely understood within the
framework of semiclassical methods, where periodic or-
bits play an important role. Billiards in magnetic fields
have been particularly useful in modeling two-dimensional
electron gases confined by heterostructures in both regular
and chaotic regimes [1,2,4]. Similar models have also been
employed to describe the recent experiments on resonant
tunneling diodes [5].

The basic connection between classical and quantum
information is furnished by the Gutzwiller Trace For-
mula [6], relating the level density at energy E, ρ(E), to a
sum over all periodic orbits at that energy surface. An or-
bit with period τ contributes an oscillatory term to ρ with
wave-length 2π~/τ . A smoothed density, with resolution
ε, can be obtained by taking into account only orbits with
period smaller than ~/ε. The trace formula is known to
be divergent because of the exponential proliferation of
periodic orbits and the so called entropy barrier [7]. Re-
cent theoretical developments [8], however, have shown
that the trace formula can be resummed in terms of a
convergent (actually finite) series, the spectral determi-
nant, whose zeros indicate the position of the energy lev-
els. The classical ingredients for the spectral determinant
are pseudo-orbits, linear combination of the actual peri-
odic orbits. Although finite, the number of such orbits still
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increases exponentially fast with the energy and smoothed
densities are still the best one can hope for at high ener-
gies. Famous applications of this semiclassical theory are
the Hydrogen atom in a constant magnetic field [9] and
the stadium billiard [10].

In a few special systems the periodic orbits can be com-
puted with the help of a symbolic dynamics [11]. In these
cases one can be sure to have all periodic orbits up to a cer-
tain value of period, action or length. Several new meth-
ods have recently been proposed which make explicit use
of the symbolic code [12]. For generic systems, however,
such symbolic dynamics does not exist and it becomes
very hard to compute periodic orbits numerically. Most
of the methods described in the literature for the com-
putation of periodic orbits in generic systems are directly
applicable only to maps with explicit equations (not, for
instance, to a Poincaré section of a continuous flow). The
simplest of those methods, introduced by de Vogeleare [13]
and applied to the standard map by Greene [14] and to
the oval billiard by Sieber [15], reduces the computation
of periodic points to the calculation of roots of functions,
which are essentially iterates of the functions describing
the map. This works well for short orbits, but fails com-
pletely for long orbits. Another method applicable to ex-
plicit maps was proposed by Aubry [16], but it requires
the integration of many differential equations and is very
time consuming [17].

The best technique for finding periodic orbits, as far
as convergence from trial orbits is concerned, is Newton’s
method [18–20]. Methods of this type, however, require
the knowledge of an initial test orbit to start the conver-
gence process. The calculation of these test orbits is ac-
tually the main task of any procedure based on Newton’s
method. Several different ways to generate test orbits (not
relying on a symbolic code) can be found in the literature.
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These can be classified roughly into four groups: (a) inter-
polation from a known periodic orbit; (b) variation of a
parameter; (c) Lyapunov exponent method and (d) area
scan. The interpolation method is restricted to families of
periodic orbits only, either stable [21] or close to homo-
clinic or heteroclinic orbits [18,19]. The second possibil-
ity, to vary a map parameter until the chaotic regions be-
come small and then move the orbits back into the chaotic
regions, fails to compute orbits born at tangent bifurca-
tions [22]. The Lyapunov method applies to the calcula-
tion of stable orbits only [23]. Finally, in the area scan
method one searchs for overlaps of a small phase-space
region with its time evolved image [9,10,23]. Bisection
methods have also been proposed as an alternative to the
overlap criterion mentioned above [24–26]. In this case one
also looks for roots of functions inside a small phase-space
area, but, instead of using Newton’s method to converge
a trial solution, this small area is bisected according to
certain criterions until the root is pinned with the desired
accuracy.

In this article we present a simple modification of the
area scan method which results in a very efficient way to
compute periodic orbits in generic systems. As will be-
come clear, this method is useful when one wants to cal-
culate all the periodic orbits up to a certain period, and
not just a few specific orbits. The method is presented in
the next section. As applications we compute and study
in Sections 3 and 4 the periodic orbits of the square and
the Sinai’s billiards subjected to a constant magnetic field
perpendicular to the plane of the billiard. In both cases
the classical dynamics changes continuously as the field in-
tensity is varied [27] and the dynamics is generally mixed
(partly chaotic and partly regular). The choice of these
billiards as working models were motivated by their im-
portance in the semiclassical calculations of the magnetic
susceptibility in mesoscopic systems [1–4]. A second mo-
tivation is the role of bifurcations of periodic orbits in the
susceptibility in some regimes [28], which cannot be de-
scribed by a symbolic code.

2 The numerical calculation of periodic orbits

Our numerical method performs a search for periodic or-
bits directly on a Surface of Section, or Poincaré Map.
Consider a conservative system whose dynamics can be
described by a two-dimensional map of the formXn+1 = f(Xn, Yn)

Yn+1 = g(Xn, Yn)

where f(Xn, Yn) and g(Xn, Yn) are functions which de-
pend on the dynamics and on the boundary conditions of
the system. In the particular case of billiards, the coordi-
nates Xn and Yn are the Birkhoff coordinates at the n-th
collision, namely the length l along the boundary where
the collision takes place and cos θ, the cosine of the angle
between the oriented boundary and the velocity right after
the collision. A N point periodic orbit (N is discrete and,

in the case of billiards, counts the number of bounces of
the particle with the billiard boundary) is defined by a set
of iterated points (X1, Y1), (X2, Y2), ..., (XN , YN ), which
belong to the map’s domain, and with (XN+1, YN+1) =
(X1, Y1).

We shall compute these orbits using a two-step al-
gorithm that basically transforms the search for peri-
odic points in the plane into two nearly one-dimensional
searches. The first step is to find a special test orbit, i.e.,
a set of points (X(0)

1 , Y
(0)

1 ), (X(0)
2 , Y

(0)
2 ), ..., (X(0)

N , Y
(0)
N )

which is a good approximation to the orbit we seek. The
second step is to process this test-orbit with an iterative
procedure, like Newton’s method, to make it converge to
the desired solution. As we shall see, this procedure be-
comes essentially one-dimensional for the test orbits pro-
vided by the first step, resulting in a fast and efficient
algorithm.

2.1 Test-orbits: scanning the section line by line

A key point in the search for periodic orbits is to start
with a good test-orbit. If no symbolic code is known the
test-orbits themselves have to be computed numerically,
and that is certainly the hardest part of the calculation.

We search for test-orbits by looking for their intersec-
tion with the surface of section. The simplest way to scan
the surface of section is to divide it into small units, like
squares or other geometric figures, and to evolve each of
these units for N steps of the map. If the evolved unit has
a non-empty intersection with the original unit we can
produce an orbit which, after N steps, returns close to its
initial point, being therefore a test-orbit. Any attempt to
apply this procedure numerically for N large fails com-
pletely for chaotic maps. The main reason for this failure
is that the area element becomes so thin and twisted that,
numerically, one cannot distinguish it from a line. More-
over, since these 2-dimensional units are, for numerical
purposes, a set of points distributed along their bound-
ary, these points get apart from each other very fast under
time evolution and, after a few iterations, the typical dis-
tance between neighboring points is larger that the size of
the original unit. In this case it is hard to tell whether an
intersection has occurred or not. Of course the exponen-
tial separation of points is unavoidable in chaotic maps.
This problem can be minimized by propagating the points
half the time forward and half the time backward if the
map is invariant under time reversal (this is not the case of
the magnetic billiards discussed in the next section). Lines
and points are the only geometric structures that, in nu-
merical simulations, survive a large number of iterations.
Our approach, therefore, is based on a line-by-line scan of
the surface of section, avoiding the inaccuracy imposed by
the thinness of areas.

In the present case of magnetic billiards we have
scanned the section by lines of constant cos θ, which we
called previously Y , separated by a distance ∆Y . The
choice of these horizontal lines, instead of vertical or tilted
lines, has to do with the fact that, for the square billiard
and for B ' 0, two trajectories launched from the same
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Fig. 1. Section map, l versus cos θ, for the Square with B =
0.5. The base line at cos θ = −0.71 is iterated 10 times and
crosses itself several times. The points labeled A and B are
mapped into A′ and B′. The diamond inside B is mapped into
the other diamond close to B′ and constitutes a test-orbit.

point of the billiard boundary but at slightly different an-
gles get apart much faster than two trajectories launched
from slightly different points but with the same angle.
Moreover, for B ' 0 the periodic orbits lie close to lines
of constant Y and their stable and unstable manifolds are
nearly parallel to the X axis, crossing at very small an-
gles. For the Sinai’s billiard the choice of lines is not im-
portant, as we shall see, but we have also used horizon-
tal lines there. Each of these lines is represented by a set
of points, separated by a distance ∆X , where X is the
Birkhoff coordinate l. The accuracy of our search is then
given by ∆X and ∆Y : the smaller the ∆’s, the more ac-
curate is the search. In all our calculations, we have set
∆X = 0.0001 (for a domain 0 < X < 1) and ∆Y = 0.01
(−1 < Y < 1). Each line is iterated N times and we check
if the iterated line crosses the original line at some point.
If it does, we use this crossing to generate a test of period
N , as we describe bellow.

The construction of test orbits is illustrated in Figure 1
for the case of the square billiard with magnetic field in-
tensity B = 0.5 (see Sect. 3 for details) and N = 10 itera-
tions. The original line, referred in the figure as base line
is crossed several times by its iterate. To make a clearer
visualization of the process, let’s consider only one of these
crossings. We take two points on the base line which are
at a distance ∆X = 0.05 from each other, labeled A
and B in Figure 1. After 10 iterations these points are
mapped into A′ and B′ respectively. There is a point on the
segment between A and B which is mapped very close to
the base line. We could take the orbit starting at this point

as a test-orbit (in this example the crossing point is very
close to B′). We prefer, instead, to find the crossing point
by linear interpolation between the two closer points on
each side of the base line and transpose it back to the base
line. This is shown as a little diamond inside the circle of
point B. When iterated N times with the map this dia-
mond goes into the other little diamond close to B′ and
this is our test orbit. Notice that the Y

(0)
N+1 ' Y

(0)
1 al-

though X
(0)
N+1 is quite different from X

(0)
1 . It turns out,

however, that this is not a drawback, and we shall take
advantage of this fact.

As mentioned above, the reason for our choice of hor-
izontal lines has to do with the dynamics of the square
billiard at low magnetic fields, B ' 0: if the initial and fi-
nal point of the test orbit have nearly the same coordinate
Y , they lie inside the narrow cones formed by the stable
and unstable manifolds of a nearby periodic orbit. In this
regions, the linearized equations used by the Newton’s
method correctly describes the dynamics and we expect
very fast convergence. For the Sinai’s billiard at low field
intensities or for the square billiard at high B’s, this argu-
ment does not apply and choice of horizontal or vertical
lines is irrelevant.

2.2 The monodromy method for maps

Once a test-orbit has been obtained we must make it
converge to a real periodic orbit. The test-orbit is given
by a set of points (X(0)

1 , Y
(0)

1 ), (X(0)
2 , Y

(0)
2 ), ..., (X(0)

N , Y
(0)
N )

which are separated from the actual points of the peri-
odic orbit by small corrections. We define (X(0)

N+1, Y
(0)
N+1) ≡

(X(0)
1 , Y

(0)
1 ). In what follows we do not assume that the

test-orbit is necessarily a solution of the map’s equations,
although it will be if generated by the method described
in the last sub-section. For the purposes of this subsection
the test-orbit can be just a suitable set of points on the
map’s domain. It is important to have this extra freedom
if the system has a parameter that one wants to change,
as illustrated in Section 4 with a study of bifurcations.

We want to compute X(1)
n = X

(0)
n + δXn and Y

(1)
n =

Y
(0)
n + δYn, the first order correction to (X(0)

n , Y
(0)
n ). We

start by defining the functions F (X,Y ) and G(X,Y ) rep-
resenting the map acting N times on the initial point
(X,Y ): XN+1 = fN (X1, Y1) ≡ F (X1, Y1)

YN+1 = gN(X1, Y1) ≡ G(X1, Y1).
(1)

The N point periodic orbit satisfies F (X̄, Ȳ ) = X̄ and
G(X̄, Ȳ ) = Ȳ and the problem reduces to that of find-
ing fixed points of the 2-D map. The orbit is repre-
sented by its initial point (X(0)

1 , Y
(0)

1 ) that we call simply
(X0, Y 0). We look for corrections δX and δY such that
X1 = X0+δX and Y 1 = Y 0+δY satisfy X1 = F (X1, Y 1)
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and Y 1 = G(X1, Y 1) to first order in δX and δY :

F (X1, Y 1) ≈ F (X0, Y 0) +
∂F

∂X0
δX

+
∂F

∂Y 0
δY ≈ X0 + δX

G(X1, Y 1) ≈ G(X0, Y 0) +
∂G

∂X0
δX

+
∂G

∂Y 0
δY ≈ Y 0 + δY.

(2)

In matrix notation this becomes

δZ = M δZ +R (3)

where

δZ ≡
(
δX

δY

)
; M ≡


∂F

∂X0

∂F

∂Y 0

∂G

∂X0

∂G

∂Y 0

; R ≡
(
a

b

)
(4)

and

a = −X0 + F (X0, Y 0)
b = −Y 0 +G(X0, Y 0)

(5)

measure how far from the periodic point the test-orbit is.
Solving for δZ gives:

δZ = (1−M)−1 R. (6)

This process can be iterated up to a given precision.
The criterion we used in our numerical examples to stop
the iteration is E ≡ a2 + b2 ≤ 10−10.

The method we have just described is essentially the
monodromy method [20], with the difference that it is ap-
plied not along the orbit but directly between its initial
and final points. For billiards this makes an enormous dif-
ference in terms of numerical convergence, since the errors
in M are largely minimized. Once the test orbit converges
to the periodic orbit, M becomes the monodromy matrix.

2.3 Convergence of test orbits

The advantage of a line-by-line search of the surface of
section is that lines are easier to handle than areas, since
they are one-dimensional objects. On the other hand, since
lines do not cover a plane, almost no periodic orbit lies ex-
actly on the lines used by the search algorithm, as the one
shown in Figure 1. However, since we require the test or-
bit to end at the same line it started from, the Y distance
(in the case of horizontal lines) from these points to the
actual periodic point is always less than ∆Y (the spacing
between lines) for at least one of the lines used by the algo-
rithm. As discussed above, the X distance between these
initial and final points may, however, be large, especially
if the Lyapunov exponent is large.

Let us consider the monodromy method applied
to such a test orbit. We call (X̄, Ȳ ) the periodic

point and, as before, (X0, Y 0) and (X0
N+1, Y

0
N+1) =

(F (X0, Y 0), G(X0, Y 0)) the initial and final points of the
test orbit. First we notice that, since both Y 0 and Y 0

N+1

are close to Ȳ , the coefficient b in equation (5) is much
smaller than a. We make this explicit by replacing b→ εb
where ε is a small parameter. Moreover, the correction δY
is also smaller than δX and we may also write δY → εδY .
Then, the second of equations (2) says that ∂G

∂X0 must be
of order ε as well.

With these considerations in mind, we can re-write
equation (6) explicitly as

(
δX

εδY

)
=

1
det(M)

1− ∂G

∂Y 0
− ∂F

∂Y 0

−ε ∂G
∂X0

1− ∂F

∂X)


(
a

εb

)
(7)

or

δX =
(

1− ∂F

∂X0

)−1

a+O(ε), (8)

which is Newton’s method for a one-dimensional map.
Therefore, the imposition that one of the coordinates
of the test orbit already nearly coincides with the peri-
odic point reduces the convergence procedure to a nearly
one-dimensional algorithm, increasing the efficiency of the
method. After a few iterations the X distance between the
test orbit and the periodic point, |a|, becomes comparable
to the corresponding Y distance, |b|, and the procedure
regains its 2D character. At this point, however, the test
orbit is close to the periodic point in both X and Y .

In practical calculations we verify that some test orbits
converge to periodic orbits whose Y coordinates are some-
what far from the initial Y0. These periodic orbits are usu-
ally calculated several times by the algorithm, since many
different test orbits converge to them, including the one
whose horizontal line is very close to the orbit. This has
to do in part with the fact that Newton’s method is super
convergent and it explains the assertion that the present
method is useful when one is interested in all periodic or-
bits, since one cannot always forecast which periodic orbit
will result from a given test orbit (see Ref. [29] for similar
results using Newton’s method). Notice that the individ-
ual orbits obtained by propagating a single horizontal line
in the Sinai’s billiard will not coincide with the orbits ob-
tained by propagating, say, a vertical line. The final set of
orbits, however, obtained after a full scan of the section,
will coincide, no matter which type of lines are used.

One variation of the procedure for finding test orbits is
to accept the test-orbit only if |X0

N+1−X0
1 | < δ where δ is

a control parameter. However, if δ is too small most test-
orbits will be thrown away and a very large number of lines
will be needed in order to generate acceptable orbits. In
the examples studied here we found it more economical to
just accept all test-orbits and let the convergence program
decide whether or not they will converge to a real periodic
solution.
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Fig. 2. Section maps for the square (left) and Sinai (right) billiards. From top to bottom the magnetic field is B = 0.1, 0.5, 1.0
and 3.0.
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Fig. 3. Two examples of periodic orbits on the square billiard
for B = 3.0 (left) and B = 0.5 (right).

3 Magnetic billiards

3.1 Description of the simulators: square and Sinai’s
billiards

We have focused our attention in two types of billiards,
namely the square billiard and Sinai billiard, both sub-
jected to an orthogonal magnetic field B. The trajectories
of a charged particle inside these billiards are arcs of circles
instead of straight line segments. The motion inside the
billiard, for particle of unity mass and charge, is governed
by the Hamiltonian

H =
1
2

[
(px − yB)2 + py

2
]

and the orbit equation is a circle with radius
√

2E/B.
When the particle hits the boundary, it is specularly de-
flected, just like the “free” (B = 0) case. The magnetic
field B is our main parameter. We have fixed the energy
on E = 0.5 so that the radius of the orbit is exactly 1/B.
When the magnetic field is increased the radius of the
orbit decreases.

We have constructed numerical simulators for these
systems using the following algorithm: given an initial con-
dition consisting of a point along the boundary l0 and an
angle at which the trajectory is launched θ0, we find the
corresponding circular trajectory inside the billiard. We
then check for collisions with the boundary: either with
the external walls or, in the Sinai billiard, with the inner
circle. At each collision, the orbit is specularly reflected
and the next set of coordinates l1, θ1 is computed, gener-
ating another piece of circular trajectory. The map from
l0, cos θ0 to l1, cos θ1 will be called the section map.

The side of the square in both billiards has been set
to 1 and the radius of the inner circle in the Sinai’s billiard
has been fixed to 0.3 (arbitrary units).

3.2 Section maps and Birkhoff coordinates

Examples of section maps for both square and Sinai’s bil-
liards are shown in Figure 2 for B = 0.1, 0.5, 1.0 and 3.0.
It is clear from these figures that neither the square bil-
liard is integrable nor the Sinai’s billiard is completely
chaotic in the presence of the magnetic field. They become
“mixed” systems in the sense that both types of behaviors
are present on the Section map. The regions of regularity

Fig. 4. Two examples of periodic orbits on the Sinai’s billiard
for B = 3.

4.40 4.42 4.44 4.46 4.48
B

0.270

0.280

0.290

0.300

0.310

l

8 stable
16 stable
8 unstable
16 unstable

Fig. 5. Bifurcation diagram for the 4k family (k = 2). The
Birkhoff l coordinate is plotted against the magnetic field.

for the Sinai’s billiard, however, are very small as com-
pared to the non-regular ones. For the square billiard, on
the other hand, large regular regions are clearly seen. For
B > 10 the section map of the two billiards become iden-
tical since the orbits that hit the external boundary of the
Sinai’s billiard do not hit the inner circle and vice-versa.

4 Numerical results

We have successfully applied the method to the two bil-
liards considered. We have obtained convergence of about
2 000 orbits, for various values of the magnetic field B.

Figure 3 shows two examples of periodic orbits for the
square billiard. Part (a) shows a period 20 orbit computed
for B = 0.5 and part (b) shows a period 11 orbit for
B = 3.0. Figure 4 displays two examples of periodic orbits
for Sinai’s billiard computed for B = 3.0. Both orbits hit
the outer boundary only twice while the inner boundary
is hit 9 times in part (a) and 5 times in part (b). For each
orbit we have also computed its action, period, length and
the eigenvalues of the reduced Monodromy matrix.

4.1 Bifurcations

One important feature of the monodromy method is that
it allows for the calculation of families of periodic orbits
and to the study of their bifurcations. Given a periodic
orbit (PO) at field intensity B = B̄, we can compute
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Fig. 6. Number of periodic orbits as a function of the number of bounces for the square billiard with magnetic field (from top
left to bottom right) B = 0.2, 0.5, 0.8 and 3.0.

the periodic orbit at B = B̄+ δB using the PO at B = B̄
as a test-orbit. This is an example where the test orbit
is not a solution of the map’s equation for B = B̄ + δB.
The recursive application of this procedure generates a
one parameter family of periodic orbits. The eigenvalues
of the Monodromy matrix along the family and the sym-
metry of the orbit give the relevant information about the
bifurcations.

As an example we have studied the bifurcations of the
8-bounce orbit, which is also referred as a “4k orbit” with
k = 2 [30]. In Figure 5 we plot one of the eight Birkhoff
l coordinates of the orbit as a function of B. The filled
circles represent the stable branch of the family and the
stars the unstable branch. These two branches coalesce at
B ' 4.4721 in a tangent bifurcation. At B ' 4.4379 a pe-
riod doubling bifurcation occurs along the stable branch,
giving rise to two period 16 orbits. For each of these new
orbits we plot the two Birkhoff l coordinates that branched
from the plotted l of the period 8 orbit. The crosses show
the stable bifurcated orbit and the plus symbol the unsta-
ble one (not shown all the way to the bifurcation point).

4.2 Histograms

In this subsection we show histograms of the number of
calculated periodic orbits as a function of length and num-
ber of bounces for some values of the magnetic field B.

Figure 6 shows histograms of number of orbits as a
function of number of bounces for the square billiard for
B = 0.2, 0.5, 0.8 and 3.0. For these low values of the
magnetic field we can see that there is a nearly exponential
growth of the number of periodic orbits with the number
of bounces N . This agrees with the expected results for
the behavior of the number of orbits as a function of the
period on regular and chaotic systems [31,32]. For regular
systems, we expect Norbs, the number of orbits for a fixed
period τ , to obey a power law for large τ , while for chaotic
ones it grows exponentially with the period. In this case,
the system is mixed. For the “free” square billiard (B = 0)
there is a simple symbolic dynamics and it can be shown
that Norbs is a linear function of N for N large and that
there are no orbits with N odd. For low values of B, there
are two well-defined curves: one for N even and other for
N odd. For larger values of B, like in B = 3.0, most
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Fig. 7. Top: number of periodic orbits as a function of number of bounces for the Sinai’s billiard and magnetic fields B = 0.5
(left) and 3.0 (right). Bottom: number of periodic orbits as a function of length for the Sinai’s billiard and B = 0.5 (left) and
3.0 (right).

of the orbits hit the boundary a large number of times
and there are very few low period orbits. The continuous
lines in Figure 6 are an exponential fittings.

Figure 7 (top) shows similar histograms for the Sinai’s
billiard at B = 0.5 and B = 3.0 respectively. As we can
see from these figures, there are much more short orbits
in the Sinai’s billiard than in the square billiard and there
is no distinction between N even or odd. Once again, for
B large the number of low period orbits decreases. The
continuous line in Figure 7 for B = 0.5 is an exponential
fitting.

The number of bounces with the outer boundary is
not a good parameter to count orbits in the Sinai’s bil-
liard. The presence of the inner scattering disk may trap
orbits inside the billiard [30]. These orbits have relatively
long periods but they hit the external walls only a small
number of times. The bottom part of Figure 7 shows his-
tograms for the Sinai’s billiard as a function of the length
u of the orbits (which is proportional to the period). For
B = 0.5 we see that the number of orbits increase with

the length up to u ' 4 and then decreases fast. This is
an indication that several orbits are missing for u ≥ 4.
Figure 8 shows an example of a trapped orbit with to-
tal length 17.22 that hits the external walls only twice.
Histograms as a function of length for the square billiard
do not add significant information and, therefore, are not
shown.

5 Final remarks

We have presented an algorithm to calculate periodic or-
bits of two-dimensional maps based on the propagation
of lines, instead of areas. The advantage of this proce-
dure is that lines remain lines when iterated several times,
whereas areas become thin so rapidly for chaotic maps
that it becomes practically impossible to distinguish them
from lines. The difficulties involved in finding the overlap
between an original area element and resulting twisted
filament are many. Finding the crossings of two lines
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Fig. 8. Example of a trapped periodic orbit on the Sinai’s
billiard for B = 3.0. The orbit has approximate length of 17.22
and it hits the external walls only twice.

is, on the other hand, a simple matter. The disadvantage
of this line-by-line search is that, obviously, lines do not
cover the two dimensional domain of the map. Therefore,
almost no periodic orbits will lie exactly on the lines used
by the search algorithm, like the one shown in Figure 1.
Nevertheless, it is easy to see that the existence of a peri-
odic point of periodN close to a line implies in the crossing
of this line and its Nth iterate.

The line search method provides test-orbits. These are
special approximations to the periodic orbits where the
initial point has one of its coordinates (Y in our exam-
ples) very close to the corresponding coordinate of the fi-
nal point, which is also close to that of the periodic orbit.
These test-orbits have been inserted on a monodromy pro-
cedure, based on the Newton’s method, to make them con-
verge to real periodic orbits. The role of Newton’s method
in its first iterations is to act basically on the “bad co-
ordinate” (X in our case). This nearly one-dimensional
character of Newton’s method is responsible for its ef-
ficiency in converging the test orbits. As discussed in
Section 2, the procedure present here is useful when one
is interested in all periodic orbits, since one cannot always
predict which periodic orbit will result from a given test
orbit. On the other hand, if a symbolic code is not avail-
able, the only way to verify that all orbits of period N
have been found is to refine the numerical search includ-
ing more lines until no more new orbits are encountered.
As a test to our method we have computed the periodic
orbits of the square billiard for low magnetic fields, where
a simple symbolic code holds approximately for the pe-
riodic orbits with even number of bounces. For the case
of B = 0.2 we found all orbits indicated by the symbolic
code up to N = 10. At this value of N several periodic
orbits not contained in the symbolic code have also been
detected. For larger N ’s the code is not reliable and no
agreement can be expected.

Finally we remark that this line-by-line search has
also been applied with success to calculate periodic or-
bits of a smooth Hamiltonian system with two degrees
of freedom [33]. In this case the Poincaré map has to be

constructed numerically integrating Hamilton’s equation
and the calculation becomes, of course, lengthy. These re-
sults will be published elsewhere.

This paper was partly supported by FAPESP, CNPq and
Finep.
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11. P. Cvitanović, B. Eckhardt, Phys. Rev. Lett. 63, 823
(1989); E. Doron, U. Smilansky, Phys. Rev. Lett. 68, 1255
(1992).

12. O. Biham, M. Kvale, Phys. Rev. A 46, 6334 (1992); K.T.
Hansen, Phys. Rev. E 52, 2388 (1995); A. Backer, H.R.
Dullin, J. Math. Phys. A 30, 1991 (1997).

13. R. de Vogelaere, Contributions to the theory of nonlinear
oscillations, edited by S. Lefschetz (Princeton U. Press,
New Jersey, 1958), Vol. IV, p. 53.

14. J. Greene, J. Math. Phys. 20, 1183 (1979).
15. M. Sieber, J. Phys. A 30, 4563 (1997).
16. S. Aubry, Physica D 7, 240 (1983).
17. R.S. Mackay, J.D. Meiss, I.C. Percival, Physica D 27, 1

(1987).
18. B. Mestel, I.C. Percival, Physica D 24, 172 (1987).
19. Q. Chen, J.D. Meiss, I.C. Percival, Physica D 29, 143

(1987).
20. M. Baranger, K.T.R. Davies, Ann. Phys. (N.Y.) 177, 330

(1987).



728 The European Physical Journal B

21. M.A.M. de Aguiar, M. Baranger, Ann. Phys. (N.Y.) 186,
355 (1988).

22. M.A.M. de Aguiar, C.P. Malta, Phys. Rev. A 42, 2438
(1990).

23. D. Grobgeld, E. Pollak, J. Zakrzewski, Physica D 56, 368
(1992).

24. J.M. Greene, J. Comp. Phys. 98, 194 (1992).
25. M.N. Vrahatis, J. Comp. Phys. 119, 105 (1995).
26. L. Drossos, O. Ragos, M.N. Vrahatis, T. Bountis, Phys.

Rev. E 53, 1206 (1996).
27. M. Robnik, M.V. Berry, J. Phys. A 18, 1361 (1985); M.

Robnik, in Nonlinear Phenomena and Chaos, edited by S.
Sakar (Adam Hilger, 1986), p. 303.

28. S.D. Prado, M.A.M. de Aguiar, Phys. Rev. E 54, 1369-
1377 (1996).

29. R. Marcinek, E. Pollak, J. Chem. Phys. 100, 5894 (1994).
30. N. Berglund, A. Hansen, E.H. Hauge, J. Piasecki, Phys.

Rev. Lett. 77, 2149-2153 (1996).
31. V.I. Arnold, Mathematical Methods for Classical Mechan-

ics (Springer, Berlim, 1989).
32. A.M.O. de Almeida, Sistemas Hamiltonianos: Caos e

Quantização (Unicamp, Campinas, 1991).
33. F.A. Bajay, Master’s Thesis, Universidade Estadual de

Campinas, IFGW, 1992 (in Portuguese).


