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Abstract

We study the transmission through a double quantum-dot system in the Kondo regime. An exact expression for the transmission

coefficient in terms of fully interacting many-body Green’s functions is obtained. By mapping the system into an effective Anderson

impurity model, one can determine the transmission using numerical renormalization group methods. The transmission exhibits

signatures of the different Kondo regimes of the effective model, including an unusual Kondo phase with split peaks in the spectral

function, as well as a pseudogapped regime exhibiting a quantum critical transition between Kondo and unscreened phases.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Semiconductor quantum dots have played a major role
in the investigation of strongly correlated effects in
nanoscale systems, as highlighted in the pioneering
experiments on Kondo effect in these devices [1]. More
recently, double-dot setups have been used to investigate
two-impurity and two-channel Kondo physics [2–7]. These
experimental developments have spurred great theoretical
interest in double dots in the Kondo regime. In particular,
studies of side-coupled [8–12] and parallel [13,14] dot
configurations have been carried out.

Motivated by these accomplishments, we study transport
properties of double quantum dots (DQDs) with one
interacting dot (‘‘dot 1’’) coupled to a large dot, effectively
noninteracting (‘‘dot 2’’, with energy �2). This seemingly
simple setup can be described by an Anderson model coupled
to a fermionic bath with a nonconstant density of states
(DoS). Compared with the standard case of a metallic host
(constant DoS), a nonconstant DoS leads to nontrivial new
and interesting features in the many-body Kondo state.
e front matter r 2007 Elsevier B.V. All rights reserved.
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As shown previously [15], a splitting of the Kondo
resonance appears when the DoS shows a sharp peak at the
Fermi energy, while the Kondo singlet itself is preserved.
The proposed DQD setup also allows for the appearance of
a pseudogap in the effective DoS, leading to a critical
transition between Kondo and non-Kondo phases. These
phenomena substantially modify the spectral function of
the interacting dot. We show here that another quantity,
the transmission coefficient, can also be used to explore the
critical transition and other features of this system.
We obtain an exact expression for the transmission

coefficient TðoÞ in terms of the fully interacting many-body
Green’s functions for the DQD system, which are then
calculated within the numerical renormalization group
(NRG) framework. This approach allows us to fully
describe the characteristics of the transmission coefficient
in the different regimes mentioned above.
2. Model

The model describes the DQD setup depicted in Fig. 1:
quantum dots 1 (singly occupied with charging energy U
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Fig. 1. Schematic representation of the double-dot system.
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and energy �1) and 2 (energy �2) are coupled to metallic
leads (‘ ¼ L;R) and to each other.

The Hamiltonian is given by H ¼ H1 þH2 þHLeadsþ

HDot2Dot þHDot2Leads, where

HLeads ¼
X

k;‘¼L;R

�‘kc
y

‘ksc‘ks,

Hi¼1;2 ¼ �ic
y

iscis þ di;1Un1"n1#,

HDot2Leads ¼
X

k;‘¼L;R

ðV i‘kc
y

isc‘ks þ V�i‘ksc
y

‘kscisÞ,

HDot2Dot ¼ lc
y

1sc2s þ l�cy2sc1s. ð1Þ

The transmission amplitude for an electron tunneling
from the left lead to the right lead can be obtained from
the retarded Green’s function connecting the leads,
GLkRk0 ðoÞ � hhcLk; c

y

Rk0
ii:

GLkRk0 ðoÞ ¼
X

i;j¼1;2

gLkV�iLkGijðoÞV jRk0gRk0 (2)

with g‘k � ðo
þ � �‘kÞ

�1. In the derivation of the expression
above, we have used identities from the equations of
motion for fermionic operators ca; c

y

b in the frequency
domain that include [16]

ohhca : c
y

biio ¼ h½ca; c
y

b�Zi þ hh½ca;H�� : c
y

bii,

ohhca : c
y

biio ¼ h½ca; c
y

b�Zi � hhca : ½c
y

b;H��ii. ð3Þ

In the wide-band limit Dbjoj, where D is the half-
bandwidth, we approximate V i‘k � Vi‘ (k-independent
couplings) and

P
k ðo

þ � �kÞ
�1
!�ipr0 (where the same

DoS r0 is assumed for each lead) and one obtains the
following expression for the energy-dependent transmis-
sion from L to R:

TðoÞ ¼
X

k;k0
GLkRk0 ðoÞ ¼ 2pr0

X

i;j¼1;2

V�iLGijðoÞV jR. (4)

In the following, we assume a symmetric configuration
V iR ¼ V iL ¼ Vi=

ffiffiffi
2
p

with real values for the couplings for
simplicity. Defining Di � pr0V2

i and D12 � pr0V1V2, TðoÞ
can be written in a compact form

TðoÞ ¼ D1G11 þ D2G22 þ D12ðG12 þ G21Þ. (5)

All Gij in (5) are fully interacting Green’s functions.
Interaction effects are introduced into the dot 2 Green’s
function by direct and indirect (via the leads) tunneling
to dot 1. The identities (3) can be used to establish
the relations

G22ðoÞ ¼ G
ð0Þ
22 ðoÞ þ G21ðoÞG11ðoÞG12ðoÞ,

G12ðoÞ ¼ G
ð0Þ
22 ðoÞðl� iD12ÞG11ðoÞ. ð6Þ

Notice that for real couplings, G12ðoÞ ¼ G21ðoÞ. These
relationships in turn lead to an exact expression for the
transmission involving only the noninteracting dot 2
Green’s function G

ð0Þ
22 ðoÞ ¼ ðo� �2 þ iD2Þ

�1 and the fully
interacting dot 1 Green’s function G11ðoÞ � hhc1s : c

y

1sii:

TðoÞ ¼ D1G11ðoÞ þ 2D12½G
0
22ðoÞðl� iD12ÞG11ðoÞ�

þ D2G0
22ðoÞ½1þ G0

22ðoÞðl� iD12Þ
2G11ðoÞ�. ð7Þ

The dot 1 Green’s function G11 is obtained from NRG
calculations in the following manner: Hamiltonian (1) is
mapped [15] onto an Anderson impurity connected to
an effective nonconstant DoS through a hybridization
function

DðoÞ ¼ pr2ðoÞ½lþ ðo� �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=D2

p
�2 (8)

with r2ðoÞ ¼ D2=fp½ðo� �2Þ
2
þ D2

2�g. In general, Dð0Þa0
gives the effective broadening of the single-particle
Hubbard peaks in dot 1 produced by the coupling to the
effective nonconstant DoS. Notice that, for D2; l! 0
(single-dot case), Dð0Þ ! D1.
We focus on two limiting configurations. In the ‘‘side-

dot’’ limit (D1 ¼ 0;D2; la0), dot 1 is connected to the leads
only by second-order tunneling processes mediated by dot
2, and DðoÞ has a Lorentzian form, with a peak of width D2

centered at �2. In the ‘‘parallel-dot’’ limit (D1;D2a0; l ¼ 0),
dots 1 and 2 are connected only by indirect tunneling
through the leads. Now DðoÞ has an ‘‘inverted Lorentzian’’
shape, vanishing as jo� �2j2 at o ¼ �2; if dot 2 is in
resonance with the leads (�2 ¼ 0, the case assumed
throughout the remainder of the paper), this corresponds
to a pseudogap in the effective DoS with exponent 2.
The spectral function A11ðoÞ ¼ �p�1 ImG11ðoÞ is ob-

tained from the NRG spectra using the method described
in Ref. [17]. In short, at each NRG iteration N, one collects
partial information for the spectral function by approx-
imating A11ðoÞ ¼ AN

11ðoÞ for oNoot10oN where oN �

DL�N=2 (L41) is the characteristic energy scale at iteration
N. A continuous function can be obtained by replacing
the d-functions at energies En entering the Lehmann
expression by logarithmically broadened lines db

ðo� EnÞ

/ exp½�ðlno� lnEnÞ
2=b2
�.

Next, ReG11ðoÞ is obtained from A11ðoÞ via the
appropriate Kramers–Kronig (KK) transformation. Be-
cause of the subtleties involved in the use of such
transformations, we compared (i) the results of transform-
ing A11ðoÞ obtained numerically as described above
with (ii) those from performing the KK at each NRG
step, calculating FN ðoÞ ¼ p�1P

R
do0AN

11ðo
0Þ=ðo0 � oÞ

and then approximating ReG11ðoÞ ¼ �p�1FN ðoÞ for
oNoot10oN . We obtained qualitatively similar results
with both methods, with better agreement for larger b

entering db
ðo� EnÞ (b ¼ 0:3–0:6 for the results presented).
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Fig. 3. (Color online) Transmission amplitude for the parallel configuration

with D1 ¼ 0:05D, and �1 ¼ �U=2 (dashed line) �0:088U (�) and �0:086U

(thick solid line). The critical point is reached at ��1 ¼ �0:086524U . Inset: a

dip in TðoÞ crosses o ¼ 0 due to the pseudogap-induced transition.
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For large N, an additional, broadening-independent esti-
mate of G11ð0Þ can be obtained from the expression [18]
FN ð0Þ ¼ ZN ð0Þ

�1P
n ðjhnjc1sj0ij

2 � jh0jc1sjnij
2Þ=EN

n , where
EN

n , jniN and ZN ð0Þ are, respectively, the eigenenergies,
eigenstates and zero-temperature grand-canonical partition
function at NRG iteration N, with n ¼ 0 representing the
ground state.

3. Results

In the following, we take U ¼ 0:5D and D2 ¼ 0:02D. In
the side-dot configuration considered, the effective dot 1
hybridization DðoÞ has a resonance of width D2 at the
Fermi energy. Note that Dð0Þ ¼ l2=D2 and the Kondo
temperature TK increases with Dð0Þ, so TR will increase
rapidly as l increases [13].

As previously shown [15], the presence of a resonance in
the effective hybridization leads to a splitting in the spectral
function for l\l�, where l� is defined implicitly by
TKðl

�;D2Þ ¼ D2. This can be seen in the left panels of
Fig. 2, for which l��0:05D.

The transmission amplitude is shown in the main panel
of Fig. 2. At o ¼ 0, the Friedel sum rule requires that
ImG11ð0Þ ¼ �D2=l

2. Substituting this result in Eq. (7) leads
to jTð0Þj2 ¼ 0 independently of l;D2. The vanishing of
transmission across the double-dot system is essentially an
interference effect: the path going directly from the left lead to
the right lead through dot 2 interferes destructively with the
alternate path in which the electron tunnels in and out of dot 1.

Signatures of the splitting in the spectral density appear
in the transmission amplitude at finite o. For increasing
values of l, the onset of the splitting in the spectral
function (left panels in Fig. 2) is accompanied by the
appearance of satellite peaks in jTðoÞj2 near o ¼ 0.

In the case of the dots in a parallel configuration, the
situation is different, as shown in Fig. 3. Notice that
jTð0Þj2 ¼ 1 always, which is a direct consequence of the
Fig. 2. (Color online) Spectral densities (left panels) and transmission

amplitude (right panel) for the side dot configuration with �1 ¼ �U=2 and

l ¼ 0:04D (dashed lines), 0:06D (�) and 0:08D (thick solid line). Notice the

appearance of secondary peaks in jTðoÞj2 as l increases.
presence of the pseudogap in the hybridization function DðoÞ.
In the resulting effective pseudogapped Anderson model, the
spectral density vanishes as joj2 at the Fermi energy. Thus,
ImG11ð0Þ ¼ 0, effectively closing the transmission through
dot 1 at the Fermi energy. In this regime, the transmission is
dominated by the resonant tunneling through dot 2.
Important differences appear in particle–hole (p–h)

symmetric and asymmetric regimes. In the p–h symmetric
case (�1 ¼ �U=2, dashed lines in Fig. 3) the dot 1 spectral
density varies as o2 within a relatively large range jojoD2

around the Fermi energy [15]. In this case, jTðoÞj2 is
essentially a Lorentzian of width D2.
Away from p–h symmetry, a quantum critical point

separating Kondo and non-Kondo phases can be reached
[15]. Passage through the quantum critical point is reflected
in the position of a peak in the dot 1 spectral function at a
frequency o� that crosses from o�40 in the Kondo phase
to o�o0 in the unscreened phase [19].
We find that the transition also has a signature in the

transmission. The inset to Fig. 3 shows that the low-energy
peak in A11 translates into a dip in jTðoÞj2 at o � o�—a
dip that passes through the Fermi energy at the quantum
critical point. The amplitude and width of this dip depend
on structural parameters that should be tunable in
experiments to enhance the feature. This opens interesting
possibilities for controlled experimental study of a quan-
tum phase transition through conductance measurements.
4. Conclusions

We have analyzed the electronic transmission in two
different regimes of a DQD system. Utilizing an Anderson
Hamiltonian and its exact solution using NRG methods,
one can determine the energy-dependent transmission
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function for the structure. As different geometries are
explored, one can access an unusual Kondo regime with
split peaks in the spectral function, as well as a Kondo
system in a pseudogapped environment, allowing explora-
tion of an interesting quantum critical transition. The
transmission function exhibits clear signatures of these
different Kondo regimes, opening the possibility of
extensive experimental studies of their properties and
response to different perturbations.
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